APSys 2020 - Tsukuba Japan

Libservices: Dynamic Storage Provisioning
for Multitenant I/0 Isolation

Giorgos Kappes, Stergios Anastasiadis
University of loannina, Greece

I Isolation or Efficiency?

-

_

~

High overhead
High footprint
Static resources
Strong isolation

J

Performance Isolation

Containers

Resource Efficiency

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

4 N

Low overhead
Low footprint

Adaptive resources
Strong isolation

)
N

Low overhead

-

Low footprint
Adaptive resources
Weak isolation
/

I Serving Data-Intensive Applications

User facing; Processing vast amounts of data; Variable demands
= E.g., Key-value stores, interactive applications, real-time big data

Predictable performance
= Latency-sensitive
= Strict Service-Level Objectives (tail latency)

Sensitive to interference
* Tail latency increases with load

How to achieve high resource efficiency?
= Dynamic resource allocation
= Workload collocation

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Container Resource Isolation

Limit the container resource view and usage
= Private resources: assigned exclusively to tenants
= Shared resources: limit enforcement, accounting
= [solation: A tenant should only consume its assighed resources

Namespaces: Isolate resource names Cgroups: Isolate resource usage

= Process: Process IDs = CPU: CPU, Cpuset controllers
= Mount: Mount Points = Memory: Memory controller
= |PC: SysV IPC, Message Queues = |/O: |0 Controller

= User: User and Group IDs = Network: net_cls (class),

= Net: Net Devices, stacks, ports net_prio (priority) controllers

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Multitenancy Setup

Tenant

= 1 Container
= 2 CPUs (Cgroups v1), 8GB RAM (Cgroups v2)

Container Host
= Up to 32 tenants

Container Application
= RocksDB

Shared Storage Cluster
= Ceph
= Per container root directory trees

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Motivation: Collocated I/0 Contention

RocksDB 50/50 Put/Get

PUT Latency (ms)

-4 Ceph/Kernel
Ceph/FUSE

AVG/Tenant
o D A OO O

1 2 8 16 32
Number of Tenants

Outcome

GET Latency (ms) PUT/GET Thp (op/s)
0.3 400
0.2 300 ===~
A aa—a 4 200 | \
0 0
1 2 8 16 32 1 2 8 16 32

Number of Tenants Number of Tenants

= Workload collocation: severe performance variability & slow down

Reasons

= Contention on shared kernel data structures (locks)
= Kernel dirty page flushers running on arbitrary cores

n Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I /0 Multitenancy Issues

4 Inaccurate

accounting
(Memory space,
. CPUtime)

~

Container 1 Container N

Services (e.g., VFS, flusher
threads)

-
Unaccounted

resources
(Software locks)

_

Software resources (e.g.,
caches, locks)

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

may not honor
reservations

(CPU Core Time

4 Kernel services)

for page flushing) /

4 Implicit
hardware costs

; (Mode switch,
Hardware resources ﬁ’\cache pOllUtiOﬂ,

TLB flushes)

J

~

I Existing Solutions

Kernel structure partitioning
» Performance overheads from static partitioning

= High engineering effort to refactor the entire kernel
= E.g., IceFS (OSDI “14), Multilanes (FAST ‘14)

Dynamic resource allocation
= Hardware resources only (e.g., CPU, RAM)
= No guarantee for fair allocation of system services (page flushing)

= E.g., PARTIES (ASPLOS ‘19)

Lightweight hardware virtualization

= Virtualization overheads, static resource allocations
= E.g., LightVM (SOSP “17), X-Containers (ASPLOS ’19)

n Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I The libservices unified framework

Goals
= |solation: Tenant resource utilization limited by reservations
= Elasticity: Dynamic resource allocation
= Efficiency: Low virtualization cost
= Compatibility: Unmodified applications

libservices
= User-level storage functions derived from existing |/0O libraries
» Build complex filesystem services for the client and server

