
Diciclo: Flexible User-level Services for Efficient 

Multitenant Isolation

Giorgos Kappes, Stergios V. Anastasiadis

University of Ioannina, Ioannina 45110, Greece

ACM Trans. Computer Systems, Vol.42, No.1-2, 47 pages, Feb 2024 (Invited at ACM SOSP 2025, Seoul, Republic of Korea)

Results and Conclusions

Goals

Motivation Dynamic Storage Provisioning

Inter-Process Communication

Danaus

Problem

 Workload collocation causes severe 

performance variability & slowdown

 Put latency (99%ile)

FUSE: up to 3.1x; kernel: up to 11.5x

(longer for 32 pools vs. 1 pool)

Reasons

 Contention on shared kernel structures

 Kernel dirty page flushers running on 

arbitrary cores

Nodes (per tenant)

 Application or storage servers

Machine

 Hosts multiple nodes possibly

from different tenants

Container Storage System

Storage nodes of a tenant

 Root: uncompressed images

 Data: application data

 Repository: compressed images

1. Isolation

 Per-tenant I/O paths for improved 

performance isolation & fault containment

2. Compatibility

 POSIX-like interface for native multiprocess

application access

3. Flexibility

 Per-tenant configuration of parameters &

policies

4. Efficiency

 Lightweight on resources

Overview
Per-tenant user-level I/O

 Move I/O services & I/O path from kernel to 

user level

 Separate instances of critical services per 

tenant

 Same design pattern at client & server

Polytropon toolkit

 Libservice: User-level storage function

 I/O Service: Provision container filesystems

 I/O Library: Provide fs access to processes

 Dual interface: Fast user-level IPC & legacy 

kernel-level path for compatibility

Request & data transfer at User-level through Shared Memory

 Front driver at I/O library, Back driver at I/O service

Request Queue (RQ)

 I/O requests & small data

 Distinct queue per core group

Results

 Handling IPC at user-level makes Diciclo faster than FUSE

 FUSE: 32-44% longer to serve reads due to 25-46% higher IPC time

Request Buffer

 Large data, completion notification

 Distinct per application thread

Ceph libservice

 Derived from libcephfs

Filesystem instance

 Union libservice (optional)

 Ceph libservice

Union libservice

 Derived from unionfs-fuse

Container Engine

 Standalone process

 Manages container pools

Scaleout: serving multiple tenants with separate pools

 Danaus achieves faster I/O response 

 Put latency (longer) FUSE: up to 4.8x, kernel: up to 14x

Scaleup: running multiple cloned containers in a single pool

 Danaus achieves lower put latency than Kernel & FUSE

Key lessons learned

1. Shared kernel causes performance interference on containers

2. Container images & data on shared filesystem beneficial

3. Functionality & execution separation improves isolation

4. Per tenant user-level client for decentralization/concurrency

5. Stable performance of user-level I/O access & handling

Relaxed Concurrent Queue Blocking (RCQB) Shared-memory Optimized (SMO) Copy
In

st
ru

c
ti

o
n
s

Time

(2 cache lines)
prefetch load/store

...
H

T

D D

E
E

Fixed-size 

circular 

buffer

Goals

 High operation throughput (enqueue/dequeue)

 Low wait latency of the items in the queue

Two-stage relaxed ordering model

 1st: Distribute operations sequentially

 2nd: Complete concurrently potentially out of order

Results

 RCQB achieves lower avg enqueue latency

 Avg enqueue latency (longer) LCRQ: up to 77x,

WFQ: up to 246x, BQ: up to 5881x

Optimized user-level data copy algorithm

 Copy: Source -> Shared Memory -> Destination

 1st Stage: Non-temporal prefetch of 2 cache lines

 2nd Stage: Non-temporal store of 2 cache lines

Other copy methods (using default memcpy)

 Shared-memory Copy (SMC): Source -> Shared 

Memory -> Destination

 Cross-memory Attach (CMA) with pvmreadv/ 

pvmwritev syscalls: Source -> Destination

Results

 SMO pipelined copy makes data transfers faster

 SMO is 66% faster than SMC & 29% faster than CMA


