
Libservices: Dynamic Storage Provisioning

for Multitenant I/O Isolation

APSys 2020 - Tsukuba Japan

Giorgos Kappes, Stergios Anastasiadis

University of Ioannina, Greece

Isolation or Efficiency?

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation2

Resource Efficiency

Containers

VMs

Sweet

Spot

Low overhead

Low footprint

Adaptive resources

Weak isolation

High overhead

High footprint

Static resources

Strong isolation

P
e
rf

o
rm

a
n
c
e
 I
so

la
ti

o
n Low overhead

Low footprint

Adaptive resources

Strong isolation

Serving Data-Intensive Applications

User facing; Processing vast amounts of data; Variable demands

 E.g., Key-value stores, interactive applications, real-time big data

Predictable performance

 Latency-sensitive

 Strict Service-Level Objectives (tail latency)

Sensitive to interference

 Tail latency increases with load

How to achieve high resource efficiency?

 Dynamic resource allocation

 Workload collocation

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation3

Container Resource Isolation

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation4

Limit the container resource view and usage

 Private resources: assigned exclusively to tenants

 Shared resources: limit enforcement, accounting

 Isolation: A tenant should only consume its assigned resources

Cgroups: Isolate resource usage

 CPU: CPU, Cpuset controllers

 Memory: Memory controller

 I/O: IO Controller

 Network: net_cls (class),

net_prio (priority) controllers

Namespaces: Isolate resource names

 Process: Process IDs

 Mount: Mount Points

 IPC: SysV IPC, Message Queues

 User: User and Group IDs

 Net: Net Devices, stacks, ports

Multitenancy Setup

Tenant

 1 Container

 2 CPUs (Cgroups v1), 8GB RAM (Cgroups v2)

Container Host

 Up to 32 tenants

Container Application

 RocksDB

Shared Storage Cluster

 Ceph

 Per container root directory trees

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation5

Motivation: Collocated I/O Contention

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation6

Outcome
 Workload collocation: severe performance variability & slow down

Reasons
 Contention on shared kernel data structures (locks)

 Kernel dirty page flushers running on arbitrary cores

RocksDB 50/50 Put/Get

I/O Multitenancy Issues

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation7

Hardware resources

Container 1

APP

Container N

APP

Services (e.g., VFS, flusher

threads)

Cgroups Namespaces

Software resources (e.g.,

caches, locks)

OS Kernel

Unaccounted

resources
(Software locks)

Kernel services

may not honor

reservations
(CPU Core Time

for page flushing)

Inaccurate

accounting
(Memory space,

CPU time)

Implicit

hardware costs
(Mode switch,

cache pollution,

TLB flushes)

…

Existing Solutions

Kernel structure partitioning

 Performance overheads from static partitioning

 High engineering effort to refactor the entire kernel

 E.g., IceFS (OSDI ‘14), Multilanes (FAST ‘14)

Dynamic resource allocation

 Hardware resources only (e.g., CPU, RAM)

 No guarantee for fair allocation of system services (page flushing)

 E.g., PARTIES (ASPLOS ‘19)

Lightweight hardware virtualization

 Virtualization overheads, static resource allocations

 E.g., LightVM (SOSP ‘17), X-Containers (ASPLOS ’19)

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation8

The libservices unified framework

Goals
 Isolation: Tenant resource utilization limited by reservations

 Elasticity: Dynamic resource allocation

 Efficiency: Low virtualization cost

 Compatibility: Unmodified applications

libservices
 User-level storage functions derived from existing I/O libraries

 Build complex filesystem services for the client and server

Key concepts
 Same design pattern at client and server

 Dynamic provisioning of storage systems per tenant

 User-level storage services over reserved resources

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation9

Image Repository Servers

Root Filesystem Servers

App Filesystem Servers

Dynamic Storage Provisioning

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation10

Storage System
 Client-Server Architecture

Application Filesystem
 Stores application data

 Serves tenant applications

Root Filesystem
 Stores container root filesystems

 Serves Application containers & Application
Filesystem servers

Image Repository
 Stores and distributes container images Container Images

Root Filesystems

Application Data

Applications

Application Hosts

P
ro

v
id

e
r

Te
n
a
n
t

Te
n
a
n
t

Te
n
a
n
t

User-level Storage Framework

Container Pool

 Collection of Containers

 Per tenant / machine

Pool Manager

 Manages pool resources

 Per machine

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation11

Tenant
Container

Storage System Host Container Pool

Cache,

Key-value Store,

Deduplication,

Log or Journal,

...

Local or Network Filesystem,

User-level functions

Network Block Volume

Container Pool
of Tenant A

...Resources Resources

...

Kernel

User Space

Pool Manager

Container Pool
of Tenant N

App Filesystem Service

libservice

Root Filesystem Service

libservice

Datacenter
Network

Server Hosts

Client Hosts Process
(application or

server)

Filesystem library

Filesystem Service

 Collection of user-level I/O

services per tenant

Filesystem Library

 Storage access to applications

at user level

Libservice

Standalone user-level storage function, e.g.,

 Network filesystem client

 Local filesystem

 Block Volume

 Cache

 Deduplication

 Log

 Key-Value store

Filesystem Service

 Stack or tree of libservices

 Requests pass through libservices from top to bottom

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation12

Building Libservices

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation13

Frame-

work

libcephfs

ext4 librbd

I/O Functions with

framework

FUSE

I/O function

Framework

I/O library

zfs

FUSE

I/O library

unionfs

FUSE

Standalone

I/O libraries

func(libservice,…)

Examples

libservice libservice

1. Use existing I/O component

 I/O function & framework

 Standalone I/O library

2. Create standalone library

 Separate I/O function from

framework, global deps

3. Port I/O library to libservice
interface

 Libservice object first

parameter to I/O functions

I/O library
func(libservice,…)

Libservice Functions

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation14

Serves applications, pool
managers, orchestration systems

Network Filesystem

Union

Cache

Local Filesystem

Network Block

Volume
Remote storage

access

Data/metadata

Caching

File deduplication

Local storage and

network devices

Client

Stores data and metadata on
local storage devices

Local filesystem

Cache

Deduplication

Key-value Store

Log or Journal

Persistent storage

Block deduplication

Data/metadata

caching

Metadata storage

Crash recovery

Local storage and

network devices

Server

Interprocess Communication

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation15

Application

Filesystem library
Filesystem service

libservice

…

libservice

OS Kernel

Buffer

Request

Response

…

1

N

Shared Memory
Pool

User level

 Minimize mode switches & CPU

cache stalls

Per pool shared memory

 Circular queues for requests

 Shared buffers for responses

Resources and Devices

Resource reservation

 Guarantee resource limits (CPU, RAM, Net, I/O)

Resource management

 Resource tracking and process accounting

 Dynamic resource allocation based on reservations & utilization

Device management

 Protected operation of local devices

Our approach

 Kernel Cgroups for accounting of user-level processes

 Possible to manage the network & storage devices at user level

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation16

Example Storage Systems

Root Filesystem (boot application & storage containers)

 Client: Network FS with cache (CephFS); Union FS (AUFS)

 Server: Local journaled FS (ext4); Key-value store (RocksDB)

Application Filesystem (serve applications)

 Client: Network FS with cache (CephFS)

 Server: Local journaled FS (ext4); Key-value store (RocksDB)

Container Image Storage (image repository)

 Client: Network FS with cache (NFS)

 Server: Local FS with cache & deduplication (ZFS)

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation17

Early Prototype: Client per tenant

Provision the client side of the root filesystem storage system

 Filesystem service: libcephfs libservice (network client and cache)

 Filesystem library: preloaded to applications (LD_PRELOAD)

 IPC: User-level shared-memory

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation18

ServerClient

Application

Filesystem

library Filesystem

service

libcephfs

OS Kernel

IPC

Shared Memory

Pool Storage

backend

(Ceph)Host

NET

Test Setup

2 Servers
 64 Cores, 256GB RAM

 2 x 10Gbps Ethernet

 Linux v5.4.0

Shared CephFS
 6 OSDs (2 CPUs, 8GB RAM, 24GB

Ramdisk for fast storage)

 1 MDS, 1 MON (2 CPUs, 8GB RAM)

Container Pool
 1 Container

 2 CPUs (Cgroup v1 - cpuset)

 8 GB RAM (Cgroup v2 - memory)

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation19

Application

Client

0,1 30,31CPU

RAM

…

Image/ Data Image/ Data

Client: Container Host

CephFS

Pool 1 Pool 32

…

Client

Application

OS

8GB 8GB

Hardware

Xen / Hardware

MON

Server: Storage Host

MDS OSD x6

I/O Workload Collocation

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation20

Libservices achieve faster I/O response & stable performance

 Put latency (longer) FUSE: up to 5.6x, Kernel: up to 12.6x

 Get latency (longer) FUSE: up to 3.9x, Kernel: up to 6.7x

 Throughput (slowdown) FUSE: up to 1.5x, Kernel: up to 2.1x

RocksDB 50/50 Put/Get (Pool: Per tenant)

Contention Sensitivity

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation21

Outcome
 Kernel client sensitive to contention

 Throughput drops up to 12.9x when collocated with Stress

Reason
 Kernel I/O utilizes all cores (dirty page flushing)

2 Containers of

 2 Cores

 8GB RAM

 Fileserver

or Stress

with rand

I/O

Fileserver/Ceph, Stress/Local

Violation of Resource Limits

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation22

Outcome

 The Kernel client increases performance up to 75% because it

utilizes unallocated cores

 Kernel flusher threads run on non allocated cores

1 Container of

 2 Cores

 8GB RAM

 Fileserver

Fileserver/Ceph

Conclusions & Future Work

The Problem: Performance variability from shared Kernel I/O

 Lack of accounting; Aggressive resource utilization

Our Solution: Libservices Framework

 Performance isolation combined with high efficiency

 I/O performance isolation by handling container I/O at user level

 Same design pattern for the client and server of a storage system

 Dynamic provisioning of container storage systems

Future Work

 Dynamic readjustment of allocated resources (e.g., memory)

 Network and storage device management at user level

 Resource scheduling services at user level (e.g., Cgroups)

Libservices: Dynamic Storage Provisioning for Multitenant I/O Isolation23