Key concepts
= Same design pattern at client and server
= Dynamic provisioning of storage systems per tenant
= User-level storage services over reserved resources

n Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Dynamic Storage Provisioning

Storage System
= Client-Server Architecture

Application Filesystem
= Stores application data
= Serves tenant applications

Root Filesystem
= Stores container root filesystems

= Serves Application containers & Application
Filesystem servers

Image Repository
= Stores and distributes container images

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

Applications

Application Hosts

1

|

i

App Filesystem Servers

|

Application Data

|

i

Root Filesystems

Root Filesystem Servers

t

|

i

Container Images

Image Repository Servers

Tenant Tenant Tenant

Provider

I User-level Storage Framework

_ : , Cache,
App Filesystem Service || Deduplication

" bsevice ||/ Logordoumal

. : Key-value Store,
! Filesystem library | g ot Filesystem Service: y

_ Local or Network Filesystem,

Network Block VVolume
Container Pool User-level functions

Datacenter

Network

o
h
.
"
[
HE
LN)
' [}
' [}
[}
[}
[}
[}
[}
[}
- [}
-
s
-

-
e
e
-
.-

Storage System
Container Pool Filesystem Service
= Collection of Containers »= Collection of user-level I/0
= Per tenant / machine services per tenant
Pool Manager Filesystem Library
= Manages pool resources = Storage access to applications
= Per machine at user level

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Libservice

Standalone user-level storage function, e.g.,
= Network filesystem client
= Local filesystem
= Block Volume
= Cache
= Deduplication
" Log
= Key-Value store

Filesystem Service
= Stack or tree of libservices
= Requests pass through libservices from top to bottom

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Building Libservices

1. Use existing |/0O component
= |/O function & framework
= Standalone 1/0 library

2. Create standalone library

= Separate |/0 function from
framework, global deps

3. Port I/0 library to libservice
interface

= Libservice object first
parameter to |/0 functions

|/0O Functions with
framework

| /0 function |

Standalone
/0 libraries

|/0 library
Examples
libcephfs
zfs ext4 || unionfs librbd

S 2 S 2

|/0 library |/0 library
func(libservice,...)| | func(libservice,...)

. 5 . 5

libservice libservice

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Libservice Functions

Client

Server

Serves applications, pool
managers, orchestration systems

Stores data and metadata on
local storage devices

Union File deduplication
Cach Data/metadata
aCis Caching

Local Filesystem

Network Block
Volume

Remote storage
access

Log or Journal

Key-value Store

Cache

Deduplication

Network Filesystem

Local filesystem

Crash recovery

Metadata storage

Data/metadata
caching

Block deduplication

Persistent storage

Local storage and
network devices

88

S8 =

Local storage and
network devices

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Interprocess Communication

Pool

Shared Memory

libservice

Request

) libservice

—>
Response
Application | <===| Buffer | (===

OS Kernel
User level Per pool shared memory
= Minimize mode switches & CPU = Circular queues for requests
cache stalls = Shared buffers for responses

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Resources and Devices

Resource reservation
= Guarantee resource limits (CPU, RAM, Net, 1/0)

Resource management
= Resource tracking and process accounting
= Dynamic resource allocation based on reservations & utilization

Device management
* Protected operation of local devices

Our approach
= Kernel Cgroups for accounting of user-level processes
= Possible to manage the network & storage devices at user level

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Example Storage Systems

Root Filesystem (boot application & storage containers)
= Client: Network FS with cache (CephFS); Union FS (AUFS)
= Server: Local journaled FS (ext4); Key-value store (RocksDB)

Application Filesystem (serve applications)
= Client: Network FS with cache (CephF5S)
= Server: Local journaled FS (ext4); Key-value store (RocksDB)

Container Image Storage (image repository)
= Client: Network FS with cache (NFS)
= Server: Local FS with cache & deduplication (ZFS)

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Early Prototype: Client per tenant

