
Scalable Access Control for Secure Multi-Tenant
Filesystems

Giorgos Kappes
Supervisor: Stergios Anastasiadis

Department of Computer Science & Engineering
University of Ioannina

Greece

October 3 2013

Outline

Background
Cloud computing and virtualization environments
Security issues in multitenant storage systems
Parallel distributed filesystems

Design and implementation
Architectural definitions
Security analysis
Prototype implementation

Experimental evaluation
Experimentation environments
Microbenchmarks
Application-level experiments

Conclusions and future work

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 2/28

Cloud computing

Access to large amounts of resources

Resource aggregation

Maximized effectiveness of shared
resources

Reduced costs for end-users

Cloud deployments

Public Cloud

Private Cloud

Community Cloud

Hybrid Cloud

Public Cloud

ProviderOrganization

Client
Client

Client

Hybrid Cloud

Organization

Client
Client

Client

Organization

Client
Client

Client

Private Cloud

Community Cloud

Organization

Client
Client

Client

Organization

Client
Client

Client

Provider

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 3/28

Cloud service models

Cloud services

Software-as-a-service

Platform-as-a-service

Infrastructure-as-a-service

Accessed through:

Web browser

Thin client

Mobile application
Platform-as-a-service Infrastructure-as-a-service

Software-as-a-service

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 4/28

Virtualization

Sharing of computer system resources

Virtual Machine Monitor

Software layer placed on top of the
hardware layer

Manages and allocates system
resources to VMs

Provides isolation

Virtual Machine Monitor architectures

Hosted

Autonomous

Hardware

Host Operating System

Virtual Machine Monitor

VM 1 VM 2 VM 3

Hosted Architecture

Hardware

Virtual Machine Monitor

Priviledged

VM
VM 1 VM 2

Autonomous Architecture

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 5/28

Storage consolidation in virtualization environments

Concept

Centralizing & sharing storage resources across applications/users

Consolidation at the block level: Virtual disks

Support for isolation, versioning, mobility, heterogeneous clients

No opportunities to share read-write access

Complicated sharing and manageability

Reduced performance due to the large number of storage layers

Consolidation at the filesystem level: Virtualization-aware filesystems

Data sharing, increased administration flexibility/efficiency

Ephemeral and highly composable storage

Improved performance

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 6/28

Our goals

Shared Storage

TENANT1

VM

Unique Tenant ID

Local

Users

TENANT2

VM

Unique Tenant ID

Local

Users

Tenant1 ID space Tenant2 ID space

Identity space

Tenant1 names Tenant2 names

File name space
Data

TENANT1 TENANT2

Isolation: Isolate tenants and prevent namespace collisions

Sharing: Flexible intra-tenant/ inter-tenant sharing

Efficiency: Fast data access with native support of multitenancy

Compatibility: Architectural compatibility with existing filesystems

Manageability: Efficient administration of the file system

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 7/28

Multitenancy challenges of shared file-level storage

FS NATIVE USERS

Shared File System

TENANT1

UID: 1000
GID: 1000

UID: 1100

TENANT2

UID: 1000
GID: 1000

UID: 1050

GID: 1000
UID: 2000

UID: 1000

Single shared namespace

Tenant namespaces not isolated

Identity collision problem

Problems with permissions and special files

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 8/28

Main approaches to prevent identity collisions

Centralized identification

ID management: shared service

Enormous number of users

Scalability and security problems

Identity mapping

Local IDs Þ globally unique IDs

Limited scalability, complicated
file sharing and manageability

Servers

CASClients

TENANT1

Clients

TENANTN

CLOUD PROVIDER

Tenant Local ID Server ID

...

TenantA

TenantB

TenantA

...

... ...

1000 5000

1000 7000

1012 5012

... ...

ID Mappings

UID Space:

0-2000

TENANT1

UID Space:

0-1500

TENANT2 CLOUD PROVIDER

Tenant Range

TenantA

TenantB

...

4000-6000

6001-7501

...

ID Ranges

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 9/28

Why file sharing is important for cloud environments?

