
Cluster-based Replication: a Forwarding Strategy
for Mobile Opportunistic Networks

Evangelos Papapetrou and Aristidis Likas
Department of Computer Science and Engineering, University of Ioannina, Greece, e-mail: epap,arly@cse.uoi.gr

Abstract—Mutli-copy routing is an efficient and wide-spread
approach for coping with the intermittent connectivity of mobile
opportunistic networks. One popular multi-copy approach is
known as “dynamic” replication; each node creates replicas on a
contact basis using a utility that determines a node’s fitness for
delivering a message to its destination. This scheme is highly
flexible, configurable with different utility functions and able
to operate efficiently in networks with diverse characteristics.
Nonetheless, its drawback is the tendency to produce a high
number of replicas that consume limited resources such as energy
and storage. Our approach to tackle this problem relies on the
observation that, based on their utility values, the network nodes
can be grouped into clusters that portray different delivery ca-
pabilities. Then, to avoid unnecessary replication, we exploit this
finding to replicate a packet to nodes that belong to clusters with
increasing delivery capability instead of replicating it to nodes
with increasing utility. The new method works in synergy with the
basic dynamic replication algorithms and is fully configurable, in
the sense that it can be used with virtually any utility function. By
conducting experiments in a diverse set of real-life networks, we
empirically show that the method effectively reduces the overall
number of replicas without hindering delivery efficiency.

I. INTRODUCTION

The key challenge that a routing mechanism faces in the
context of mobile opportunistic networks, especially in those
with nodes exhibiting human mobility, is the intermittent and
random connectivity experienced by nodes. To cope with
this, several protocols endorse packet replication [1], [2],
[3], [4], [5], [6], [7], [8]. The idea is simple; more replicas
increase the probability that a packet carrier will encounter
the destination and thus deliver the packet. Yet, replication
comes at the cost of more transmissions and increased storage
requirements. Therefore, it is imperative for a node to make
“smart” replication decisions to improve the trade-off between
delivery efficiency and cost (both energy and storage related),
i.e., reduce replication without sacrificing delivery efficiency.

So far, the proposed multi-copy routing algorithms work
towards this direction but follow two different replication
approaches; the “constrained” (or “spray-based”) [4], [3], [6],
[7] and the “dynamic” one [1], [2], [9]. In the first approach,
the source node determines the maximum number of replicas
(L) to be sprayed into the network. In “dynamic” replication,
the number of replicas is not predefined. Instead, each packet
carrier dynamically creates replicas on a contact basis, i.e.,
according to the network connectivity. This aspect provides
algorithms with the capacity to accommodate networks with
diverse characteristics in contrast to Spray-based schemes
where the optimal L depends on the network. In this work,

we focus on dynamic replication due to its flexibility. Unfortu-
nately, algorithms in this category tend to over-replicate, i.e.,
create an unnecessary amount of replicas [1]. The problem is
more severe in those dynamic schemes that endorse a simple
“Compare & Replicate” (CnR) approach [8], [1], [9]. There,
a node v replicates a packet to an encountered node u if it
has a higher utility value. The latter captures the fitness (or
quality) of a node for delivering a message. Several methods
try to improve this strategy by implementing more elaborate
replication criteria. Probably the most efficient of those are
Delegation Forwarding (DF) [1] and COORD [2].

The motivation of this work is the belief that, despite the
success of the above-mentioned efforts to reduce replication,
there is still room for significant improvement. We aim at im-
proving the delivery efficiency-cost trade-off, i.e., produce less
replicas without significantly impacting delivery efficiency. It
is well known that opportunistic networks with human mobil-
ity exhibit certain social characteristics [10], [3], [11]. As a
result, there exist nodes with diverse capabilities of delivering
a message to its destination. Our intuition is that an analysis of
the observed utilities will bring to light clusters of utility values
that correspond to groups of nodes with different delivery
capabilities. We also anticipate that such clusters could be
identified regardless of the method used for constructing the
utility, provided that the latter effectively captures a node’s
ability to deliver a message. After experimentally confirming
our intuition in real-life networks, we follow the strategy to
replicate a packet to nodes belonging to clusters of increasing
delivery capability. This is in contrast to the current approach
which is common in all schemes, i.e., to replicate a packet
to nodes with progressively increasing utility. Our Cluster-
based Replication (CbR) strategy can be used on top of the
most well-known dynamic replication schemes, such as CnR,
DF and COORD, and regardless of the chosen utility function.
The experimental evaluation of CbR in a diverse set of contact
traces from real-life opportunistic networks demonstrates that
it is capable of significantly reducing replication and the
related costs with negligible impact on the delivery efficiency.