Client

Shared Memory

«

Application Pool

libcephfs

OS Kernel

Host

Server

=

Storage
backend
(Ceph)

Provision the client side of the root filesystem storage system

-ilesystem library: preloaded to applications (LD_PRELOAD)
PC: User-level shared-memory

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

-ilesystem service: libcephfs libservice (network client and cache)

I Test Setup

2 Servers CephFS
= 64 Cores, 256GB RAM Image/ Data Image/ Data
= 2 x 10Gbps Ethernet | MON | [MDS | _
= |Linux v5.4.0 Xen / Hardware

Server: Storage Host

Shared CephFS t t
= 6 OSDs (2 CPUs, 8GB RAM, 24GB .
Ramdisk for fast storage) = . Cll.'e"t.
= 1 MDS, 1 MON (2 CPUs, 8GB RAM) S PPF(’)(‘)Cla;f"
Container Pool .o |
= 1 Container 0,1 CPU 30,31
= 2 CPUs (Cgroup v1 - cpuset) 8GB RAM 8GB
= 8 GB RAM (Cgroup v2 - memory) Hardware

Client: Container Host

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I |/0O Workload Collocation

RocksDB 50/50 Put/Get (Pool: Per tenant)

PUT Latency (ms)

GET Latency (ms)

PUT/GET Thp (op/s)

_ 8= Ceph/Kernel 0.3 400
S 6 [Ceph/FUSE 0.2 | 300
% 4 & Libservices Ny) N o4 200 |
Z 2 1 100 |
<C

0 __ m 0! —s .—_4’ 0

1 2 8 16 32 2 8 16 32 1 2 8 16 32
Number of Pools Number of Pools Number of Pools

Libservices achieve faster |/0 response & stab
= Put latency (longer) FUSE: up to 5.6x, Kerne
= Get latency (longer) FUSE: up to 3.9x, Kerne

le performance
;. up to 12.6x

;. up to 6.7x

= Throughput (slowdown) FUSE: up to 1.5x, Kernel: up to 2.1x

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

I Contention Sensitivity

2 Containers of

Fileserver/Ceph, Stress/Local

= 2 Cores Q ,
= 8GB RAM % 15 | A~ A . ?5
= Fileserver £ 1| [1
or Stress § o.g | / ._l 8.5
with rand : Alone w/ Stress Alone w/ Stress Alone w/ Stress
1/0 g Fileserver/Kernel Fileserver/FUSE Fileserver/Libservices
Outcome Workloads

= Kernel client sensitive to contention

= Throughput drops up to 12.9x when collocated with Stress

Reason

= Kernel |/0 utilizes all cores (dirty page flushing)

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

Lines: Utilized Stress

cores(#)

I Violation of Resource Limits

, Fileserver/Ceph
1 Container of &

g 2 62

= 2 Cores S 5l [10
=

= 8GB RAM 2 1 | 1
c} i

= Fileserver 3095 | B 0.1
< 0 == 0.01
- 2 16 64 2 16 64 2 16 64
= Kernel FUSE Libservices
(11]

Number of online cores

Outcome

= The Kernel client increases performance up to 75% because it
utilizes unallocated cores

= Kernel flusher threads run on non allocated cores

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

Lines: Utilized Unallocated
cores (#)

I Conclusions & Future Work

The Problem: Performance variability from shared Kernel |/0O
= Lack of accounting; Aggressive resource utilization

Our Solution: Libservices Framework
= Performance isolation combined with high efficiency
= |[/O performance isolation by handling container 1/0 at user level
= Same design pattern for the client and server of a storage system
= Dynamic provisioning of container storage systems

Future Work
= Dynamic readjustment of allocated resources (e.g., memory)
= Network and storage device management at user level
= Resource scheduling services at user level (e.g., Cgroups)

Libservices: Dynamic Storage Provisioning for Multitenant 1/0 Isolation