Virtual desktops

An enterprise stores the desktop filesystems of personal thin clients

Separate root tree for each tenant, shared folder for collaboration

Software-as-a-service

A SaaS provider supports different business customers

Separate application files, but possibly shared system files

Software repository

Shared software repository forked into shared or private branches

Medical records and scientific data

Health-care/research data shared between affiliated hospitals/groups

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 10/28

Parallel distributed filesystems

Goals

Parallelization of file I/O

Elimination of the potential metadata bottleneck

Separate management of file metadata and data

Metadata managed by metadata servers (MDSs)

Data managed by object storage servers (OSDs)

Storage in the form of objects

Data and metadata split into objects

Objects are stored on OSDs

Filesystem client

Full filesystem abstraction to users

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 11/28

Access control on parallel distributed filesystems

Client MDS

OSD OSD

(1) Authorization

Request

(2) Capability

Access control decisions happen at the MDS

OSDs: no knowledge of access control info

MDS: authorizes requests and provides clients with capabilities

Client: presents the capability to the OSD

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 12/28

A case study: Ceph

A distributed object-based filesystem

Clients: provide access to the FS

MDSs: manage the FS namespace

OSDs: store data and metadata

MONs: manage the cluster map

Client

OSDOSDMDS MON

A
u

th

AuthAuth

Metadata management

Folder: stored as a single object, or as a collection of fragments

The MDS caches recently-updated metadata

Data and metadata storage

Objects stored as files: identifier, binary data, object metadata

Objects mapped to PGs and PGs to OSDs with CRUSH

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 13/28

Architectural overview

TENANT1

Users1

Clients

Tenant
Authentication

Server

FILESYSTEM SERVERS

MDS OSD OSD

Filesystem
Authentication

Service

Filesystem
Authentication

Server

TENANTN

UsersN

Clients

Tenant
Authentication

Server

Tenant Authentication Server (TAS) certifies local clients/principals

Tenants/clients/principals publicly identified by their public key

Tenants can use their own Identification mechanism internally

Filesystem Authentication Server (FAS) certifies TASs/MDSs/OSDs

Manages the operation of the whole system

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 14/28

Authentication

PROVIDERTENANT

Users1

Tenant

Authentication

Server

(1
)

A
u
th

e
n
tic

a
te

Filesystem
Authentication

Service

Filesystem

Authentication

Server

MDS OSD OSD

Authenticate

Ticket for
 MDS

(2
)

M
D

S
 T

ic
ke

t

Authenticate
(3)

Metadata ops

(4)
OSD Ticket

(5)
Data ops

Clients

Definition

Verification of an entity’s identity

Idea

Principals: connect to a client and authenticated by a TAS

From the TAS: principals retrieve ticket for the MDSs

From the MDS: principals retrieve ticket for the OSDs

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 15/28

Authorization

Definition

Determining principal’s rights

Idea

Separate ACLs for each tenant
and the provider

Files: private/shared across
principals of 1 or more tenants

Namespace filtering: Selective
access to metadata

Tenant view and Admin view

Client

TENANT1

MDS

Authorization
Request

... ...
Capability

Policy Tenant1
...

Policy

...

TenantN

Credential

TENANT1 VIEW

/

T1

bob

alice

Share

Images

/

T1

T2

bob

alice

...

bob

Share

Images

ADMIN VIEW

nick

TENANT2 VIEW

/

T2

bob

nick

Share

Images

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 16/28

Optimizations

Folder
Tenanti Tenanti

Folder
ACLs

Tree
ACLs

Tenanti

Private ACLs

File

ACL Sharing

Folders: 2 ACLs per tenant. folder ACL + tree ACL

Files with identical access rights: share parent’s tree ACL

Files with different access rights: private ACL

Tree ACL initialization and update

Can be set manually or automatically

Can be updated either statically or dynamically

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 17/28

Security analysis: Players

Principals

Native principals (trusted), tenant principals (untrusted)

Clients

Trusted entities that provide filesystem access to principals

Storage servers

Trusted storage devices that store and return data

Metadata servers

Trusted servers that manage filesystem namespace

Authentication servers

Trusted servers which certify other players

Wire

Transfers data between players

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 18/28

Security analysis: Possible attacks

Attacks on the wire

Captured credential, Denial of Service

Encrypted/signed credentials, message nonches to prevent replays

Attack on a client or tenant principal

Attacker can access the principal’s data

Attack is confined within the principal’s tenant

Attack by a revoked tenant

FS revokes tenant access: tenant ACL is deleted

Attack on a native filesystem principal

Attacker can gain complete access to the data of all tenants

Secure these accounts!