In the following, we first review the related literature in
Section II. Then, in Section III, we discuss the key concepts
of our approach and experimentally validate the existence of
utility clusters in various real-life opportunistic networks. We
delineate CbR in Section IV and present an evaluation of its
performance in Section V. Finally, we summarize our findings
and discuss future research directions in Section VI.

II. BACKGROUND AND RELATED WORK

The routing protocols proposed for opportunistic networks
with human mobility can be broadly categorized in single-
copy and multi-copy ones. Multi-copy schemes are superior to
single-copy ones in terms of delivery efficiency because the
probability of finding the destination is higher when multiple
nodes carry the message. The trade-off is energy depletion and
memory starvation at nodes. Therefore, research efforts have
focused on reducing replicas without sacrificing the delivery
efficiency. One approach is to use a probabilistic scheme [5],
i.e., allow a node to probabilistically create replicas. Besides
the difficulty in setting up the suitable replication probability,
this approach is also prone to poor delivery efficiency. In
the deterministic side, there are two prominent approaches;
“Spray-based” or “Constrained replication” and “Dynamic
replication”. Both use the concept of utility Uv(d), a value that
captures the fitness of node v for delivering the message to its
destination d. There are various utility functions constructed
based on some feature of a node’s connectivity profile such
as the contact rate [4], the time elapsed between successive
contacts [7], the probability of node meetings [9], as well as
metrics based on the social characteristics of nodes [3], [12].
Note that typically a utility is destination dependent, however
there are also destination independent ones. Those capture a
node’s ability to act as a forwarder regardless of the actual
destination, i.e., Uv(d) = Uv,∀d. In the “Spray-based” class
of algorithms, the source determines the maximum number of
replicas L. Then, each node v with replicas selects which of
its contacts will receive some of them. The selection process
is either blind [6], i.e., every node is eligible for receiving
replicas, or examines the utility of each encountered node
u [7]. The selected node u will receive either half of v’s
replicas [6], [7] or a fraction that depends on Uv(d) and
Uu(d) [4], [3]. Spray-based schemes can control the trade-
off between delivery efficiency and the degree of replication
through L. Yet, there is an important downside; choosing the
optimal L is not trivial since this depends on the network.

The “Dynamic replication” strategy is more flexible since
there is no need to predetermine the number of replicas to be
created. Instead, every packet carrier v follows a utility-based
approach and dynamically creates a replica based on the utility
of the encountered node u. More specifically, v implements
a “Compare & Replicate” (CnR) approach [8], [1], [9], i.e.
forwards a copy of packet p to u when:

Uu(d)>Uv(d) + Uth (1)

where Uth is a protocol parameter used to secure that the
new carrier will contribute a minimum utility improvement.
There are also other, less popular, approaches that relax or
enforce (1) by co-evaluating how many replicas have been
created so far or whether Uu(d) exceeds a fixed threshold [9].
A point of criticism for this approach is that it frequently
favors over-replication [1]. And this is true regardless of the
utility choice although the latter impacts performance. To
tackle the problem, Delegation Forwarding (DF) [1] introduces
a replication strategy that exploits the history of a node’s

Multi-
copy

Routing
Strategies

Constrained
Replication

Spray & Wait Spray
& Focus

Epidemic Probabilistic

Dynamic
Replication

Compare
& Replicate

Delegation
Forwarding

Coordinated
Delegation
Forwarding

Fig. 1. Classification of multi-copy routing strategies for opportunistic
networks with human mobility

observations. In the case of a contact between v, that carries
a packet p destined to d, and u then p is replicated to u iff:

Uu(d) > τpv (=max
k∈Nv

{Uk(d)}) (2)

where Nv is the set of all nodes that v has met since the
reception of p and τpv is the delegation threshold that v knowns
for p, i.e., the highest utility recorded so far among the nodes
that received p. The idea here is clear; there is no point in
replicating a packet to u if another node with a higher utility
already has the packet. COORD [2] builds on the idea of DF.
It makes the observation that τpv captures only v’s perspective
of the highest utility among the packet carriers. Therefore,
enables carrier nodes to coordinate their thresholds which
results to significant performance improvements.

