
Asterope:

A Cross-Platform Optimization Method for

Fast Memory Copy

Giorgos Kappes, Stergios V. Anastasiadis
University of Ioannina, Ioannina 45110, Greece

PLOS 2021: 11th Workshop on Programming Languages and Operating Systems

Memory copy

Memory copy (memcpy) is used in every software stack

 Applications, libraries, language runtime, operating-system kernel

Copy performance is critical

 Used in critical path of application-kernel interaction, inter-process

communication, device access

Memory copy is resource intensive & sensitive to system parameters

 Numerous optimizations developed over the years

 Software routines, compiler intrinsic functions, architecture-specific

hardware instructions

 Sensitive to: Hardware configuration, system settings, colocated

workloads

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy2

Performance of various memcpy routines

Cached read-only workload: read I/O of dataset cached at client side
 Alternative memcpy routines at client of distributed filesystem
 E.g., Polytropon (SoCC 2020), Buffered (transfer through memory Buffer, Intel 2009)

Copy performance is platform-dependent
 Polytropon memcpy achieves best performance on Opteron but not on Xeon
 Performance of Glibc memcpy drops on Opteron

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy3

Simplest memory copy

Load & Store, Byte-by-Byte

What is wrong with the above function?

1. Does not employ single instruction, multiple data (SIMD)

2. Has no explicit instruction-level parallelism

3. Does not prevent possible cache pollution

4. Does not optimize memory loads with software prefetching

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy4

void *memcpy(void *dest, void const *src, size_t len)

{

char *_dest = (char *) dest;

char const *_src = (char const *) src;

while (len--)

*_dest++ = *_src++;

return dest;

}

Cache

Reg

Cache

Source

Destination

Optimization #1: Maximize memory bandwidth

SIMD Instructions

 Larger register sizes

 Move batches of data between registers & memory

 Multiple loads/stores per cycle

 Fewer instructions to complete a transfer

 Larger instruction opcodes

Examples

 MMX, SSE, SSE2, SSE4.1, AVX, AVX512

Restrictions

 Platform-specific

 Architectural power restrictions may lower core clock frequency

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy5

Cache

Reg

Cache

Source

Destination

Optimization #2: Do not pollute the cache

Streaming Instructions
 Non-temporal loads/stores that bypass (some) caches

 Reduce cache pollution

 Reduce cache-coherence traffic

Non-temporal loads
 Use temporal internal buffers (e.g., Line Fill Buffers/LFBs)

to transfer data

Non-temporal stores
 Use write-combining, weakly-ordered, uncachable,

non-write-allocate operations to transfer data

Restrictions
 Performance benefit depends on architecture

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy6

Cache

Reg

Cache

Source

Destination

Optimization #3: Optimize load performance

Hardware prefetching

 Automatically initiated when cpu detects predictable

access pattern at the cache level

 Restrictions of hardware prefetching

─ Cache type (instruction/data) & cache level

─ Cache misses needed to trigger prefetching

─ Prefetched data located in single page

Software prefetching

 Special instructions hint data transfer from memory to processor in

advance without register involvement

 Restrictions of software prefetching

─ Performance benefits of prefetch parameters vary across systems

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy7

CPU

Reg

Source

Destination

Parameters of software prefetching

Transfer block
 Data transferred per memcpy iteration (2 cache lines of 64B each)

Prefetch type

 Temporal (T0/1/2): Hint data transfer to

cpu caches

 Non-temporal (NT): Hint data transfer to L1 & cpu

temporary internal buffers, limit cache pollution

Prefetch unit
 Data fetched by single instruction (1 cache line)

Prefetch size
 Data fetched by a sequence of instructions

Prefetch distance
 Length in bytes by which data is requested ahead of its actual load

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy8

Prefetch

distance

Prefetch

size

Prefetch

type

…

L1 & temp

internal

buffer

L1 or

L2

All Caches
T0

T1 or T2
Transfer

block

Prefetch

unit

Problems

Large design space for memory copy optimization

 Register type & size

 Temporal or non-temporal instructions

 Prefetch type, size & distance

Optimization effectiveness depends on the platform

 E.g., number of Line Fill Buffers (LFBs), frequency scaling

Plethora of custom-crafted memory copy routines

 Their performance varies significantly on different platforms

 Systems can use runtime dispatching techniques to select a

particular memory copy function during initialization but they lack

automatic adaptation at finer-grain parameters

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy9

Fast memory copy with Asterope

Goal
 Automatically identify memcpy settings for max performance per transfer

size across different platforms

Solution: Apply exhaustive search over low-level system parameters
 Automate optimizations #1, #2, #3
 Run once offline at initial system setup
 Run again on major system modifications (e.g., memory upgrade)

Explored system parameters
 Registers, instructions, prefetching

Data transfer pipeline
 Prefetch stage: Software-prefetch data up to prefetch size
 Load stage: Load a block of data from source memory into registers
 Store stage: Store a block of data from registers to target memory

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy10

Explored parameters

Registers
 RSI/RDI (1B), MM (8B), XMM (16B) YMM (32B), ZMM (64B)

