Diciclo: Flexible User-level Services for Efficient
Multitenant Isolation

Giorgos Kappes, Stergios V. Anastasiadis
University of loannina, loannina 45110, Greece

~Motivation ~Dynamic Storage Provisioning
Problem Nodes (per tenant) | |
= Workload collocation causes severe RocksDB (Multiple Pools - PUT Latency) = Application or storage servers Root | 4 f‘PPﬁcaﬁ(;lt Application
performance variability & slowdown 10 | Machine = Filesystem | | Filesystem [
. /U? | . Ce h/FUSE . . ' ication Node
" Put latency (99%ile) E 2 | *Cef,h/Keme, = Hosts multiple nodes possibly | [ sener 1| o e N Sover
FUSE: up to 3.1x; kernel: up to 11.5x 8 4 from different tenants | | Eiesyatern || Fitempaern [ Tsinast 1P Filesgem || Fileagatem
= . : |
(longer for 32 pools vs. 1 pool) 5 2 Container Storage System Root Node — Data Node
Reasons 0 1 > 3 18 30 Storage nodes of a tenant e
. | 11ESYSLEm 11CSY SLE1M
= Contention on shared kernel structures Number of Pools = Root: uncompressed images | Repository Node
= Kernel dirty page flushers running on = Data: application data fenant

arbitrary cores

= Repository: compressed images

~Goals ~Overview
1. Isolation | Per-tenant user-level I/0
= Per-tenant 1/0 paths for improved A | User-level IPC | = Move I/0 services & |I/0 path from kernel to
performance isolation & fault containment | PR /O Service user level
Control Path . . o :
2. Compatibility 1/O Library < —— > t b service feparate instances of critical services per
g : . L < > L enant
= POSIX-like interface for native multiprocess A A : .
application access Legacy Path | = Same design pattern at client & server
3. Flexibility Kernel Polytropon toolkit
= Per-tenant configuration of parameters & d Node " Libservice: User-level storage function
policies Pool = |/O Service: Provision container filesystems
4. Efficiency Container Engine = |/O Library: Provide fs access to processes
= Lightweight on resources ot = Dual interface: Fast user-level IPC & legacy

kernel-level path for compatibility

~Inter-Process Communication

Front Driver Shared Memory Back Driver Request & data transfer at User-level through Shared Memory File IO/Ram (1 Pool)
Application Thread Service Thread = Front driver at |/0 library, Back driver at I/0 service 100 [ = FUSE
. = Polyt
Reﬁuest %‘H‘wﬂs I Request Queue (RQ) Request Buffer @ 80 | Soy.mpon
: . > ervice
S-1']f“"‘mltmS O, Filesystem = |/0 requests & small data " Large data, completion notification % g9
Large items () Butfers = Distinct queue per core group = Distinct per application thread S 40|
Request Buffer R It 3 : N
Atla i (per application : ESULLs 20| Q o \\
- thread) AL = Handling IPC at user-level makes Diciclo faster than FUSE o LA I [ N
Address Address . . 0 1K 8K 64K 128K
—— = FUSE: 32-44% longer to serve reads due to 25-46% higher IPC time /O Size (B)

~Relaxed Concurrent Queue Blocking (RCQB) ~Shared-memory Optimized (SMO) Copy

D D
, , Optimized user-level data copy algorithm A prefetch load/store
Goals Fixed-size g Py ais . % : (2 cache lines)
: . . = Copy: Source -> Shared Memory -> Destination S
= High operation throughput (enqueue/dequeue) e circular . = —
: : : N = 1st Stage: Non-temporal prefetch of 2 cache lines =
= Low wait latency of the items in the queue buffer , =R ——.
T = 72nd Stage: Non-temporal store of 2 cache lines | m—— Q
Two-stage relaxed ordering model i
g. , , S , e Other copy methods (using default memcpy) Lime
= 1st: Distribute operations sequentially E

= Shared-memory Copy (SMC): Source -> Shared

= 2nd: Complete concurrently potentially out of order Memory -> Destination

Closed System - Enqueue Seiread/Ceph (Danaus, 1 Pool)

Results — 182 W RCOB & AT = Cross-memory Attach (CMA) with pvmreadv/ e E 2:%
= RCQB achieves lower avg enqueue latency E’; 103 pvmwritev syscalls: Source -> Destination %
= Avg enqueue latency (longer) LCRQ: up to 77X, ;‘—j 18? /—‘_"/ Results ‘% ;
WFQ: up to 246x, BQ: up to 5881x 3 19? a ~a—a— = SMO pipelined copy makes data transfers faster § "
VN 46 32 64 256 1024 = SMO is 66% faster than SMC & 29% faster than CMA o

8K 512K 1M 8M
/O Size (B)

Number of threads (enqueuer, dequeuer)

Danaus ~Results and Conclusions |
RocksDB (Multiple Pools, PUT Latency)
Ceph libservice Union libservice : : : 10
Scaleout: serving multiple tenants with separate pools ~ q : 8epﬂ%arsngl
_ . . ] . . _ . | op
| Derived .from libcephfs De.rwed fro.m unionfs-fuse « Danaus achieves faster I/0 response ;E" .| ® Danaus
Filesystem instance Container Engine = Put latency (longer) FUSE: up to 4.8x, kernel: up to 14x 3 4|
= Union libservice (optional = Standalone process : : : : : 5 .|
Cenh libserv (op ) M pt , l Scaleup: running multiple cloned containers in a single pool > 2
= Ceph libservice = Man ntainer :
P anases container poots = Danaus achieves lower put latency than Kernel & FUSE 01 o 8 16 30
Container Engine Kev | l d Number of Pools
, ———————rr | €y LE550Nn5 (€arne R RocksDB (1 Pool, PUT Latency)
Container(s) | Mefnrory | 1/0 Service 1. Shared kernel causes performance interference on containers ¢ gg 4 Danaus (D)
.. | ~ [ :
- Application i | l] Union libservice 2. Container images & data on shared filesystem beneficial 5 30 : ﬁ;’,ﬁﬁﬁﬁgggﬂjﬁ g%’
VFI’SO ST I Ceph libservice :% 3. Functionality & execution separation improves isolation 5 38 @ Union/F-Ceph/F (F/F)
| | . . — |
%‘Ml! | gtoi‘(ag% 4. Per tenant user-level client for decentralization/concurrency o }g |
| ] dCKEN
lLegaCy Container Pool(s) 5. Stable performance of user-level I/0 access & handling g 8 -
Kernel < 2 8 16 32
Number of Cloned Containers

ACM Trans. Computer Systems, Vol.42, No.1-2, 47 pages, Feb 2024 (Invited at ACM SOSP 2025, Seoul, Republic of Korea)