III. SEEING THE FOREST NOT JUST THE TREES

In this work, we focus on “dynamic” replication due to its
flexibility in accommodating networks with diverse character-
istics. In this class of algorithms, when a node v meets a node
u with utility Uu(d) the critical question that arises is:
Q1: Which values of Uu(d) should result in the decision to
replicate to u a packet p destined to d?
Clearly, all “dynamic” replication schemes answer this ques-
tion by using a simple comparative approach which mandates
that Uu(d) should be greater than either Uv(d) or τpv , i.e.,
v’s perception of the highest utility among packet carriers.
Despite the improvements introduced by DF and COORD, this
strategy is still prone to over-replication. The problem emerges
when Uu(d) is only slightly higher than the value that it is
compared to. In this case, u will receive a copy despite the
fact that its delivery capability is probably not significantly
better. Therefore, in this case, the decision to create a replica
is not profoundly the best one. This is a well-known issue and
the reason for including Uth in (1). Obviously, in this case
it is critical to define the optimal Uth, which is a daunting
challenge since this depends on the utility function. More
importantly, Uth also depends on the number and quality of
v’s contacts. For example, if all of v’s contacts have similar
utility values then perhaps it is better to consider a small Uth

to avoid under-replication. However, this is not necessary if
multiple contacts with diverse utility values exist.

In this work we take a different approach for answering
(Q1). We make the observation that v could benefit by “seeing
the big picture” and examine how Uu(d) compares to the
utility values of other nodes. To this end, our approach is to use
the distribution of utility values formed by v’s past contacts,
i.e., decide on the importance of Uu(d) based on the set of

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 10 20 30 40 50 60 70 80 90 100

U
ti
lit

y
 v

a
lu

e
 (

P
ro

p
h

e
t)

Number of observation (increasing time order)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

U
ti
lit

y
 v

a
lu

e
 (

L
T

S
)

Number of observation (increasing time order)

(b)

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100

U
ti
lit

y
 v

a
lu

e
 (

D
e
s
tE

n
c
)

Number of observation (increasing time order)

(c)
Fig. 2. Example of utility values observed by node v (= 23) for destination d (= 50), Replication method: “Compare & Replicate”, Trace: Reality [13],
Utility function: (a) Prophet [9], (b) LTS [7], and (c) DestEnc [1].

values {Uk(d)}k∈Cv
, where Cv is the set of v’s past contacts.

Naturally, the question that now emerges is:
Q2: How to use such a distribution of utility values to identify
important replication opportunities?
The answer highly depends on the characteristics of this
distribution which in turn depend on the properties of the
contacts between nodes. The analysis of contact traces from
real networks with human mobility has clearly demonstrated
that the nodes can be classified based on the contact properties
into distinct groups [10], [11], each one corresponding to
a different level of delivery capability. Recall that a utility
metric is constructed based on one or more features of a
node’s contacts. Thus, it is reasonable to expect that, for any
reasonably well-structured utility, the grouping of nodes will
show up as clusters of utility values. If this is the case then
our approach is to decide whether a contact u should receive
a packet copy based on the group that u belongs to, i.e., we
do not decide based on Uu(d) but rather we decide based on
the characteristics of the cluster that Uu(d) belongs to.

To validate our approach, we conducted a set of experiments
using CnR with different utility functions in various real-life
contact traces. More specifically, for every node v we recorded
the utilities reported by its contacts for a destination d, i.e.,
the set of values {Uk(d)}k∈Cv

. Then, we used the k-Means
clustering algorithm [14] on this set of one-dimensional data
in order to identify clusters of values, where the best number
of clusters was automatically selected using the Silhouette
criterion [15]. Fig. 2 illustrates a series of 100 values for the
destination with id 50 recorded by the node with id 23 in the
Reality trace [13]. The values are presented in the order they
were recorded and different colors (and point types) corre-
spond to different clusters. The three subfigures correspond to
three different utility functions, namely Prophet [9], LTS [7]
and DestEnc [4] (details about the simulation setup can be
found in Section V). Clusters are evident in all figures. We
recorded similar findings for utility values from various traces
and observer-destination pairs. Since a utility value captures
the node’s fitness for delivering a packet, we interpret such
clusters of utility values as groups of nodes with different
delivery capabilities. Following this interpretation, the key idea
in our approach is to distribute replicas to nodes that belong
to clusters with an increasing delivery capability. However,
efficiently implementing this strategy highly depends on the
utility of the observing node. Therefore, it is imperative to

polish the key idea to propose a sophisticated forwarding
strategy. We discuss this strategy in detail in Section IV-C.

