
Producer-Consumer Problem

Appears in multicore machines

▪ Kernel & user-level I/O, networking, parallel apps

▪ Requires fast communication at high concurrency

Communication

▪ Shared data structure (e.g., concurrent FIFO 

queue)

▪ Multiple producer/consumer threads 

▪ Item with longest time in the queue is removed 

first

Issues

▪ Time-based item ordering inherently sequential

▪ Limits concurrency, delays queue operations

POSTER: A Lock-free Relaxed Concurrent Queue for Fast Work Distribution
Giorgos Kappes, Stergios V. Anastasiadis – University of Ioannina, Ioannina 45110, Greece

Conclusions

Problem 

▪ FIFO Queues are inherently sequential

▪ Limit concurrency and delay operations

Solution: Relaxed Concurrent Queue Single

▪ Linearizable, lock-free queue that relaxes 

operation ordering

▪ Utilizes limited amount of memory space

▪ Improves concurrency, decreases 

operation & item wait latency

RCQS: Relaxed Concurrent Queue Single
Goals

▪ High operation throughput

▪ Low item wait latency in the queue

Two-Stage Relaxed ordering model

▪ 1st Stage: Distribute operations sequentially

▪ 2nd Stage: Complete concurrently potentially 

out of order

Implementation

▪ Fixed-size (power of 2) circular buffer (slots)

▪ Head and Tail unsigned integers

▪ Slot state (occupied/free, 1-bit), slot data (63-bit)

▪ Slot state also notifies waiting dequeuers

Operations of RCQS

Enqueue

▪ Allocate slot to thread sequentially with FAA on tail

▪ Single Compare-and-Swap (CAS): switch slot state from 

free to occupied and update slot data atomically

▪ If the CAS succeeds, enqueue completes & notifies 

waiting dequeuers (if any), otherwise retry at same slot

Dequeue

▪ Allocate slot to thread sequentially with FAA on head

▪ Single Compare-and-Swap (CAS): switch slot state from 

occupied to free and zero out slot data atomically

▪ If the CAS succeeds, dequeue returns the retrieved data

▪ If the CAS fails & the slot state is occupied, retry at same slot

▪ If the slot state is free, sleep after max number of retries

DD
H

E
ET

Properties of RCQS
Lock-free: some operation always finishes in a finite number of steps

▪ Assume partial definition to satisfy non-blocking when enqueuer or 

dequeuer waits on slot for free or occupied precondition

▪ When a competing thread completes the CAS on a slot, an operation finishes 

in a finite number of steps

▪ From sequential slot allocation, enqueuers cannot indefinitely wait at a slot

if there are active dequeuers (and vice versa) 

Linearizability: the structure remains valid and operations finish 
between invocation and response 

▪ 2 Invariants: Sequential operation assignment to slot & safe item removal 

satisfied by FAA and CAS respectively

▪ Each operation has 2 methods with distinct invocation-response: slot alloca-

tion & slot update. Each method has its own linearization point (FAA or CAS)

Results
Summary

▪ RCQS achieves substantially lower 

operation and wait latency

▪ LCRQ/WFQ have high wait latency (retries 

for FIFO, queue creations, thread helping)

Dequeuers 

follow the 

enqueuers

PPoPP

2021


