
Experience paper: Danaus – Isolation and 

Efficiency of Container I/O at the Client Side of 

Network Storage

Giorgos Kappes, Stergios V. Anastasiadis
University of Ioannina, Ioannina 45110, Greece

Middleware 2021: 22nd ACM/IFIP International Conference



Multitenancy with containers

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)2

Multitenancy issues due to shared kernel I/O path

 Low performance isolation

 Weak security isolation & fault containment

 Implicit inefficiencies due to frequent kernel crossings to serve I/O

 Main reasons: Resource contention & inflexible sharing of kernel

Applications

Libraries

Operating System

Hardware
Shared

Private

Container

Containers favor resource utilization

 Low footprint

 Low overhead

 Adjustable resources



Sensitivity to kernel I/O contention

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)3

Kernel utilizes all cores to 

flush dirty pages

High contention on 

shared kernel locks

-7.4x -16.5x

Workload colocation causes dramatic performance drop

Effective container isolation requires:

explicit allocation of hardware & software resources to each colocated workload

1 (1FLS) or 7 (7FLS) Fileserver on Ceph, 1 (1RND) RandomIO on local ext4 (2 cores per tenant)



Danaus goals

1. Compatibility

 POSIX-like interface for multiprocess application access

2. Isolation

 Improve performance isolation & fault containment of data-

intensive tenants cohosted on same client machine

3. Efficiency

 Low utilization of datacenter resources by containers to access 

their filesystems

4. Flexibility

 Enable flexible tenant configuration of sharing & caching policies

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)4



The Danaus client architecture

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)5

Kernel

Shared 

Memory

Default

Legacy

Storage 

Backend

Container Engine

Back Driver

FUSE

Filesystem

Service(s)

Ceph

Libservice

Union 

libservice

Cache

Container(s)

Front 

Driver

Filesystem

Library

VFS API

Application

Front Driver

Filesystem

Library

VFS API

Container 

Pool

Pool: Containers per tenant/machine
 Managed by container engine

 Container image & application data 
on shared filesystem

Filesystem library
 POSIX API to applications

Filesystem service
 Libservice: user-level I/O function

 Union for container deduplication

 Shared Ceph client with cache for 
access to network storage

User-level IPC
 Per pool shared memory



Design principles

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)6

Kernel

Default

Filesystem

Service

Ceph

Libservice

Union 

libservice Application

Filesystem

Library

Container Pool

Shared 

Memory

Legacy

Dual interface
I/O passing from user (default) or kernel level 

(legacy)

User-level execution
Filesystem and default communication path run 

at user-level

Filesystem integration
Multiple user-level filesystems interact with each 

other through function calls

Path isolation
Per tenant I/O path



Interface alternatives

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)7

Compatibility

Efficiency

Compatibility

Isolation Isolation

Efficiency

Isolation

Efficiency

Flexibility

Compatibility

Isolation

Efficiency

Flexibility

Properties



Experimental evaluation setup

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)8

2 Servers, each with
 2 x Quad 16C/16HT Opteron 6378, 256GB RAM

 2 x 10Gbps Ethernet

Shared Ceph cluster stores container images & application data
 6 OSDs (2 CPUs, 8GB RAM, 24GB Ramdisk for fast storage)

 1 MDS, 1 MON (2 CPUs, 8GB RAM)



Workload interference

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)9

Workloads

 1 or 7 Fileserver, 1 RandomIO

 1 or 7 Fileserver, 1 Webserver

 1 Fileserver, 1 Sysbench

Outcome

 Kernel: up to 16.5x throughput 

drop of Fileserver, up to 93% raise 

of Sysbench 99%ile latency

 Danaus: throughput & latency 

stability, lower performance when 

standalone but higher when 

colocated, lower CPU utilization



Data-intensive applications: RocksDB

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)10

Scaleout (1 Container/Pool)

 Danaus: stable & lower 

latency than Kernel (up to 

16.2x) & FUSE (up to 5.9x)

 FUSE & Kernel: face intense 

kernel lock contention

Scaleup (up to 32 Containers)

 Danaus: lower put latency 

than Kernel & FUSE

 Danaus: lower get latency 

than FUSE, comparable with 

Kernel

RocksDB (Container: 2 cores, 8GB RAM)



Lessons learned

Shared kernel causes performance interference on containers

 Sources: lock contention, aggressive hardware resource allocation

Container images & data on shared filesystem

 On-demand file transfers during runtime, native data sharing

Functionality & execution separation improves isolation

 Explicit allocation of hardware & software resources to tenants

Per tenant user-level client for decentralization & concurrency

 User-level client may be refactored more easily than kernel-level

Throughput & latency stability of user-level I/O access & handling

 Performance of workloads insensitive to competing resource demands

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)11



Caching

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)12

Cache

Filesystem

library
Ceph

libservice

Union 

libservice

Cache

libservice

Filesystem

Service

Filesystem

Service
Filesystem

library

Ceph

Libservice

Union 

libservice

Filesystem

Service

Filesystem

library Cache

Cache at filesystem library Cache at filesystem service 

as separate libservice
Cache at filesystem service in 

backend client; Union-based 

deduplication on top (Danaus)
Consistency of Danaus

 At write return, the written data/metadata has reached the client 

cache & is visible by subsequent reads to the same client

 CephFS consistency policy propagates the write to other clients



Interprocess communication

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)13

User level
 Front driver at filesystem library; 