Attack on tenants’ data

Reasons for which a provider is not trusted for critical data

Tenants may externally apply data-protection techniques

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 19/28

Prototype Implementation

EXTENDED ATTRIBUTES

MAP

INODES

UID

GID

MODE

...
XATTRS

...

Native User Permissions

ClientClientClient

ClientClientMDS

ClientClientMON

ClientClientOSD

OBJECT

POOLS

...

Permissions

Permissions

Permissions

TID1

TID2

...

TIDN

Auth

Overview

Based on Ceph Version 0.61.4 (Cuttlefish)

Main modified components: MDS, Client, Messages, Tools

Multitenant access control

FS mount: Clients identify their tenants

Client session limited to a single tenant more

Tenant view: File permissions stored in EAs (C++ map) more

Admin view: File permissions stored in regular Inode fields more

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 20/28

Experimentation environments

Local

amd64-based HP ProLiant DL140 G3 server nodes

250-500 GB, 7200 RPM HDs, 1 Gbps NET

MDS: x1, 1 x Intel E5345, 6 GB RAM, Linux 3.9.3

OSD: x3, 1 x Intel E5345, 3 GB RAM, Linux 3.9.3, XFS FS

MON: x1, 1 x Intel E5345, 3, GB RAM, Linux 3.9.3

DOM0: x6, 2 x Intel E5345, 4 GB RAM, Linux 3.5.5, Xen 4.2.1

Client: x36, 1 VCPU, 512 MB RAM, Linux 3.9.3, bridged NET

Amazon Web Services (AWS)

m1.xlarge: x3, 4 VCPU, 15 GB RAM, Linux 3.9.3

t1.micro: x32, 1 VCPU, 615 MB RAM, Linux 3.9.3

c1.medium: x1, 2 VCPU, 1.7 GB RAM, Linux 3.9.3

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 21/28

mdtest: Ceph vs Dike on local testbed

 10

 100

 1000

 10000

 100000

cre
a
te

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

1 client

12 clients

24 clients

36 clients

 10

 100

 1000

 10000

 100000

sta
t

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

1 client

12 clients

24 clients

36 clients

 10

 100

 1000

 10000

 100000

re
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

1 client

12 clients

24 clients

36 clients

 10

 100

 1000

 10000

 100000

cre
a
te

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

 10

 100

 1000

 10000

 100000

sta
t

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

 10

 100

 1000

 10000

 100000

re
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

Scalability of Dike

 10

 100

 1000

 10000

 100000

create

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

Ceph
Dike

 10

 100

 1000

 10000

 100000

stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

Ceph
Dike

 10

 100

 1000

 10000

 100000

rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

Ceph
Dike

 10

 100

 1000

 10000

 100000

create

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

 10

 100

 1000

 10000

 100000

stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

 10

 100

 1000

 10000

 100000

rem
ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 Private Shared

 Type of operations

mdtest / Local

36 clients

Configuration

31104 created files & folders. Dike supports 36 tenants. 12 tasks

Dike overhead: 0-20%

Mostly affected operation: create over a private folder

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 22/28

mdtest: Multitenancy overhead comparison on AWS

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

C
re

a
te

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

R
e
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

S
ta

t

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

C
re

a
te

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

R
e
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

S
ta

t

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

C
re

a
te

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

R
e
m

o
ve

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

 1

 10

 100

 1000

 10000

 100000

S
ta

t

T
h

ro
u

g
h

p
u

t
(o

p
s

/s
)

 1 Client 16 Clients 32 Clients

 File operations

mdtest / AWS

GlusterFS vs HekaFS

GlusterFS

HekaFS-1k

HekaFS-5k

Configuration
48000 created files & folders. t1.micro EC2 instances for clients
3 fileservers in total (m1.xlarge instances). 5 tasks/client

Dike: limited performance overhead compared to Heka more

Dike overhead: 12% for 1000 tenants, 14% for 5000 tenants
Heka overhead: 49% for 1000 tenants, 83% for 5000 tenants

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 23/28

MapReduce: Ceph vs Dike on local testbed

 0

 500

 1000

 1500

 2000

 1 12 24 36

In
d

e
x

 b
u

il
d

 t
im

e
 (

s
)

 Number of clients

MapReduce / Local

Ceph vs Dike

Ceph
Dike

 0

 1

 2

 3

 4

 5

 6

C
eph

D
ike

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s

)