Load Instructions (x86 & SIMD)
 Non-temporal: requires custom kernel module to activate write-

combining memory (movntdqa, vmovntdqa)

 Temporal (rep movsq, movq, movaps, vmoaps)

Store Instructions (x86 & SIMD)
 Non-Temporal (movntdq, movntps, vmovntps)

 Temporal (rep movsq, movq, movaps, vmovaps)

Prefetching
 Temporal (T0, T1, T2), Non-temporal (NT)

 Size & distance

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy11

Data transfer pipeline

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy12

Prefetch

Stage

Load Stage

Store Stage

#blocks

copied <

data size

N
e
x
t

T
ra

n
sf

e
r

b
lo

c
k

End

Goal: Store next block to destination memory

Parameters: Register type (RSI/RDI, MM, XMM,

YMM, ZMM), Store type (Temporal, Non-Temporal)

Goal: Load next block to CPU registers

Parameters: Register type (RSI/RDI, MM, XMM,

YMM, ZMM), Load type (Temporal, Non-Temporal)

Goal: Prefetch data ahead of load but not too

early to risk replacement before store

Parameters: Prefetch Type (T0, T1, NT), Prefetch

Size, Prefetch Distance

Asterope optimization algorithm

// to: source, from: destination, xfsz[]: transfer sizes

For each transfer size xi (index to xfsz[])

For each prefetch size ps to Max Prefetch Size (blocks)

For each prefetch distance pd to Max Prefetch Distance (blocks)

For each prefetch type pt

For each load type lt

For each store type st

For each register type rt

Clear cpu caches

Record memcpy duration

For each block bi of transfer size xfsz[xi]

For each block pi of ps // if !(bi mod ps)

blkmemprf(from + (pd+pi) * BSZ, pt)

blkmemcpy(to, from, lt, st, rt);

// Next transfer block

from += BSZ

to += BSZ

Fence for non-temporal store

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy13

Prefetch stage

Load & Store stages

Examined parameters

Copy xfsz[xi] Bytes from

source to destination

Search for (ps, pd, pt, lt, st, rt) with max memcpy performance
per transfer size

Asterope output

Optimized memcpy routine produced by Asterope

 Common 3-stage copy pipeline

 Per platform optimized memcpy parameters

 Domain of transfer sizes: partitioned to left half-

open intervals by the evaluated transfer sizes

 Handles unaligned memory addresses

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy14

Prefetch

Stage

Load Stage

Store Stage

#blocks

copied <

data size

N
e
x
t

T
ra

n
sf

e
r

b
lo

c
k

End

Experimentation environment

Machine A: 2 x Intel Xeon Gold 5218
 128GB RAM, 32 physical cores (64 HTs)

 88.9ns Measured Latency

 Per socket

─ 1MB L1, 16MB L2, 22MB L3

─ 2 Memory Controllers, 6 Channels

─ 19.87GB/s BW/Channel

Machine B: 4 x AMD Opteron 6378
 256GB RAM, 64 physical cores

 84.7ns Measured Latency

 Per socket

─ 768KB L1, 16MB L2, 16MB L3

─ 1 Memory Controller, 4 Channels

─ 12.8GB/s BW/Channel

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy15

Register, instruction & Prefetch

parameters of Asterope for max

memcpy performance

Microbenchmark memory copy performance

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy16

Asterope is the fastest routine in both systems

 Up to 1.6x faster than Glibc & Linux5 (Xeon)

 Up to 1.7x faster than Glibc, up to 1.5x faster than Polytropon

(Opteron)

Ceph client performance

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy17

Asterope tracks or improves the performance of the fastest
memory copy routine in Xeon and Opteron

 Up to 1.5x faster than the default Glibc memcpy in both systems

 Up to 1.9x faster than Linux5 memcpy in both systems

Ceph distributed
filesystem (v10.2.7)

 Modified memcpy
routine at client
between application
buffers and cache

 Read-only workload
that fits in client
cache

Conclusions

Multiple memcpy versions that optimize copy performance
 Design space for memcpy optimization too large

 Distinct routine per CPU, lack automatic adaptation at finer grain

 Performance sensitivity to system instructions & parameters

Asterope: Automatic cross-platform optimization for fast memcpy
 3-stage copy routine: prefetch, load, store

 Exhaustive search to find parameters that optimize copy
performance per transfer size on specific platform

 Optimization conducted once for a specific platform configuration

Result
 Asterope memcpy tracks or increases the fastest performance

achieved by existing routines across different platforms

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy18

Future work

Apply Asterope across a range of performance-critical functions

 Dependent on features of CPU, memory, interconnect, devices

 E.g., data load, caching, communication, list iteration, string/stream

processing

Explore more system parameters

 E.g., kernel/userspace, mode/context switching, caching, isolation

Optimize parameter exploration

 The one-time offline search takes several hours

 Approach 1: Dynamically explore performance for different parameters

as the system serves data transfers during normal operation

 Approach: Use model-based learning to approximate memcpy

performance per parameter tuple

Asterope: A Cross-Platform Optimization Method for Fast Memory Copy19