back driver at filesystem service

 Minimize mode switches, CPU 
cache stalls

Per pool data structures 
 Utilize shared memory

Request Queue

 I/O requests + small data

 Distinct queue per core group

Request Buffer

 Large data + completion notification

 Distinct per application thread

OS Kernel

Request

Response

Shared MemoryPool

Front 

Driver

Request Queues

Request 
Buffer

Back 

Driver
Filesystem 

Library

Filesystem 

Service



Pool management

Container engine
 User-level daemon that manages the container pools on a host

Resource reservation and isolation
 Resource usage: cgroups v1: cpu & network, cgroups v2: memory

 Resource names: Linux Namespaces

Storage options
 Danaus

 Backend client: Kernel-based Ceph or FUSE-based Ceph

 Union filesystem: Kernel-based AUFS or FUSE-based unionfs-fuse

Kernel-based mounts through VFS
 Different kernel filesystem instance per kernel mount

 Different user-level FUSE process per FUSE mount

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)14



Prototype implementation

Filesystem library: dynamic library preloaded to applications

 POSIX-like API, replaces Kernel VFS

 Functions for synchronous & asynchronous I/O, processes, threads, 

sockets, pipes, memory mappings

Filesystem service: standalone per-pool process

 Ceph libservice as distributed fs client derived from libcephfs

 Union libservice as union filesystem derived from unionfs-fuse

Container filesystems

 Separate filesystem instances consisting of

─ Private or shared Ceph libservice + (optional) Private Union libservice

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)15



Sequential I/O scaleup with cloned containers

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)16

Fileappend (append 1MB to single 2GB file – 50/50 read/write)
 Handling communication & filesystem service at user-level improves performance

 Danaus: up to 46% shorter timespan, comparable memory with kernel

Fileread (read 2GB file in 1MB blocks)
 Concurrency of Danaus limited by coarse-grained Ceph client lock

 FUSE with page cache occupies up to 30x more memory than Danaus



Random I/O scaleout

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)17

Danaus achieves better performance than Kernel and FUSE

 Workload: Filebench fileserver

 Danaus is up to 2.3x faster than Kernel

 Danaus is up to 1.7x faster than FUSE



Conclusions

Kernel I/O handling penalizes container performance

 Contention on hardware & software resources

Danaus: Isolation & efficiency for container root filesystems and data

 Isolate storage I/O paths of different tenants

 Serve tenants with distinct clients running & accessed at user-level

 Integrate union filesystem with distributed filesystem client at user-level

 Handle I/O with reserved resources of tenant, avoid kernel contention

Future work

 Port Danaus to production orchestration systems

 Dynamic reallocation of underutilized resources (e.g., memory)

 End-to-end multitenant isolation

 Integrate user-level network software stack to Danaus

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)18



Backup

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)19



Multitenancy with containers

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)20

Containers favor resource utilization

 Low footprint

 Low overhead

 Adjustable resources

Multitenancy issues due to shared kernel I/O path

 Low performance isolation

 Weak security isolation & fault containment

 Implicit inefficiencies due to frequent kernel crossings to service I/O

 Resource duplication

Main reasons

 Resource contention & inflexible sharing of kernel

Applications

Libraries

Operating System

Hardware
Shared

Private

Container



Sensitivity to kernel I/O contention

Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)21

Workload

 1 or 7 Fileserver containers with 2 cores

 1 RandomIO container with 2 cores

 Fileserver data on Ceph accessed through kernel 

client, RandomIO data on local ext4 partition

Performance drop due to workload colocation

 Fileserver throughput drops up to 16.5x

 Kernel utilizes all host cores to flush dirty pages

 High contention on shared kernel locks 

Effective container isolation requires

 Explicit allocation of hardware & software 

resources to each collocated workload

-16.5x-7.4x



Existing Solutions

User-level filesystems with kernel-level interface
 May degrade performance due to user-kernel crossings

 E.g., FUSE, ExtFUSE (ATC‘19), SplitFS (SOSP‘19), Rump (ATC’09)

User-level filesystems with user-level interface
 Lack multitenant container support

 E.g., Direct-FUSE (ROSS‘18), Arrakis (OSDI’14), Aerie (EuroSYS‘14)

Kernel structure partitioning
 High engineering effort for kernel refactoring

 E.g., IceFS (OSDI‘14), Multilanes (FAST‘14)

Lightweight hardware virtualization or sandboxing
 Target security isolation; incur virtualization or protection overhead

 E.g., X-Containers (ASPLOS ’19) , Graphene (EuroSys ’14)
Experience Paper: Danaus - Isolation and Efficiency of Container I/O at the Client Side of Network Storage (ACM/IFIP Middleware '21)22