 1 Client 24 Clients 36 Clients

 Number of clients

MapReduce / Local

Ceph vs Dike

read-dir file-open file-stat

 0

 1

 2

 3

 4

 5

 6

C
eph

D
ike

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s

)

 1 Client 24 Clients 36 Clients

 Number of clients

MapReduce / Local

Ceph vs Dike

 0

 1

 2

 3

 4

 5

 6

C
eph

D
ike

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s

)

 1 Client 24 Clients 36 Clients

 Number of clients

MapReduce / Local

Ceph vs Dike

Configuration
Shared dataset: 78255 HTML files in 14025 folders, occupying 1 GB
Reverse index: Generates the text index with links to the files

Dike overhead: 0-3.8%
Single client: 3.8% overhead
readdir latency: 7% higher when Dike is used

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 24/28

MapReduce: Long ACLs/ACL sharing on local testbed

 0

 500

 1000

 1500

 2000

 1 10 100

In
d

e
x

 b
u

il
d

 t
im

e
 (

s
)

 Tenants/file

MapReduce / Local

36 Clients

Dike

Dike-S

 0

 10

 20

 30

 40

 50

D
ike

D
ike-S

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s

)

 1 Client 24 Clients 36 Clients

 Filesystem and number of clients

MapReduce / Local

Scalability (100 tenants/file)

readdir file-open file-stat

 0

 10

 20

 30

 40

 50

D
ike

D
ike-S

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s

)

 1 Client 24 Clients 36 Clients

 Filesystem and number of clients

MapReduce / Local

Scalability (100 tenants/file)

 0

 10

 20

 30

 40

 50

D
ike

D
ike-S

O
p

e
ra

ti
o

n
 l

a
te

n
c

y
 (

m
s

)

 1 Client 24 Clients 36 Clients

 Filesystem and number of clients

MapReduce / Local

Scalability (100 tenants/file)

Configuration

Shared dataset: 78255 HTML files in 14025 folders, occupying 1 GB

Long ACLs: degrade system performance

ACL sharing reduces index building time by 39%

ACL sharing reduces readdir latency by 70%

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 25/28

MapReduce: Multitenancy overhead comparison on AWS

 0

 100

 200

 300

 400

 500

 600

 700

Ceph Dike-100 Dike-1k

In
d

e
x

 b
u

il
d

 t
im

e
 (

s
)

Filesystem

MapReduce / AWS

Ceph vs Dike

 0

 100

 200

 300

 400

 500

 600

 700

GlusterFS HekaFS-100 HekaFS-1k

In
d

e
x

 b
u

il
d

 t
im

e
 (

s
)

Filesystem

MapReduce / AWS

GlusterFS vs HekaFS

Configuration
Shared dataset: 78255 HTML files in 14025 folders, occupying 1 GB
Fileservers: 3 in total (m1.xlarge), Client: 1 c1.medium instance

Dike: limited performance overhead compared to HekaFS more

Dike overhead: 5% for 100 tenants, 20% for 1000 tenants
Heka overhead: 31% for 100 tenants, 75% for 1000 tenants

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 26/28

Linux build on local environment

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

C
eph

D
ike

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Filesystem and number of clients

Linux Build / Local

Ceph vs Dike

Create-tree Build

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

C
eph

D
ike

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Filesystem and number of clients

Linux Build / Local

Ceph vs Dike

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

C
eph

D
ike

T
im

e
 (

s
)

 1 Client 6 Clients 12 Clients

 Filesystem and number of clients

Linux Build / Local

Ceph vs Dike

Configuration

Shared Linux 3.5.5 source. Accessible to private folders through links

Dike: negligible overhead

Soft link creation: 2% with 12 clients, 4.5% with 1 client

Kernel build: 0% with 12 clients, 0.7% with 1 client

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 27/28

Conclusions and future work

Per-tenant authentication servers and ACLs

Tenants can manage their principals locally

Identity isolation: Tenant principals/permissions in dedicated ACLs

Avoidance of identity mappings and centralized directory

Namespace filtering

Namespace isolation: Tenants can access a filtered view of the FS

ACL sharing

ACL size limitation: Files with identical rights share parent’s ACL

Performance

Limited performance overhead

Lower overhead/better scalability in comparison to ID mapping

Future work

Weaker trust assumptions, further experiments, integration into a
trusted virtualization environment