IV. DYNAMIC REPLICATION WITH CLUSTERS OF UTILITY

We materialize our cluster-based replication strategy in the
form of a method called Cluster based Replication (CbR). It is
important to note that CbR should not be seen as a standalone
algorithm but rather as a mechanism that can be integrated into
existing replication algorithms, such as CnR, DF and COORD.
More specifically, we implement CbR on top of these strategies
to transform their decision making processes so that, instead of
just comparing two values, they take into account the clusters
that those values belong to. In the following we will illustrate
the synergy of CbR with the three strategies. This will result
in three CbR flavors, namely CbR-CnR, CbR-DF and CbR-
COORD. In the following we delineate CbR’s mechanisms.

A. Identifying Clusters of Utility values

Each node first goes through a training period during which
it collects a sufficient sample of the utility values reported
by its contacts in order to detect clusters. In other words,
a node v stores, for each destination d, a set of values
Sd
v={Uk(d)}k∈Cv

, where Cv is v’s history of contact nodes
with at least one packet to d. In the case of destination
independent metrics, i.e., when the reported utility does not
refer to a specific destination, v stores a single set of values
Sv = {Uk}k∈Cv

. Recall that in all utility-based algorithms,
including CnR, DF and COORD, the two nodes typically
exchange their utility values during a contact. Therefore,
the training process of CbR does not involve any additional
communication cost. We define the training period in terms
of the number of recorded values, i.e., the period ends when
|Sd

v |=NTR, where NTR is a predefined number. Note that,
in the most common case of a destination-dependent utility,
the node actually goes through a different training period for
every d. Observe that the distinct training periods may end at
different times. This happens because, during a contact, the
two nodes only exchange their utility values for every d for
which at least a packet exists in their buffers. Furthermore,
nodes usually report the utility values on a per packet rather
than on a per destination basis, i.e., the utility Uv(d) is reported
for every packet destined to d. Therefore, in order to avoid
importing noise to Sd

v , we record Uu(d) only once per contact.

During this training period, the node implements the deci-
sion making process of the underlying algorithm, i.e., either
CnR, DF or COORD. However, when the training period ends
the node implements the k-Means algorithm [14] to cluster
the recorded values. In fact, any clustering algorithm could be
used as part of CbR. The choice of k-Means is based on the
rather simple structure of the clusters observed in the recorded
data. This allows us to choose a lightweight algorithm such
as k-Means since the computational cost is still a point of
consideration in a mobile environment. An important issue
when using k-Means is how to estimate the number of clusters
k. Recall that, when validating our motivation with data from
real-life networks, we found out that every node observes a
different number of clusters. Therefore, it is not feasible to find
a k value that can be used globally. Instead, we follow a more
flexible approach where each node determines k based on
its own data. More specifically, each node executes k-Means
on its own data for several values of k, i.e., k∈ [2,Kmax].
Then, the node chooses as the best k the value for which
the corresponding clustering result provides the best score
according to the Silhouette criterion. The latter is well-known
for validating the quality of data clustering solutions [15].
Fig. 3 illustrates the pseudocode of the training process with
a destination dependent utility. The same code is also used for
destination independent utilities, i.e. when Uu(d) = Uu,∀ d
with the difference that the loop in line 1 is executed only
once.

B. Refreshing a node’s view

In opportunistic networks, especially in those with human
mobility, it is reasonable to expect that a node’s connectivity
profile, i.e., the average rate and duration of its contacts, may
evolve over time, e.g., because the node moves in various
locations during different hours of a day. Since a utility
function hinges on a node’s contact properties, one would
expect a similar evolution of the utility values observed by a
node. Such changes take place during relatively long periods
of time. Therefore, they can not be captured by the training
period which should be of relatively small duration to timely

Require: training(d), Sd
v ∀ d, NTR

1: for every reported Uu(d) do
2: if training(d) = true then
3: Sd

v = Sd
v ∪ Uu(d)

4: if |Sd
v | = NTP then

5: minscore←∞
6: for i = 2 to i = Kmax do
7: clusti ← k-Means(Sd

v , i)
8: if Sil score(clusti) < minscore then
9: minscore← Sil score(clusti)

10: Kopt ← i, clustopt ← clusti
11: end if
12: end for
13: training(d)← false
14: end if
15: else
16: Update with LV Q(Uu(d))
17: end if
18: end for

Fig. 3. The pseudocode of the training process (destination dependent utility
case) executed when v encounters u.

enable cluster based replication decisions. Thus, there is a
need for a process able to capture such changes and update
the clustering result. Our experimental results indicate that,
in most cases, the clusters of utility values do evolve over
time. However, the changes frequently involve the structure
and center of the clusters rather than their number. Based on
this observation, we decided to employ a simple, yet efficient,
low-complexity method for updating the clusters found during
the training period. This is the Learning Vector Quantization
(LVQ) clustering algorithm [16] which can be considered as an
on-line version of the k-Means algorithm. More specifically,
each time a node records a new utility value after the end of
the trainig period, LVQ decides on which cluster this value
belongs to and subsequently moves the center of this cluster
towards the new value. This update process runs in parallel
with the decision making one and does not interfere with it.

C. Making Replication Decisions

After completing the training period, a node is able to
use the identified clusters to make replication decisions. In a
nutshell, the basic idea of CbR dictates that a node v replicates
a packet to u provided that the utility of the latter belongs to a
cluster of higher utility values. To implement this simple rule, a
node should first rank the identified clusters. This can be easily
accomplished since the clustered data are one-dimensional.
Thus, we rank the clusters in decreasing order based on their
center value. Accordingly, each node z is assigned the rank
of the cluster on which its utility value belongs to. In the
following, we denote the rank of z with Rz . Based on the
ranking method, the previous forwarding rule now reads: “u
receives a packet replica if its utility belongs to a cluster
of a better rank”. Note that this rule is rather stringent and
in certain occasions may result in under-replication and thus
poor delivery rates. We have identified two occasions where
this may occur. The first is the case that the utility used for
decision making by the carrier node v (Uv(d) in CnR, τpv in
DF and COORD) belongs to the top level cluster of values.
In this case, the rule actually prohibits any replication in the
group of most capable nodes even if v is the source node.
The second case of potential under-replication occurs when
the utility used by v resides in a populous cluster of values
and the clusters with a better rank are sparsely populated. In
this case, the opportunities for replicating the packet to a better
ranked cluster are sparse therefore the most probable scenario
is that the packet replication will involve a substantial delay.
The best strategy for both the aforementioned cases is to relax
the requirement of replicating the packet to a better ranked
cluster by allowing replication to a node u with a utility in
the same cluster provided that u’s utility is higher than the
utility used by v (traditional decision making). According to
this strategy, when CbR is implemented on top of CnR, it
transform CnR’s replication requirement found in (1) to:

Ru<Rv or
(
Ru=Rv and p.rep=false andUu(d)>Uv(d)

)
(3)

where Rv and Ru are the ranks of the packet carrier v and
the encountered node u, p the packet and d its destination.

We mitigate the risk of under-replication by moving from the
basic criterion Ru < Rv to a relaxed one, i.e., Ru = Rv ,
if v has not yet replicated p. We distinguish non-replicated
packets from replicate ones using a single bit in the packet’s
header. As soon as p is forwarded, this bit is set to 1 and the
relaxation is canceled. Note that, in contrary to the case that
Ru <Rv , when Ru =Rv it is possible that Uu(d)< Uv(d).
The CnR rule (Uu(d)>Uv(d)) eliminates replication in such
cases. We follow a similar approach when integrating CbR
into DF and COORD. Recall that in both DF and COORD
the replication decision is made using (2), where τpv is v’s
perception of the highest utility among the carriers of p. The
two algorithms only differ in the way that τpv is updated. Since
the decision making criterion is common in DF and COORD,
the implementation of the CbR rule is also common, i.e.,:

Ru<Rt or
(
Ru=Rt andRt=Rv andUu(d)>τ

p
v

)
(4)

where Rt is the rank of the cluster that τpv belongs to. