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Abstract

The evaluation of routing protocols for opportunistic networks can be seen as a multidimensional problem because it involves
several performance aspects. To capture these aspects various evaluation metrics are used, such as the number of delivered packets,
the delivery delay and the number of transmissions. Unfortunately, in the context of opportunistic networks, these metrics are often
highly correlated and usually conflicting. To make things worse, the characteristics of the network affect the importance of each
metric as well as the levels of its correlation with other metrics. In this work, we first propose a set of performance evaluation metrics
that are normalized with respect to the optimal performance. This approach tackles several of the above-mentioned shortcomings
of traditional evaluation metrics. We then formulate the evaluation of routing protocols as a Multiple-Criteria Decision-Making
(MCDM) problem where each routing protocol is an alternative and the performance metrics correspond to a set of criteria. We
use this formulation to develop an evaluation framework that objectively ranks the performance of opportunistic routing protocols.
To this end, we reshape well-known concepts and algorithms from the MCDM field to address the special requirements that are
specific to the opportunistic context. We present detailed simulation results of well-known routing protocols in various opportunistic
environments and rank their performance according to the proposed framework. In conclusion, no algorithm was able to achieve
the best performance in all or the majority of the network topologies that we studied. This demonstrates the diversity of challenges
that routing mechanisms face in such networks.
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1. Introduction

The evaluation and comparison of routing protocols, espe-
cially of those designed for opportunistic networks, is a com-
plex process that involves many performance aspects. Typi-
cally, researchers capture different performance features by us-
ing a set of performance metrics such as the average ratio of
successfully delivered packets, the average end-to-end delay,
the average number of transmissions, etc. In general, a de-
tailed assessment requires multiple performance metrics to be
evaluated jointly rather than individually. The latter task is not10

straightforward, mainly because the investigated performance
features are often correlated or even conflicting. Moreover, the
involved trade-offs are ambiguous because the properties of the
intermittent network are typically not known. For example, a
small number of transmissions, a key performance indicator for
energy efficiency, usually coexists with limited delivery capa-
bility. When comparing two protocols, it is not always clear
what is an acceptable degradation of delivery capability for
achieving increased energy efficiency, even if one has a strong
preference for the latter.20

In this work we aim at developing a generic and easy to im-
plement method for ranking the performance of a set of pro-
tocols in a specific network. The ranking should rely on the
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joint evaluation of all aspects of a protocol’s performance and
take into account the performance trade-offs imposed by the
network structure. This evaluation approach should be a valu-
able tool not only for assessing the performance of existing pro-
tocols but also for providing useful insight when designing new
ones. Towards achieving our goal, we make the observation that
we can formulate the evaluation of opportunistic routing pro-30

tocols as a Multiple-Criteria Decision-Making (MCDM) prob-
lem. MCDM methods [1, 2, 3, 4] provide an evaluation of a
set of alternatives using a set of criteria. In our approach, we
visualize each routing protocol as an alternative and the per-
formance metrics as the set of criteria. Unfortunately, legacy
MCDM methods cannot address the full extent of the chal-
lenges faced in our scenario. This is mainly because of two
reasons. The first relates to the normalization of criteria, i.e.,
the process of adjusting the values of different criteria to a com-
mon scale. Indeed, MCDM methods require such a normaliza-40

tion in order to create a common ground for combining the dif-
ferent criteria. We discuss wide-spread normalization methods
in Section 3.1. Unfortunately, normalization significantly af-
fects the outcome of the evaluation. In our scenario, an efficient
normalization should consider the best performance allowed by
the network. Reasonably, the normalization techniques used in
MCDM methods are generic and therefore cannot provide the
required “network-awareness”. The second reason for the lim-
ited efficiency of conventional MCDM methods in our scenario
pertains to the performance metrics used in the opportunistic50

routing literature. As discussed in detail in Section 4.1, these
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metrics present a high degree of correlation that significantly
limits the information that each metric offers. This correla-
tion is typically non-linear and “network-depended” therefore it
cannot be captured by traditional MCDM methods. Moreover,
in several cases, the extent of correlation is such that a metric
may provide misleading information. For example, a routing
protocol may deliver only short-haul packets, i.e. the ones ex-
changed between non-distant nodes, and therefore exhibit a low
average delay. On the other hand, an opponent protocol, deliv-60

ering short-haul packets with the same delay but also handing
over long-haul ones, will present a larger average delay. We
further discuss this issue in Sections 4.1 and 4.2.

We address the prior concerns by taking a two-step ap-
proach. First, we examine a new normalization technique
through which we redefine traditional performance metrics.
Our aim is to provide a network-aware version of those met-
rics and at the same time reduce their correlation as much as
possible. In the second step, we focus on weighting, a key
mechanism of MCDM methods. This is a process in which70

each metric is assigned a number that determines its importance
compared to other metrics. We develop a correlation-aware
weighting model that is suitable for our context. Such weight-
ing models have been studied in the MCDM literature [4] (we
review well-known weighting models in Section 3.2) but only
examine linear correlation. Instead, we take a more generic ap-
proach that responds to both linear and non-linear relationships.
Summarizing, our contributions are:

• We formulate the evaluation of opportunistic routing pro-
tocols as an MCDM problem where the protocols are the80

alternatives and the performance metrics are the criteria.
Based on this formulation, we develop a framework that
ranks each protocol’s performance (Section 4).

• We propose a set of modified performance metrics that
stem from well-known ones (Section 4.2). The proposed
metrics capture the performance of routing protocols with
respect to the optimal one in a specific network. Thus,
they provide the means for a network-aware assessment
when used either in the context of the proposed MCDM
framework or as baseline metrics in future evaluation of90

opportunistic routing protocols.

• We propose VIC (Section 4.3), a weighting method that re-
lies on the variability and the dependency (both linear and
non-linear) of criteria in order to determine their relative
importance. VIC can be applied to any MCDM problem
for the assignment of objective weights and it is also com-
patible with the use of subjective, i.e. user-defined, ones.

• We perform a detailed performance assessment for a wide
range of opportunistic routing protocols using a variety of
real-world contact traces that correspond to networks of100

different scales and structures (Section 5).

In the rest of the paper, we first review opportunistic routing
protocols (Section 2.1) and the most popular performance met-
rics (Section 2.2). In Section 3, we provide background in-
formation on traditional MCDM methods. After delineating

our contributions (Sections 4-5), we conclude this work in Sec-
tion 6.

2. Background

2.1. Routing in Opportunistic Networks

Routing in opportunistic networks follows the store-carry-110

and-forward approach. That is, a node may store packets for
long periods of time and forward/replicate them upon a contact
with another node. The main challenge in the design of op-
portunistic routing protocols is to determine whether a packet
should be forwarded/replicated to an encountered node with the
two extremes being Epidemic Routing [5] and Direct Deliv-
ery [6]. The former follows the most aggressive approach, i.e.
replicates a packet to every encountered node that is not already
a carrier, thus essentially floods the network. On the other hand,
Direct Delivery follows a conservative approach, i.e., the source120

node does not forward/replicate a packet but waits to encounter
the destination in order to deliver it. In the case of unlimited
resources, Epidemic Routing will deliver every packet that the
limited connectivity allows to be delivered. It will do so with
the minimum delay but the trade-off is the excessive number of
transmissions, i.e., routing overhead. On the contrary, Direct
Delivery will produce the minimum routing overhead but often
suffers long delivery delays and limited delivery capability.

Most of the proposed routing protocols try to strike a bal-
ance between these two extremes. To this end, they employ130

the concept of utility, i.e. a value indicating the fitness of a
node for delivering (directly or indirectly) a packet to its des-
tination. The idea is to forward/replicate a packet to a higher
utility node. Most algorithms differ in the realization of the
utility metric. Various such realizations have been proposed in
the literature [7, 8]. For example, the utility of a node may be
assembled using the time since its last encounter with the desti-
nation [9], its encounter rate with the destination or even a more
complex interpretation of a node’s history of previous encoun-
ters (e.g., the utility used by the PRoPHET algorithm [10]). A140

utility metric can be classified as either destination-independent
or destination-dependent based on whether the captured infor-
mation pertains to the destination or not. For instance, the total
number of contacts that a node had with any other node is a
destination-independent utility metric, while the total number
of contacts with a specific destination node is a destination-
dependent one [11].

Another design choice for a routing protocol is whether to
follow a single-copy [12] or a multi-copy approach [13]. In
single-copy protocols a node forwards the packet to a node with150

better utility, while in multi-copy ones the packet is replicated
therefore multiple copies exist in the network. By spreading
copies, multi-copy protocols are more likely to find a faster
delivery path than single-copy ones. However, this comes at
the expense of routing overhead, i.e. more transmissions. The
algorithms that rely on a utility metric to determine when to
replicate a packet to an encountered node follow what is known
as the “Compare and Replicate” approach. The strategy aims
at reducing the routing overhead. Yet, this is still significantly
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higher compared to the “Compare and Forward” approach, i.e.160

when a node decides based on a utility to forward, instead of
replicating, a packet.

The “Spray” approach takes a more direct path towards con-
trolling the number of a packet’s replicas and therefore the rout-
ing overhead. According to the strategy, each packet carries in
its header a number R that announces the remaining number of
replicas that can be created. This number is initialized with a
maximum value L, i.e. R = L, when the packet is generated at
the source. Each node carrying more than one copy of a packet
(i.e. R>1) may decide to distribute R′<R of those copies to an170

encountered node. This is done by replicating the packet with
the number R′ in its header. In this way, there are at maximum
L copies of the packet distributed to L carrier nodes. The most
representative algorithm in this category is Spray and Wait [14]
where a node distributes half of its replicas, i.e. R′ = R/2, to an
encountered node. When R = 1, the node waits until it encoun-
ters the destination node. Spray and Focus [15] follows a sim-
ilar approach but when R = 1 the node acts as in a single-copy
utility-based protocol, i.e. forwards the packet to a higher utility
node. Other spray-based protocols emphasize on a more effi-180

cient spraying of replicas. More specifically, in Last-Seen-First
(LSF) Spraying [16], a node chooses to distribute half of its
copies only to an encountered node of higher utility. The latter
depends on the time elapsed since the node last encountered the
destination. On the other hand, EBR [17] uses the utility metric
to determine R′, i.e., how many replicas should be forwarded
upon an encounter. In particular, the utility value of each node
corresponds to an exponentially weighted moving average of its
number of encounters. Thus, when two nodes meet, R′ depends
on the utility values of the two nodes. SimBetTS [18] follows a190

similar approach but relies on social network analysis in order
to determine the utility metric. In the case that there is only one
replica of a packet, SimBetTS operates as a single-copy routing
protocol.

A different approach towards reducing the routing overhead
of multi-copy protocols was introduced by Delegation Forward-
ing (DF) [19]. Unlike the “Compare and Replicate” approach,
where each node replicates a packet to a node with a higher util-
ity value, DF takes into account the history of observed utility
values. More specifically, a node will replicate a packet only200

when it encounters another node whose utility value is greater
than the highest utility value that has been observed for that
packet so far. Note that DF works with virtually any utility met-
ric. COORD [20] builds upon DF’s concept to further reduce
redundant replications. To that end, COORD enables nodes to
coordinate their replication decisions by exchanging their ob-
servations.

Note that MCDM concepts have been used in the context of
opportunistic networks, either implicitly [18] or explicitly [21].
The idea is to combine multiple utility metrics in order to enable210

a node to make the best decision regarding a network function,
e.g., forwarding, replication, congestion control, etc. In this
paper, we focus on the performance evaluation of routing pro-
tocols and formulate this task as an MCDM problem, i.e., we
use multiple performance metrics to rank the performance of
different routing algorithms.

2.2. Performance metrics for Opportunistic Routing Protocols
Routing is a complex process that should meet multiple con-

flicting objectives. In networks of intermittent connectivity,
the trade-offs for achieving these objectives are often unpre-220

dictable. Therefore, assessing the performance of an oppor-
tunistic routing protocol is a challenging task. Reasonably, this
involves the joint evaluation of a set of performance metrics
where each metric quantifies a performance feature. Tradition-
ally, the most commonly used metrics are the following:

• Delivery Ratio (DR): The number of successfully deliv-
ered packets normalized to the number of generated ones.

• Average Delay (AD): The delay for delivering a packet to
its destination. It is calculated as the sum of all delivery
delays divided by the number of delivered packets.230

• Overhead Ratio (OR): The total number of transmissions
normalized to the number of generated packets.1

Finally, a less popular performance metric, although one that
can provide valuable information, is the Average Number of
Hops (ANH) [22] required for delivering a packet to its des-
tination.

3. Multiple-Criteria Decision-Making

In this section we review the Multiple-Criteria Decision-
Making (MCDM) literature. In general, MCDM schemes con-
sist of a decision-making algorithm and a weighting method.240

3.1. Decision-Making Methods
In a multiple-criteria evaluation problem there are n alterna-

tives that have been evaluated using m criteria. The evaluation
information is summarized in a normalized decision matrix:

Z =



c1 c2 · · · cm

a1 z1,1 z1,2 · · · z1,m
a2 z2,1 z2,2 · · · z2,m
...

...
...

. . .
...

an zn,1 zn,2 · · · zn,m

 , (1)

where zi, j corresponds to the performance value of the alter-
native ai with respect to the criterion c j for i = 1, . . . , n and
j = 1, . . . ,m. We refer to the criteria that capture a positive
performance aspect as benefit criteria while those referring to a
negative performance feature are known as cost criteria. Since
the criteria could be expressed in different measurement units
it is critical that the decision matrix is normalized so that each
element zi, j is dimensionless. A variety of normalization ap-
proaches have been proposed in the literature [23]. Table 1250

presents the most commonly used normalization methods for
the construction of the Z matrix out of non-normalized perfor-
mance values xi, j for i = 1, . . . , n and j = 1, . . .m. Furthermore,

1In some studies, the routing overhead may be quantified by the number of
transmissions per delivered packet.
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Table 1: Most common normalization techniques for decision-making methods.

Linear 1
zi, j =

xi, j

xmax
j
, i = 1, . . . , n for benefit criteria

zi, j =
xmin

j

xi, j
, i = 1, . . . , n for cost criteria

Linear 2
zi, j =

xi, j−xmin
j

xmax
j −xmin

j
, i = 1, . . . , n for benefit criteria

zi, j =
xmax

j −xi, j

xmax
j −xmin

j
, i = 1, . . . , n for cost criteria

Linear 3 zi, j =
xi, j

n∑
k=1

xk, j

, i = 1, . . . , n , j = 1, . . . ,m

Vector zi, j =
xi, j√
n∑

k=1
x2

k, j

, i = 1, . . . , n , j = 1, . . . ,m

xmax
j = max{ xi, j | i = 1, . . . , n } and xmin

j = min{ xi, j | i = 1, . . . , n }

in order to be able to determine different levels of importance
for various criteria, MCDM methods introduce a weight vec-
tor w = (w1 w2 . . . wm), where

∑m
j=1 w j = 1 and w j ≥ 0 for

j = 1, . . . ,m. In this context, w j corresponds to the relative im-
portance of the jth criterion. Using w it is possible to construct
the weighted normalized decision matrix T such that ti, j = w jzi, j

for i = 1, . . . , n and j = 1, . . . ,m. We review weighting methods260

in the following subsection.
Given a normalized decision matrix Z and a weight vector

w, several decision-making methods have been proposed in or-
der to provide an overall score of each alternative [24, 25]. The
simplest and probably the most widely used method is the Sim-
ple Additive Weighting (SAW), which is also known as the
Weighted Sum Model (WSM) [26]. According to the SAW
method, the overall score of each alternative ai is determined
as:

SAW (ai) =

m∑
j=1

w jzi, j , i = 1, . . . , n . (2)

This method is applicable only when all criteria are or have
been transformed to be either benefit or cost ones. For exam-
ple, this can be done using the normalization methods that we
refer to as “Linear 1” and “Linear 2” in Table 1. Another sim-
ilar decision-making method is the Multiplicative Exponential
Weighting (MEW), which is also known as the Weighted Prod-
uct Model (WPM) [27, 28]. Their main difference is that MEW
relies on multiplication instead of addition. More specifically,
the overall score of each alternative ai is given by:

MEW (ai) =

m∏
j=1

(
zi, j

)w j
, i = 1, . . . , n . (3)

Assuming that all criteria are benefit criteria then the best alter-
native is the one that yields the highest overall score.

A different approach is followed by the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) [1, 2].
The key idea here is that the best alternative is the closest to the
positive ideal solution and the farthest to the negative ideal solu-
tion. The positive ideal solution a+ =

(
t+1 t+2 . . . t+m

)
consists of

the maximum values of all the benefit criteria and the minimum
values of all the cost criteria. In other words, t+j is the maxi-
mum value in the j-th column of matrix T if the j-th criterion
is a benefit one and the minimum value if the criterion is a cost

one. Similarly, the negative ideal solution a− =
(
t−1 t−2 . . . t−m

)
consists of the minimum values of all the benefit criteria and the
maximum values of all the cost criteria. TOPSIS calculates the
Euclidean distances from an alternative ai to the positive (a+)
and the negative (a−) ideal solutions. Then, it determines the
overall score of ai as:

TOPSIS (ai) =
d−i

d−i + d+
i
, i = 1, . . . , n , (4)

where d+(d−) is the Euclidean distance of ai from a+(a−). The
alternative with the highest overall score is considered the best
alternative. This is because it has the shortest Euclidean dis-
tance from the positive ideal solution and the longest from the
negative ideal solution.

A modified version of TOPSIS has also been proposed,
which we refer to as mTOPSIS [3]. Instead of calculating
the Euclidean distances of each alternative from the positive
and negative ideal solutions in matrix T, mTOPSIS uses the
weighted Euclidean distances of each alternative from the posi-
tive and negative ideal solutions in matrix Z. More specifically,
after transforming any cost criteria into benefit ones, mTOPSIS
calculates the following weighted Euclidean distances:

dmax
i =

√√ m∑
j=1

w j

(
zmax

j − zi, j

)2
, i = 1, . . . , n , (5)

dmin
i =

√√ m∑
j=1

w j

(
zi, j − zmin

j

)2
, i = 1, . . . , n , (6)

where zmax
j = max{ zi, j | i = 1, . . . , n } and zmin

j = min{ zi, j | i =

1, . . . , n }. Then, the overall score of each alternative ai is given
by:

mTOPSIS (ai) =
dmin

i

dmin
i + dmax

i

, i = 1, . . . , n . (7)

3.2. Weighting Methods

Determining the weights of each criterion in MCDM is of270

paramount importance. Numerous weighting methods have
been proposed in the literature. These methods can be broadly
classified into three categories: subjective, objective, and in-
tegrated. Subjective weighting methods rely on the deci-
sion maker to determine the importance of each criterion [29,
30, 31, 32, 33, 34] while objective weighting methods de-
termine the importance of each criterion based on the avail-
able information in the decision matrix [4, 3]. Integrated
weighting methods combine subjective and objective informa-
tion [35, 36, 37, 38, 39]. In this work, we focus on objective280

weighting methods in order to provide an unbiased evaluation
of routing protocols on contact datasets with vastly different
characteristics.

The most simplistic weighting approach is to assume that all
the criteria are equally important, i.e., w j =

1
m , j=1, . . . ,m. This

approach is known as the Mean Weights (MW) method [4].
However, advanced objective methods make the observation
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that criteria exhibiting little variation in the recorded perfor-
mance values (i.e. the values of a column in matrix Z) have lit-
tle use in differentiating the alternatives [40]. Therefore, focus
should be shifted to other criteria. For example, when we want
to evaluate a set of routing protocols, we usually consider the
fraction of successfully delivered packets as an important per-
formance metric. However, if all the routing protocols deliver
about the same number of packets, then this criterion has little
influence on the overall evaluation of the routing protocols. If
we view criteria as information sources then their importance
can be perceived as their contrast intensity [41]. The latter can
be quantified by a measure of either entropy or standard devia-
tion. In the Entropy Measure (EM) method [3], the amount of
information emitted from each criterion c j is measured by:

e j = −
1

ln (n)

n∑
i=1

zi, j ln
(
zi, j

)
, j = 1, . . . ,m , (8)

where the matrix Z should be normalized such that zi, j ∈ [0, 1]
and

∑n
i=1 zi, j = 1. The weight of each criterion is given by

normalizing its degree of divergence:

w j =
1 − e j

m∑
k=1

(1 − ek)
, j = 1, . . . ,m . (9)

Similarly, the Standard Deviation (SD) method [4] determines
the relative importance of each criterion through the following
equation:

w j =
σ j

m∑
k=1

σk

=

√
1
n

n∑
i=1

(
zi, j−µ j

)2

m∑
k=1

√
1
n

n∑
i=1

(
zi,k−µk

)2
, j = 1, . . . ,m, (10)

where µ j is the arithmetic mean of the values of all alternatives
for criterion c j.

The notion of dependence among criteria was first taken into
consideration by the “CRiteria Importance Through Intercrite-
ria Correlation” (CRITIC) method [4]. CRITIC, similar to the
SD method, also relies on the standard deviation to quantify the
contrast intensity of each criterion. It also uses a symmetric
matrix where the element ρ j,k of the matrix is the linear corre-
lation coefficient, also known as the Pearson product-moment
correlation coefficient, between criteria c j and ck. The idea is
that ρ j,k is a measure of the conflicting character of the crite-
ria. CRITIC measures the conflict that each criterion has with
the rest of chosen criteria. Then, it combines the conflict of the
criterion with its corresponding standard deviation in order to
determine its importance:

f j = σ j

m∑
k=1

(
1 − ρ j,k

)
, j = 1, . . . ,m . (11)

In other words, according to CRITIC, the importance of a crite-
rion depends on the amount of variation in the recorded values
and the amount of discordance that this criterion has with the

other criteria. The objective weights are determined as:

w j =
f j

m∑
k=1

fk
, j = 1, . . . ,m . (12)

4. A Framework for the Evaluation of Opportunistic Rout-
ing Protocols

As previously discussed, our observation is that it is possible
to formulate the evaluation of opportunistic routing protocols
as an MCDM problem where each protocol is an alternative290

and each performance metric is a criterion. Nevertheless, there
are several pitfalls in using the traditional performance metrics
as criteria. We address such problems and propose solutions
in Sections 4.1 and 4.2. Then, in Section 4.3, we tackle the
problem of weighting the importance of criteria.

4.1. Pitfalls in using Performance Metrics as Evaluation Cri-
teria

The first drawback of traditional performance metrics stems
from the fact that they exhibit diverse ranges of values. Table 2
reports the simulation results (i.e., the average values of the300

metrics presented in Section 2.2) for several routing protocols in
the Dartmouth dataset.2 It is clear that some kind of normaliza-
tion is required in order to perform a multi-criteria assessment
of the protocols. Indeed, as we mentioned, decision-making
methods include a normalization step when needed. This step
produces the normalized decision matrix Z in Eq. (1) from a
non-normalized matrix X where the normalized value zi, j of cri-
terion c j for alternative ai is produced from xi, j and the observed
criteria values for the other alternatives, i.e., xk, j,∀k. Unfortu-
nately, this approach bears a significant disadvantage; clearly310

the calculation of Z depends on the set of chosen alternatives.
According to Section 3.1, this, in our context, implies that the
score of each routing algorithm depends on the set of the ex-
amined algorithms. Regrettably, in many cases this is also true
for the rank of each routing algorithm. To illustrate the prob-
lem, we used the method entitled as “Linear 1” in Table 1 to
normalize the performance of protocols in the example of Ta-
ble 2. We report two normalizations (Table 3); one considering
all six protocols as alternatives and another one with only four
protocols (Epidemic and Direct routing are excluded). The two320

normalizations are entirely different because the set of alterna-
tives has been narrowed down, i.e. the performed normalization
depends on the set of alternatives. We argue that an objective
performance assessment calls for a more stable normalization
method.

Another major challenge in using legacy metrics originates
from the fact that they are highly correlated. For example, one
can notice in Table 2 the high correlation between most of the
metrics with the prominent example being the correlation be-
tween the average delay and the overhead ratio (Pearson corre-330

lation coefficient ρ ≈ −0.81). Working with correlated criteria

2The details of the simulation setup are presented in Section 5. Results for
more protocols and datasets can be found in Section 5 as well as in [42].
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Table 2: Average values of the traditional performance metrics for a set of
routing protocols on the Dartmouth dataset.

Protocol DR AD (in hours) OR
Epidemic 0.9779 27.10 560.00
Direct 0.0453 52.22 0.05
CnF.PRoPHET 0.5515 77.32 8.49
CnR.PRoPHET 0.9508 40.97 119.22
DF.PRoPHET 0.8214 59.30 14.64
COORD.PRoPHET 0.7804 61.28 10.73

Table 3: Normalized performance metrics considering all six (four) of the al-
gorithms (Dartmouth dataset, Method: “Linear 1”).

Protocol Norm.DR Norm.AD Norm.OR
Epidemic 1 (-) 1 (-) 0.0001 (-)
Direct 0.0463 (-) 0.5190 (-) 1 (-)
CnF.PRoPHET 0.5640 (0.5800) 0.3505 (0.5299) 0.0059 (1)
CnR.PRoPHET 0.9723 (1) 0.6615 (1) 0.0004 (0.0712)
DF.PRoPHET 0.8400 (0.8639) 0.4570 (0.6909) 0.0034 (0.5799)
COORD.PRoPHET 0.7980 (0.8208) 0.4422 (0.6686) 0.0047 (0.7912)

is not new. In fact, MCDM algorithms use weighting meth-
ods [4] in order to take into account this correlation and per-
form a more accurate assessment. We discuss the challenges in
developing a suitable weighting method in Section 4.3. Here,
we examine the problems that cannot be tackled by a weighting
method. More specifically, we refer to the fact that some per-
formance metrics may provide erroneous information because
of their high degree of correlation. A typical example of such
a metric is the average delay due to the statistical bias that a340

low delivery ratio inflicts to it. To explain this, let us consider
the delay comparison of two routing protocols, one with a low
(RPA) and another with a high (RPB) delivery ratio. Even if
RPB delivers every packet that RPA does with the exact same
delay, it will probably exhibit a higher average delay. Yet, its
performance is not worse. This happens because the higher de-
livery ratio of RPB usually implies the ability to reach more
distant destinations, i.e. the ones that require longer delays. To
illustrate such an example, let us go back to Table 2. Observe
that Direct Delivery presents a lower average delay compared350

to Delegation Forwarding (DF) and COORD when both use
the PRoPHET utility (DF.PRoPHET and COORD.PRoPHET
respectively in Table 2). Note that in both DF and COORD the
source node will always have a replica of the packet. In other
words, in the worst case, both protocols match the delay per-
formance of Direct Delivery for the subset of packets delivered
by the latter, i.e. they deliver the packets using the exact same
single hop paths if not finding shorter-delay multi-hop ones.
Consequently, the information provided by the average delay
metric is misleading.360

Another example of inaccurate information also involves de-
lay and emerges when two protocols deliver the same number
of packets but to different destinations. For example, one proto-
col may deliver a packet with the optimal delay, i.e. the shortest
delay allowable by the network. On the other hand, another pro-
tocol may deliver a packet to a different destination with a delay
that is smaller compared to the first algorithm but is larger than
the optimal one. In this case, the average delay for the second
protocol will be smaller even though its performance is worse.
The obvious reason is that the traditional average delay metric370

does not take into account the “difficulty” of reaching a desti-
nation. A similar phenomenon emerges when interpreting the
overhead ratio metric because again the “difficulty” of reaching
the destination, i.e. the minimum number of required transmis-
sions, is not taken into account.

As a final note on using metrics as criteria, observe that some
of the metrics in Section 2.2 can be considered as benefit while
others as cost criteria. This rules out the decision-making meth-
ods that require a set of criteria that are all either benefit or cost
ones, e.g. SAW and MEW, unless a transformation step that380

converts cost (benefit) criteria to benefit (cost) ones is included.

4.2. Proposed Performance Metrics
The previous discussion highlights the need for a set of im-

proved performance metrics, suitable for formulating the eval-
uation of routing protocols as an MCDM problem. To bypass
the cons of the normalization step in MCDM algorithms, we
opt for inherently normalized metrics. In such a case, a reason-
able question that arises is what the normalization basis should
be. Since opportunistic networks are characterized by heteroge-
neous contact rates and unpredictable node mobility that signif-390

icantly affect the routing process, we argue that a metric should
be normalized with respect to the optimal performance in a spe-
cific network. To this end, we use two single-copy algorithms
that require a priori the entire information about the network’s
evolution. The first one, which we refer to as OPTD, delivers
a packet using the minimum delay path while the hop count is
the tie-breaker for equal delay paths. The second algorithm,
which we refer to as OPTF , delivers a packet through the mini-
mum hop path with the minimum delay being the tie-breaker. In
other words, both algorithms maximize the number of delivered400

packets while OPTD minimizes delay and OPTF minimizes the
number of required transmissions. Note that, although non-
realistic, both algorithms provide performance limits that can
be matched by realistic algorithms. For example, Epidemic
routing maximizes the number of delivered packets while min-
imizing delay, obviously at the expense of transmissions.

To determine the performance of OPTD and OPTF it is pos-
sible to model an opportunistic network and the contacts be-
tween its nodes as a time evolving (or temporal) graph where
each edge is associated with a set of labels and each label de-410

fines a period of time that the edge is available. Using this
modeling, OPTD corresponds to the algorithm that finds what
is known as the “foremost journey”, i.e. the path that its ar-
rival time to the destination is the smallest among all other
paths. Moreover, OPTF corresponds to the algorithm that finds
the “shortest journeys”, i.e., the minimum-hop path, since the
minimum number of transmissions can be achieved by follow-
ing this path. There exist efficient algorithms for identifying
both the foremost as well as the shortest journeys in time evolv-
ing graphs [43, 44]. Furthermore, in Section 5.1 we present a420

lightweight simulation-based approach for determining the per-
formance of both OPTD and OPTF .

After defining OPTD and OPTF , we are in a position to de-
fine a set of normalized performance metrics. We call the first
one the Normalized Delivery Ratio (NDR) and define it as the
total number of successfully delivered packets normalized to
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the maximum number of packets that can be delivered. Note
that the latter number is actually the number of packets deliv-
ered by either OPTD or OPTF . Thus, the NDR of a routing
protocol RP is calculated as:

NDR (RP) =
|Dlv (RP)|
|Dlv (OPTD)|

, (13)

where |Dlv (·)| denotes the number of delivered packets. NDR is
particularly useful for scenarios where a large proportion of the
generated packets is not delivered due to the network connec-
tivity. Therefore, a low delivery ratio does not necessarily mean
that a routing protocol performed poorly. NDR is 1 even if the
delivery ratio is less than 1, provided that the routing protocol
delivered the same packets as OPTD did.

For assessing the delay profile of a protocol, we use the ratio
of the end-to-end delay that OPTD achieves for a packet to the
end-to-end delay of the examined protocol for the same packet.
Clearly, this ratio lies between 0 and 1, with 1 meaning that
the protocol achieves the minimum delay. Then, we define the
Normalized Delivery Delay (NDD) Index of a protocol RP as:

NDD (RP) =

∑
i∈Dlv(RP)

Di (OPTD)
Di (RP)

|Dlv (OPTD)|
, (14)

where Dlv (·) denotes the set of delivered packets and Di(·) the430

end-to-end delay for packet i. Observe that a high NDD value
corresponds to a good performance and that NDD(OPTD) = 1.
NDD tackles the shortcomings of the traditional average de-
lay metric that we discussed previously. One first improve-
ment is that it is now possible to have a more fair comparison
of protocols that deliver packets to different destinations since
Di (OPTD) in Eq. (14) quantifies the “difficulty” of reaching the
destination of packet i. Let us, for example, consider the case
of two protocols RPA and RPB that deliver one packet each, k
and l respectively, to different destinations. Also, assume that440

the destination of k is a low-delay one while the opposite holds
for the destination of l, i.e. Dk(OPTD)�Dl(OPTD). Then with
high probability Dk(RPA)<Dl(RPB) and RPA presents a smaller
average delay even if RPA delivers the packet with suboptimal
delay, i.e. Dk(RPA) > Dk(OPTD), and RPB delivers its packet
with optimal delay. However, using NDD secures that RPB re-
ceives the better score. The second important enhancement is
that NDD minimizes the statistical bias that a low delivery ratio
inflicts on the average delay. More specifically, let us assume
two protocols RPA and RPB where RPA delivers only a subset of450

the packets delivered by RPB, i.e. Dlv (RPA) ⊂ Dlv (RPB), with
the exact same delay as RPB does, i.e. Di(RPA)= Di(RPB), ∀ i ∈
Dlv (RPA). Previously, we explained the anomaly that the aver-
age delay for RPB will probably be higher than that of RPA

even if RPB delivers the extra packets with the optimal delay,
i.e. Di(RPB)= Di(OPTD), ∀ i ∈ Dlv (RPB)−Dlv (RPA). Observe
that NDD assumes an infinite delay for every packet delivered
by OPTD but not by the examined protocol (due to the normal-
ization based on the number of packets delivered by OPTD).
Therefore, in the previous example RPA will receive a smaller460

score compared to RPB.

Table 4: Average values of the proposed performance metrics for a set of rout-
ing protocols on the Dartmouth dataset.

Protocol NDR NDD NRO
Epidemic 1.0000 1.0000 0.0173
Direct 0.0463 0.0222 1.0000
CnF.PRoPHET 0.5640 0.2393 0.2884
CnR.PRoPHET 0.9723 0.7070 0.0919
DF.PRoPHET 0.8399 0.4620 0.3050
COORD.PRoPHET 0.7980 0.4298 0.3360

Regarding the evaluation of routing overhead, we wish to
compare the number of transmissions that a routing protocol
performed with those performed by OPTF , again in order to
quantify the “difficulty” of reaching the destination. We are in-
terested in the transmissions performed for all packets (either
delivered or not). This is because a realistic routing protocol
does not know if a packet is deliverable or not, therefore it will
try to forward (or replicate in the multi-copy case) any gener-
ated packet. Based on these principles, we introduce the Nor-
malized Routing Overhead (NRO) Index of protocol RP as:

NRO (RP)=

∑
i∈Dlv(RP)

1+Fi (OPTF)
1+Fi (RP)

+
∑

i∈NDlv(RP)

1
1+Fi (RP)

|Dlv (RP) ∪ NDlv (RP)|
,

(15)

where NDlv(·) denotes the set of packets not delivered and Fi(·)
the number of transmissions for packet i. Similar to NDD, a
high NRO value indicates a good performance and the highest
score corresponds to the optimal algorithm, i.e. NRO(OPTF)=

1. Note that we use two sums in NRO; one for delivered packets
and one for non-delivered ones. For a delivered packet, a rout-
ing protocol will receive the highest score if the optimal number
of transmissions Fi(OPTF) is performed. On the other hand, for
non-delivered packets the optimal strategy would be to perform470

no transmissions. In this case, a protocol will receive a small
score when Fi(RP) is large and will only receive the highest
score when Fi(RP) = 0. Concluding, the NRO of a routing pro-
tocol is 1 (the highest value) only if it delivered packets with
the optimal number of transmissions and did not perform any
redundant transmissions for non-delivered packets.

The proposed performance metrics effectively address all the
challenges discussed previously. In particular, all of them are
bounded between 0 and 1, with 1 indicating the optimal perfor-
mance in the examined network. Furthermore, their values are480

monotonically increasing, which means that a higher value in-
dicates a better performance. Therefore all the proposed metrics
can be used as benefit criteria, thus enabling the use of decision-
making methods that require all criteria to be either benefit or
cost ones. In Table 4 we provide the average values of the
proposed performance metrics for the same simulation scenario
that we examined in Table 2. As one can see, Epidemic Rout-
ing achieves the optimal performance value for the NDR and
the NDD metrics but its performance value for the NRO is close
to 0 because of its excessive number of transmissions. On the490

other hand, Direct Delivery achieves the optimal performance
value for the NRO but its performance values for the other met-
rics are very low compared to the other algorithms. Notice that
when using the proposed metrics, both Delegation Forwarding
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(DF) and COORD achieve better performance values for the
NDD metric compared to Direct Delivery, which is reasonable
based on a previous discussion. In addition, DF and COORD
also achieve better performance values for the NRO metric than
the single-copy Compare and Forward (CnF) approach. Even
though CnF performed less total transmissions, it was also un-500

able to deliver a significant fraction of the deliverable packets,
i.e., many of these transmissions were not useful in the sense
that they were not used for delivering packets. Finally, note
that, contrary to the case of traditional metrics (Table 3), here
the values reported in Table 4 are the same regardless of the set
of examined algorithms.

As a final note, observe that the previously discussed draw-
backs of traditional performance metrics are generic and do
not only pertain to the use of those metrics in the context of
MCDM-based performance evaluation of opportunistic routing510

protocols. As a result, we believe that the proposed metrics can
be beneficial even outside the context of MCDM-based evalu-
ation, i.e., when used as baseline metrics in traditional perfor-
mance evaluation methodologies.

4.3. Variability and Interdependencies of Criteria

After constructing a decision matrix with the proposed per-
formance metrics as evaluation criteria, we must determine the
relative importance of each criterion. Most of the proposed
weighting methods consider the amount of variation in the val-
ues of a criterion as an indicator of its importance. However,520

since this approach examines the importance of a criterion in
isolation from the other criteria, several weighting methods that
utilize the correlation among criteria have also been proposed.
CRITIC [4] was the first weighting method to follow the latter
approach. It calculates the importance of each criterion based
on the standard deviation of its observed values and then in-
creases this importance according to the amount of conflict that
the criterion has with the other criteria. To assess the amount
of conflict between two criteria, CRITIC uses their linear cor-
relation coefficient. While we believe that CRITIC is heading530

in the right direction, there are several pitfalls associated with
it. More specifically:

• We argue that the importance of each criterion should be
characterized by its independence from other criteria. In
other words, unlike CRITIC, a highly independent crite-
rion should be more important than criteria that present a
high degree of negative correlation.

• If the Pearson correlation between two criteria is equal
to 0, this only implies that there is no linear association.
However, non-linear associations are not ruled out. In or-540

der to be able to determine when two criteria are indepen-
dent, another measure of dependence must be used.

• Unlike CRITIC, we argue that the importance of a crite-
rion should be determined as a fraction of its variability.
For totally independent criteria the fraction should be 1
while for dependent ones the fraction should be reduced
based on the degree of correlation between criteria. In

other words, we reduce the importance of highly depen-
dent criteria instead of increasing the importance of highly
independent ones.550

The proposed Variability and Interdependencies of Criteria
(VIC) weighting method addresses the aforementioned issues.
In particular, VIC calculates the importance of each criterion as

g j =
σ j

m∑
k=1
R j,k

, j = 1, . . . ,m , (16)

where σ j is the standard deviation of the criterion c j and R j,k is
the distance correlation (dCor) [45, 46] between criteria c j and
ck. The objective weight of each criterion is then given by:

w j =
g j

m∑
k=1

gk

, j = 1, . . . ,m . (17)

The main reason we selected the distance correlation as the
measure of dependence for the VIC method is because it is
equal to 0 if and only if the two criteria are independent. Fur-
thermore, while the Pearson correlation ranges from -1 to 1,
the distance correlation ranges from 0 to 1. Therefore, accord-
ing to Eq. (16), the importance of a totally independent cri-
terion corresponds to its standard deviation. This is because
R j,k = 0 ∀ j , k and R j, j = 1. In the case of a highly depen-
dent criterion ∃ k : R j,k > 0 and R j, j = 1, thus the importance560

reduces since the denominator in Eq. (16) will be greater than
1 regardless of whether the correlation is positive or negative.

Recall that VIC is an objective weighting method. However,
it is possible that a protocol designer follows specific guidelines
for prioritizing the various performance aspects. For example, a
protocol designer may value limited energy consumption, e.g.,
due to the resulting limited cost, while she/he can tolerate a
significant impact on other performance aspects such as the de-
livery ratio. In such cases, one should resort to a subjective
weighting method. Still, we believe that a subjective weight570

assignment should be combined with VIC because the latter
can provide awareness regarding the performance trade-offs in
the examined network and at the same time act as a guideline
against the pitfalls stemming from criteria dependencies.

4.3.1. Numerical Examples
We present some numerical examples in order to examine

the weights that different objective weighting methods produce
in various scenarios. More specifically, we present the weight
vectors obtained by the Mean Weights (MW) method, the Stan-
dard Deviation (SD) method, the CRITIC method with linear580

correlation coefficients as it was originally proposed [4], a mod-
ified version of CRITIC with distance correlation coefficients
(CRITIC.dCor), and the proposed VIC method.

Table 5 depicts a decision matrix with seven alternatives and
three highly dependent criteria. It also reports the standard devi-
ations, Pearson correlation coefficients and distance correlation
coefficients as well as the weights that each method determines
for each criterion. Since the standard deviations of all three cri-
teria are equal in this example, the SD method considers every
criterion as equally important, just like the MW method always590
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Table 5: An example illustrating the determination of weights for highly de-
pendent criteria using different methods.

Alternatives Criteria
c1 c2 c3

a1 0 0 1
a2 0.1 0.2 0.8
a3 0.2 0.4 0.6
a4 0.3 0.7 0.3
a5 0.6 0.8 0.2
a6 0.8 0.9 0.1
a7 1 1 0

σ j ρ j,k R j,k

c1 c2 c3 c1 c2 c3

c1 0.3493 1 0.93 −0.93 1 0.94 0.94
c2 0.3493 0.93 1 −1 0.94 1 1
c3 0.3493 −0.93 −1 1 0.94 1 1

Method Weights
w1 w2 w3

MW 0.3333 0.3333 0.3333
SD 0.3333 0.3333 0.3333
CRITIC 0.2500 0.2586 0.4914
CRITIC.dCor 0.5000 0.2500 0.2500
VIC 0.3382 0.3309 0.3309

does. The CRITIC method considers c3 as the most important
because it has a perfect negative linear correlation with c2 and
a strong negative linear correlation with c1. However, if we
visualize a perfect negative linear correlation between two cri-
teria as a perfect trade-off, their importance should be reduced
equally since selecting an alternative with a higher performance
value in one criterion will result in a reduction in the other cri-
terion. Similarly, the importance of two criteria that have a per-
fect positive linear correlation should also be reduced equally
since selecting an alternative with a higher performance value600

in one criterion will also result in a higher performance in the
other criterion. Thus, weakly correlated criteria should be con-
sidered as the most important since their values are minimally
affected by the values of other criteria. In our example, us-
ing the CRITIC method with distance correlation instead of the
linear one (i.e., Pearson correlation) results in an exaggeration
of the importance of c1 because its importance was increased
twice as much compared to the other two criteria. By reducing
the importance of each criterion based on its distance correla-
tion with other criteria, VIC produces objective weights that610

reflect the aforementioned rationale; since in this scenario the
criteria are highly correlated, their weights should be almost
equal, with c1 having a slightly higher weight because it is the
least correlated with the other criteria.

In the previous example the weights w1,w2 and w3 that VIC
produces would be the same even if we used the absolute values
of the Pearson correlation coefficients, i.e., account for linear
associations, instead of the distance correlation coefficients that
also capture non-linear associations. However, in this case we
would not be able to distinguish independent criteria from ones620

with strictly non-linear associations. To shed light on the situa-
tion, let us consider the example in Table 6 where c1 has a non-
linear association with c2 while c3 is totally independent from

Table 6: An example illustrating the determination of weights for criteria with
non-linear associations using different methods.

Alter. Criteria Alter. Criteria
c1 c2 c3 c1 c2 c3

a1 0 0 0 a7 0.6 1 0
a2 0 0 1 a8 0.6 1 1
a3 0.2 0.5 0 a9 0.8 0.5 0
a4 0.2 0.5 1 a10 0.8 0.5 1
a5 0.4 1 0 a11 1 0 0
a6 0.4 1 1 a12 1 0 1

σ j ρ j,k R j,k

c1 c2 c3 c1 c2 c3

c1 0.3416 1 0 0 1 0.519 0
c2 0.4082 0 1 0 0.519 1 0
c3 0.5000 0 0 1 0 0 1

Method Weights
w1 w2 w3

MW 0.3333 0.3333 0.3333
SD 0.2733 0.3266 0.4001
CRITIC 0.2733 0.3266 0.4001
CRITIC.dCor 0.2397 0.2865 0.4738
VIC 0.2263 0.2705 0.5031

both c1 and c2. Note that the Pearson correlation coefficients are
equal to 0 for all combinations of criteria, i.e., ρ j,k = 0 ∀ j , k.
At the same time, the non-linear association of c1 and c2 is only
captured by the distance correlation, i.e., R1,2 = R2,1 , 0. As
a result, the weights derived using CRITIC are identical to the
weights derived using the SD method. On the other hand, VIC
assigns a significantly higher weight to c3 because its varia-630

tion is the highest and it is also independent of c1 and c2. In
Section 5.2 we examine the correlation of the proposed perfor-
mance metrics on several datasets and we provide the weight
vector that each method produces.

4.4. Selection of a Decision-Making Method

Up to this point we have addressed the construction of a de-
cision matrix, where each routing protocol corresponds to an
alternative and each performance metric corresponds to a ben-
efit criterion, using the normalized performance metrics pro-
posed in Section 4.2. Moreover, the VIC method, proposed in640

the previous section, tackles the problem of deriving a suitable
weight vector that captures the relative importance of each cri-
terion. Provided the decision matrix and the weight vector, we
can now use a decision-making method in order to produce a
ranking of routing protocols. However, if we try to select the
best decision-making method using an MCDM approach then
we reach a decision-making paradox [47]. This means that we
cannot consider a candidate decision-making method as the best
one because we have to use the best decision-making method it-
self in order to come to that conclusion, i.e., there is an intrinsic650

circularity problem in making this conclusion. Therefore, our
justification for the selection of a decision-making method is
based on the way that the scores of each method can be inter-
preted for our specific problem. Clearly, it is not possible to
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Table 7: An example illustrating how different decision-making methods handle
trade-offs between criteria.

Alternatives Criteria SAW MEW mTOPSIS
c1 c2

a1 0 1 0.5000 0 0.5000
a2 0.25 0.75 0.5000 0.4330 0.5000
a3 0.5 0.5 0.5000 0.5000 0.5000
a4 0.75 0.25 0.5000 0.4330 0.5000
a5 1 0 0.5000 0 0.5000

Table 8: Overall score of routing protocols using different decision-making
methods with the proposed normalized metrics and VIC (Dartmouth dataset).

SAW MEW mTOPSIS
Epidemic 0.5796 0.1762 0.5315
Direct 0.4485 0.1446 0.4685
CnF.PRoPHET 0.3685 0.3449 0.3597
CnR.PRoPHET 0.5323 0.3284 0.5086
DF.PRoPHET 0.5208 0.4721 0.5031
COORD.PRoPHET 0.5124 0.4754 0.4962

prove that our selection is the best one since this proof involves
the aforementioned circularity problem.

In the context of opportunistic networks, we recommend the
use of the MEW method [27, 28] for evaluating the perfor-
mance of routing protocols. This is mainly because MEW pro-
vides a more suitable handling of the trade-offs between differ-660

ent criteria. Let us consider the decision matrix in Table 7 where
there are two conflicting criteria that are equally important. Ev-
idently, the SAW method [26] and the modified version of the
TOPSIS method [3] produce the same rank for all the alterna-
tives. On the contrary, MEW considers the third alternative as
the best one because its performance is more balanced. Since
most opportunistic routing protocols target a middle ground be-
tween the extreme routing overhead of Epidemic Routing [5]
and the unsatisfactory delivery delays of Direct Delivery [6],
MEW comes forward as the most suitable for their evaluation670

because routing protocols with a low performance value for at
least one criterion will receive an overall low score.

In general, if the MEW score of a routing protocol is close to
0, this means that it performs poorly in terms of at least one of
the performance metrics. In order for a routing protocol to have
a MEW score equal to 1, it must perform optimally in terms of
all performance metrics with non-zero weights. A high overall
score indicates a protocol with a balanced and high efficiency
performance, i.e., a protocol that performs efficiently with re-
spect to all important performance metrics.680

To further strengthen our reasoning for selecting the MEW
method, Table 8 reports the overall performance scores of the
routing protocols that we examined in Table 4 using the VIC
weighting method with three different decision-making meth-
ods: SAW, MEW, and mTOPSIS. Even though Epidemic Rout-
ing produces by far the most packet transmissions, SAW and
mTOPSIS consider it as the best alternative, followed by the
multi-copy Compare and Replicate (CnR) approach. This is
because the high performance values of both protocols for the
normalized delivery ratio and normalized delivery delay met-690

rics overshadow their very low performance value for the nor-

Table 9: Characteristics of the investigated datasets.

Reality INFOCOM Lyon Dartmouth
Mining 2005

Number of Nodes 97 41 242 738
Duration (days) 283 3 2 14
Granularity (secs) 300 120 20 1
Network Interface Bluetooth Bluetooth RFID Wi-Fi

malized routing overhead metric. Moreover, SAW and mTOP-
SIS assign a higher overall score to Direct Delivery compared
to the single-copy Compare and Forward (CnF) approach, be-
cause Direct Delivery achieves the optimal performance value
for the normalized routing overhead. This is clearly unreason-
able, since Direct Delivery has by far the worst performance
in terms of the other two metrics. On the other hand, the ap-
proach of MEW is more reasonable since it assigns low overall
scores to Epidemic Routing and Direct Delivery because they700

perform poorly for at least one metric. In the following sec-
tion, we provide the ranking of an extended set of routing pro-
tocols using the MEW decision-making method and the VIC
weighting method on datasets with vastly different characteris-
tics, while we also discuss the rankings that other combinations
of decision-making and weighting methods produce.

5. Case Studies

5.1. Simulation Setup

We selected four datasets of varying scale to evaluate the
performance of routing protocols for opportunistic networks710

according to the proposed framework. More specifically, the
datasets that we selected are the following: Reality Min-
ing [48, 49], INFOCOM 2005 [50, 51], Lyon [52, 53], and Dart-
mouth [54, 55, 56]. The Lyon dataset was downloaded from the
website of the SocioPatterns collaboration [57], while the rest
datasets were downloaded from the website of the CRAWDAD
archive [58]. The investigated datasets differ significantly in
terms of the number of participants while their duration varies
from a few days to several months. Table 9 summarizes their
characteristics.720

For the simulations we use the Adyton simulator [59]. Ady-
ton is an open source and freely available simulator that is ca-
pable of processing contact traces and supports several oppor-
tunistic routing protocols. We investigate the performance of
the following set of routing algorithms:

• Epidemic Routing (Epidemic) [5].

• Direct Delivery (Direct) [6].

• Compare and Forward (CnF) [12].

• Compare and Replicate (CnR) [13].

• Delegation Forwarding (DF) [19].730

• COORD [20].

• Spray and Wait (SnW) [14].

• LSF-Spray and Wait (LSF-SnW) [16].

• Spray and Focus (SnF) [15].

• SimBetTS [18].

10



• EBR [17].

For the routing protocols that is required to predefine a maxi-
mum number of replicas (L) (i.e., Spray and Wait, LSF-Spray
and Wait, Spray and Focus, SimBetTS, and EBR), we assigned
four values: L = 2, L = 4, L = 8, and L = 16. In the follow-740

ing, the example notation X.L = 4 indicates protocol X with
L = 4. For the routing protocols that can operate using dif-
ferent utility functions (i.e., Compare and Forward, Compare
and Replicate, Delegation Forwarding, and COORD), we used
one destination-independent and three destination-dependent
utility metrics. In particular, we used the Last Time Seen
(LTS) [9], the Destination Encounters (DestEnc) [11], the En-
counters (Enc) [11], and the latest version of the PRoPHET
utility with the default parameter settings [10]. In the follow-
ing, the notation X.Y indicates protocol X that uses the Y utility750

function. For example, CnR.PRoPHET is used to refer to the
Compare and Replicate protocol when it uses the PRoPHET
utility. For multi-copy routing protocols we implemented the
VACCINE anti-packet scheme [60] which is used to erase re-
dundant replicas of a packet after its successful delivery.

We were also able to efficiently determine the performance of
the two versions of the Optimal Routing algorithm, i.e., OPTD

and OPTF , using the Epidemic Routing algorithm in Adyton.
Recall that, if at least a path exists, i.e., a packet is deliverable,
OPTD delivers the packet using the fastest path with the mini-760

mum number of hops while OPTF delivers it using the shortest
(in hops) path with the minimum delivery delay. Moreover,
bear in mind that Epidemic Routing follows a flooding-based
approach, i.e., it delivers multiple packet copies, each one cor-
responding to a different path. Evidently, the first copy deliv-
ered by Epidemic algorithm follows the fastest path. Yet, a mi-
nor modification is required to correctly identify minimum-hop
paths. More specifically, in Epidemic Routing an intermediate
node will typically store the first copy received and reject all
subsequent ones. This strategy suppresses possible minimum-770

hop paths since copies following such paths may arrive later.
To tackle the problem, we opt to allow a node to update the hop
count of a stored copy if another copy with a smaller hop count
is available through a later contact. This modification allows
the destination node to receive the minimum-hop copy. At the
same time, the fastest arriving copy will contain the correct hop
count. With this modified algorithm it is possible to capture the
performance of both OPTD and OPTF . For OPTD, it suffices to

record, for each deliverable packet, the delay and the hop count
of the first copy delivered to the destination. Note that, since780

OPTD and OPTF are single-copy algorithms, the hop count is
equivalent to the number of transmissions. For OPTF , from the
multitude of copies received by the destination, we record the
delay and the hop count of the copy that traveled the minimum
number of hops.

For each simulation, we generated 10000 packets of fixed
size with a random pair of source and destination nodes. How-
ever, because some nodes are not active for the entire duration
of the respective dataset, each node can be the source or the des-
tination only for packets that were generated during its presence790

in the network. Like most evaluation studies in the literature,
we did not consider any resource constraints during our simu-
lations. To avoid statistical bias, the results were collected after
a warm-up period and before a cool-down period with the du-
ration of each one being the 20% of the total simulation time.
We simulated 25 repetitions of each scenario in order to cal-
culate the average values and 95% confidence intervals of the
traditional and the proposed performance metrics.

5.2. Simulation Results

5.2.1. Performance Evaluation on the Reality Mining dataset800

The Reality Mining dataset [48, 49] consists of contacts be-
tween students and faculty members at the MIT. It is one of the
most widely used datasets, mainly because of its large number
of participants and long duration.

Fig. 1 presents three scatter plots, one for each combination
of the three proposed normalized metrics. In each scatter plot,
a point represents the performance achieved by one of the rout-
ing protocols with respect to two metrics. The three scatter
plots allows us to illustrate the associations between the ob-
served normalized performance values. According to Fig. 1(a),810

the lowest normalized delivery ratio (NDR) that a routing pro-
tocol achieved on this dataset is almost equal to 0.5, which
corresponds to the performance of Direct Delivery. In other
words, half of the deliverable packets could be delivered di-
rectly, i.e. with the least possible routing overhead. As we
would expect, Direct Delivery also achieves the lowest value
for the normalized delivery delay (NDD) index, i.e., high av-
erage delivery delay. The rest of the routing protocols are able
to deliver a lot more packets with smaller delays (i.e., higher
NDD indices). Interestingly, Fig. 1(a) clearly illustrates that the820
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Figure 1: Scatter plots of the normalized performance metrics on the Reality Mining dataset.
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Figure 2: Ranking of the routing protocols using the MEW method with VIC weights on the Reality Mining dataset.

Table 10: Relative importance of each performance metric on the Reality Min-
ing dataset according to different weighting methods.

MW SD CRITIC CRITIC.dCor VIC
NDR 0.3333 0.2197 0.1600 0.2014 0.2173
NDD 0.3333 0.3741 0.2794 0.3102 0.3662
NRO 0.3333 0.4062 0.5606 0.4884 0.4165

association between NDR and NDD is non-linear. The increase
of the delivery capability for all protocols comes at the cost of
a significant reduction of their performance in terms of the nor-
malized routing overhead (NRO) index, i.e., increased routing
overhead. Fig. 1(b) confirms that most protocols deliver about
the same number of packets but with a significantly different
routing overhead. This is an indication that in this dataset the
routing overhead is of increased importance. Finally, Fig. 1(c)
highlights the negative correlation (i.e., the conflicting nature)
between the NDD and the NRO indices, which is reasonable830

since more packet copies typically result in reduced delivery
delay because it is more probable that a packet copy will follow
the optimal delay path.

We constructed a decision matrix with the proposed perfor-
mance metrics as the set of criteria and the routing protocols
as the set of alternatives. Based on this matrix, we used differ-
ent weighting methods to determine the weight of each metric.
Table 10 reports the results. All the weighting methods, ex-
cept for the MW method, consider the NRO index as the most
important performance metric in the Reality dataset, followed840

by the NDD index. CRITIC assigns by far the highest weight
value to NRO, because of its strongly conflicting associations
with both NDR and NDD. If we use the MEW method with the
weight vector of the CRITIC method, LSF-Spray and Wait with
L=2 receives the highest overall score although it delivers sig-
nificantly less packets than almost every other routing protocol
and it does so with a significantly higher delivery delay. Simi-
larly, the mTOPSIS method with CRITIC weights also assigns
the highest score to LSF-Spray and Wait with L = 2 while it
assigns the second highest score to Direct Delivery. Worse still,850

if we use the CRITIC weights with the SAW method, which is
the suggested decision-making method in [4], the highest SAW
score corresponds to the Direct Delivery protocol. Apparently,

the reason for all these results is the fact that CRITIC overes-
timates the importance of the NRO index. On the contrary, the
weight vector that results with the VIC method is more rea-
sonable. Indeed, it is close to that of the SD method because
NDD and NRO present a more significant variation compared to
NDR. However, VIC slightly increases the importance of NRO
because its correlation with NDR is smaller than that between860

the NDD and NDR. When using the VIC weight vector, all
three decision-making methods rank COORD.LTS at the top,
followed by DF.LTS.

In Fig. 2 we provide, in descending order, the MEW score
of each routing protocol when the VIC method is used. CO-
ORD and Delegation Forwarding (DF) with the destination-
dependent utility metrics (e.g., LTS, DestEnc, PRoPHET) re-
ceive the highest rankings in the Reality dataset because they
achieve a good trade-off between delivery ratio and routing
overhead. When using a destination-independent utility, the870

routing overhead increases (NRO index decreases) for both al-
gorithms without a parallel increase in the delivery capability
or a decrease of delivery delays. This results in lower over-
all scores. LSF-Spray and Wait with L = 4 receives the next
best ranking because it performs better, in terms of NRO, than
any version of COORD and DF. However, its performance in
terms of the other two performance metrics is notably worse.
Note that, reasonably, both Direct Delivery and Epidemic re-
ceive low scores because they are poor performers in at least
one dimension.880

5.2.2. Performance Evaluation on the INFOCOM 2005 dataset
The INFOCOM 2005 dataset [50, 51] is another commonly

used dataset for the performance evaluation of opportunistic
routing protocols. During the INFOCOM Student Workshop
in 2005, 41 devices were distributed to attendees and recorded
their contacts.

It is clear from Fig. 3 that this dataset is not challenging in
terms of delivering packets. Even Direct Delivery is able to de-
liver more than 85% of the generated packets and almost 90%
of the packets that the optimal algorithm can deliver. More-890

over, it also achieves a much higher NDD index (lower delay)
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Figure 3: Scatter plots of the normalized performance metrics on the INFOCOM 2005 dataset.
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Figure 4: Ranking of the routing protocols using the MEW method with VIC weights on the INFOCOM 2005 dataset.

Table 11: Relative importance of each performance metric on the INFOCOM
2005 dataset according to different weighting methods.

MW SD CRITIC CRITIC.dCor VIC
NDR 0.3333 0.0870 0.0557 0.0755 0.0846
NDD 0.3333 0.3420 0.2349 0.2284 0.3207
NRO 0.3333 0.5711 0.7094 0.6962 0.5947

compared to what it usually achieves on other datasets. Over-
all, the range of values for all the performance metrics is rather
small. However, we can still observe some variation in the per-
formance values of NDD and a greater one in NRO. Based on
these observations, it is obvious that, in this scenario, the most
important performance metric is NRO. We would therefore ex-
pect all the weighting methods, except for MW, to assign a high
weight value to NRO and a low weight value to NDR. As seen
in Table 11, CRITIC indeed assigns the highest weight value to900

NRO and the lowest weight value to NDR. However, it seems
that CRITIC, again, overestimates the importance of NRO and
therefore underestimates the importance of NDD.

Regardless of the weighting method, all the decision-making
methods consider Direct Delivery as the best alternative. Fig. 4
presents the ranking of protocols based on the MEW method
with the VIC weight vector. Direct Delivery achieves by far
the highest overall MEW score. This should not come as a sur-
prise, given that Direct Delivery performs optimally in terms of
NRO, which is the most important metric in this scenario. At910

the same time, it also achieves reasonable performance values
for the other two performance metrics (recall that this dataset
does not present significant challenges for delivering packets).
Observe that the next three routing protocols in the ranking or-
der (LSF-SnW.L2, EBR.L2 and SnW.L2) share some charac-
teristics. They all perform limited replication (only two repli-
cas) and once a node is left with only one replica of a packet
it will wait to meet its destination node in order to deliver it.
Again, since, in this scenario, delivering packets is rather easy
and NRO is the most important metric, these protocols are next920

in the ranking order due to their very small number of trans-
missions. Furthermore, every version of COORD is ranked
higher than the corresponding version of DF since it performs
less transmissions without a noticeable decrease in the other
performance metrics. Finally, as we would expect, Epidemic
Routing has the lowest overall score.

5.2.3. Performance Evaluation on the Lyon dataset
The Lyon dataset [52, 53, 57] consists of close-range con-

tacts between 232 children and 10 teachers over the course of
two school days in a primary school in Lyon, France. The fact930

that these students were from 10 different classes should offer
a challenge for most routing protocols.3 Indeed, as we can see

3A visualization of their contacts during the first school day is available at
https://vimeo.com/31490438.
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Figure 5: Scatter plots of the normalized performance metrics on the Lyon dataset.
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Figure 6: Ranking of the routing protocols using the MEW method with VIC weights on the Lyon dataset.

in Fig. 5, Direct Delivery was only able to deliver about 20%
of the packets delivered by the optimal routing algorithm. The
large variability of NDR is evident, as well as its high corre-
lation with NDD. On the contrary, NRO depends less on the
other two metrics, i.e., routing protocols with similar perfor-
mance values for NRO may have very different performance
values for the other performance metrics.

Table 12 provides the weight vectors produced by differ-940

ent methods. Note that, in contrast to the previous datasets,
here different methods assign noticeably different weight val-
ues. The SD method considers NDR as the most important
criterion, followed by NDD. This is because the SD method
does not take into account the interdependences of the crite-
ria. CRITIC increases the importance of NRO, which has the
least variation in its values, because it is negatively correlated
with the other two criteria. Similar weights are derived from the
modified CRITIC method that relies on the distance correlation
coefficients of the criteria instead of their linear correlation co-950

efficients. A different assignment of weights is given by the VIC
method, which considers NDR and NRO as almost equally im-
portant metrics. This is because although NDR has the highest
amount of variation, it also has a very strong correlation with
NDD. On the other hand, NRO has the lowest amount of vari-
ation but, at the same time, it presents a moderate correlation
with the other criteria.

Table 12: Relative importance of each performance metric on the Lyon dataset
according to different weighting methods.

MW SD CRITIC CRITIC.dCor VIC
NDR 0.3333 0.3631 0.2761 0.2885 0.3441
NDD 0.3333 0.3290 0.2554 0.2456 0.3084
NRO 0.3333 0.3080 0.4686 0.4659 0.3475

The ranking of the routing protocols with the MEW decision-
making method and the VIC weighting method is given in
Fig. 6. Similarly to the simulation results on the Reality Min-960

ing dataset, COORD and DF with destination-dependent utility
metrics are the highest ranked. However, on the Lyon dataset,
both algorithms were able to deliver noticeably more packets
with the DestEnc utility instead of the LTS utility. In fact,
COORD and DF were able to deliver even more packets with
the PRoPHET utility, but at the expense of significantly lower
NRO (higher overhead) so their rank is lower. Observe that
the versions of LSF-Spray and Wait with L = 16 and L = 8
are the next best performing algorithms. Furthermore, Direct
Delivery and Epidemic Routing have significantly lower MEW970

scores compared to the other routing protocols. The reason is
because both routing protocols perform poorly in terms of at
least one performance metric. If we use SAW or mTOPSIS to
calculate the overall scores, Epidemic Routing is ranked sig-
nificantly higher. In particular, when ranking protocols with
the SAW decision-making and the weight vector of VIC, Epi-
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Figure 7: Scatter plots of the normalized performance metrics on the Dartmouth dataset.
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Figure 8: Ranking of the routing protocols using the MEW method with VIC weights on the Dartmouth dataset.

demic Routing is considered the second-best alternative, after
COORD.PRoPHET. Worse still, when using the weight vec-
tor of the CRITIC method, even Direct Delivery is among the
highest-ranked alternatives. The ranking provided by the MEW980

method with VIC weights seems to be the most reasonable since
only CnF.Enc has a lower score than Epidemic Routing and Di-
rect Delivery. This is because CnF.Enc performs poorly in all
three performance metrics.

5.2.4. Performance Evaluation on the Dartmouth dataset
The Dartmouth dataset [54, 55, 56] contains associations

of wireless cards with access points at the Dartmouth College
campus. We can construct a large-scale opportunistic network
if we treat each wireless card as a node and assume that two
nodes are in contact when they are associated with the same990

access point at the same time. The approximated contacts that
we extracted are between 738 nodes. From the datasets that
we studied, this was the most challenging for the routing pro-
tocols as it is evident from Fig. 7. Less than 5% of the deliv-
erable packets could be delivered in a single hop. Even the al-
gorithms that were able to deliver more packets, they achieved
that with significantly higher delivery delays compared to the
optimal performance. Note that Epidemic Routing delivered
every deliverable packet with the optimal end-to-end delay by
performing about 560 transmissions for each generated packet.1000

Notice that there is a set of algorithms with similar perfor-

Table 13: Relative importance of each performance metric on the Dartmouth
dataset according to different weighting methods.

MW SD CRITIC CRITIC.dCor VIC
NDR 0.3333 0.3611 0.2686 0.2687 0.3333
NDD 0.3333 0.2580 0.1939 0.1951 0.2389
NRO 0.3333 0.3809 0.5375 0.5362 0.4278

mance values for NRO and NDR (Fig. 7(b), group of points
in upper left corner). These algorithms relied on destination-
dependent utility metrics that required direct contacts with the
destination node in order to increase their utility values. How-
ever, due to the large-scale of this dataset, utility metrics such
as DestEnc rarely consider an encountered node as suitable to
carry a packet. As a result, these algorithms perform a very
small number of transmissions (high NRO index) and are un-
able to deliver a large proportion of packets. Interestingly1010

enough, the algorithms that rely on the transitive property of
the PRoPHET utility metric perform much better. In particu-
lar, the second-highest performance values for NDR and NDD
are achieved by CnR.PRoPHET. However, even though this al-
gorithm achieves these performance values with significantly
less routing overhead compared to Epidemic Routing (about
119 transmissions for each generated packet) other replication
strategies perform a lot less transmissions. For example, CO-
ORD.PRoPHET performs about 11 transmissions for each gen-
erated packet and delivers about 80% of the deliverable packets.1020

As can be seen in Table 13, all the weighting methods, with
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the exception of MW, consider NRO as the most important one.
This should be expected since NRO presents the highest amount
of variation and the least amount of dependence on the other
criteria. However, CRITIC once again overestimates the rel-
ative importance of NRO. If we use the SAW or the mTOP-
SIS method with CRITIC weights, Direct Delivery ranks first,
which is clearly unreasonable. Even if we use the MEW method
with CRITIC weights, the algorithms that we observed to have
a high NRO value but low performance values for the other two1030

metrics, are among the highest-ranked algorithms. In Fig. 8
we present the MEW score of each routing protocol with the
VIC weight vector. As we can see, COORD and DF with the
PRoPHET utility metric have noticeably higher MEW scores
than the other algorithms. This is because both algorithms
achieve values of NDR and NDD that are among the highest
ones. At the same time, they perform a very small number of
transmissions compared to every other algorithm that is able to
deliver a comparable number of packets. It should be noted that,
if we use the SAW or the mTOPSIS method with VIC weights,1040

Epidemic Routing is ranked first. This is because it achieves the
optimal performance values for two criteria with high relative
importance. This overshadows its very poor performance value
for the third criterion, even though this is the most important
performance metric in this scenario. On the other hand, as we
can see in Fig. 8, the MEW method assigns a low overall score
to the Epidemic Routing protocol because of its very poor per-
formance in the most important criterion. Thus, the ranking of
the routing protocols that was provided by the MEW method
with VIC weights seems to be the most reasonable.1050

6. Discussion and Conclusions

There are some factors that should be taken into considera-
tion in order to apply the proposed framework. First of all, the
decision matrix should contain performance values of a repre-
sentative set of routing protocols. Even if we are interested in
the performance comparison of only a small number of routing
protocols, the performance values of algorithms such as Epi-
demic Routing and Direct Delivery should be included. This
is because such algorithms provide useful information for the
performance limits imposed by the underlying network. For1060

the same reason, the set of alternatives in the decision matrix
should consist of only realistic algorithms, since non-realistic
ones would affect the relative importance of the criteria that are
then used for the evaluation of feasible solutions. Notice that
in our analysis, the two versions of Optimal Routing were only
used for the normalization of the performance metrics and they
were not included in any decision matrix as alternatives.

Another point of consideration is the use of the proposed
framework for evaluating protocols with specific performance
requirements. In its current form, the framework follows an1070

objective weighting of performance criteria that is based on
the performance trade-offs observed in the examined network.
Nonetheless, this weighting method corresponds to a type of
prioritization that may not fit well with protocols that focus on
specific performance goals/requirements. For example, a proto-
col designer may value a low number of transmissions because

of the reduced energy consumption and at the same time be
rather unconcerned with delay. In such a case, we should de-
fine a subjective weighting function that captures the preference
towards specific performance goals, use this function in combi-1080

nation with the VIC weighting method (as discussed in Sec-
tion 3.2) and reasonably use the framework to rank protocols
with the same performance goals. In some cases a performance
goal is expressed in the form of a constraint. For example, a
protocol may target the best possible performance as long as
the number of transmissions does not exceed a certain limit.
In those cases, subjective weighting may be used as long as it
penalizes protocols that do not meet the constraint. Yet, there
is another more straightforward approach that does not involve
subjective weighting. The only required modification is to de-1090

fine both OPTD and OPTF under the investigated constraint and
then determine their performance. Evidently, this process de-
pends on the type of constraint. Apparently, in this case, the
framework should be used for comparing protocols operating
under the same constraint.

While in this work we used three normalized performance
metrics as our criteria for the evaluation of the routing proto-
cols, more criteria could be introduced in the evaluation pro-
cess. For example, a fairness index could be considered as an-
other criterion.1100

Finally, we believe that, besides the proposed framework, the
modified performance metrics, proposed in Section 4.2, are of
a significant value on their own. This is because they are free
of the pitfalls witnessed in traditional metrics, therefore they
can be more robust when used as baseline criteria even with
traditional evaluation methodologies, i.e., outside the context
of our framework.

Several conclusions can be drawn from the performance
analysis that we conducted with the proposed framework. First
of all, no algorithm was able to achieve the best performance1110

on all or most of the datasets that we studied. In small-scale
opportunistic networks, Direct Delivery and replication strate-
gies with a small maximum number of replicas were sufficient.
In opportunistic networks of larger scale, utility-based replica-
tion strategies were typically considered as the best alternatives.
In particular, the replication strategies of DF and COORD were
often ranked at the top. Furthermore, there was not a single util-
ity metric that performed better than the others on every dataset
that we studied. More specifically, in large-scale opportunistic
networks, the transitive property of the destination-dependent1120

PRoPHET utility was critical for the performance of the utility-
based routing protocols. However, in opportunistic networks of
smaller scale, this utility often resulted in a noticeable increase
in the number of transmissions compared to other utilities. Con-
cluding, our case studies demonstrated the difficulty of finding a
globally successful routing strategy in opportunistic networks.
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