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 28/28

Tenant isolation in general

Hardware level

Dedicated physical server per tenant

Not scalable, wasted hardware resources, increased costs

Hypervisor level

Shared hypervisor and separate VMs for each tenant

Performance overheads, no sharing ability

Operating system level

Shared server hardware and OS: kernel performs tenant isolation

Low execution overheads but no sharing ability

Application level

Shared server hardware, operating system, and server application

Hard to achieve but cleanest way to isolate multiple tenants

Enables sharing and high scalability

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 29/28

Implementation details: Client session

Client authentication

Client authenticates to MON: session key encrypted with shared key

Client uses session key to securely request ticket from MON

Ticket: authenticates clients to MDSs and OSDs

Session initiation

Clients use the ticket to initiate a new session with the MDS

MDS receives an MClientSession message and returns a capability

MClientSession message extended to contain the tenant ID

MDS extracts the tenant ID and stores it in session state

back

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 30/28

Implementation details: Modifications

New methods to set and retrieve permissions of tenants/principals

Modifications to all FS functions related to permissions handling

Tenant View

We use the tenant ID as a key to refer to a particular EA value

We save the UIDs/GIDs/permissions into EAs

We update the regular inode access control fields according to the
UID/GID/permissions of the parent inode

The client can not access the EAs that contain access control info

Admin View

We directly update the regular inode access control fields

Capabilities

Extended to contain the tenant ID

Only sent to clients whose tenant has access to the file

back

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 31/28

Implementation details: Ceph structures

Structure: buffer/buffer::ptr

In-memory data processing

Data stored in buffer::raw objects

Page-aligned memory

buffer::raw can be accessed through a
buffer::ptr pointer

Structure: buffer::list

List of buffer::ptr pointers

offset

length

raw

buffer::ptr

raw

raw

le
n

g
th

raw

raw

_
le

n

buffer::list

append_buffer

_len

_buffers

last_p

list

ptr

ptrExtended Attributes

C++ map structure (red-black tree)

Each entry is a key/value pair

The key is the name (string), the value is a buffer::ptr structure
back

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 32/28

mdtest: Dike vs Heka on AWS

 0

 20

 40

 60

 80

 100

create

O
v

e
rh

e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

HekaFS-1k
HekaFS-5k
Dike-1k
Dike-5k

 0

 20

 40

 60

 80

 100

stat

O
v

e
rh

e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

HekaFS-1k
HekaFS-5k
Dike-1k
Dike-5k

 0

 20

 40

 60

 80

 100

rem
ove

O
v

e
rh

e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

HekaFS-1k
HekaFS-5k
Dike-1k
Dike-5k

 0

 20

 40

 60

 80

 100

create

O
v

e
rh

e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

 0

 20

 40

 60

 80

 100

stat

O
v

e
rh

e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

 0

 20

 40

 60

 80

 100

rem
ove

O
v

e
rh

e
a

d
 (

%
)

 File operations Folder operations

 Operations

mdtest - 32 Clients / AWS

Multitenancy overhead

Configuration

48000 created files/folders. t1.micro EC2 instances for clients

3 fileservers in total (m1.xlarge instances). 5 tasks/client

Number of tenants does not affect Dike

Heka adds a significant overhead of up to 84% to Gluster back

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 33/28

MapReduce: Dike vs Heka on AWS

 0

 20

 40

 60

 80

 100

100 1000

O
v

e
rh

e
a

d
 (

%
)

Tenants

MapReduce / AWS

Multitenancy overhead

HekaFS

Dike

Configuration

Shared dataset: 78255 HTML files in 14025 folders, occupying 1 GB

Fileservers: 3 in total (m1.xlarge), Client: 1 c1.medium instance

Dike adds limited overhead to Ceph back

Heka adds a significant overhead of up to 75% to Gluster

G. Kappes, Dept. of Computer Science & Engineering Scalable Access Control for Secure Multi-Tenant Filesystems 34/28

	Background
	Cloud computing and virtualization environments
	Security issues in multitenant storage systems
	Parallel distributed filesystems

	Design and implementation
	Architectural definitions
	Security analysis
	Prototype implementation

	Experimental evaluation
	Experimentation environments
	Microbenchmarks
	Application-level experiments

	Conclusions and future work
	Appendix
	More

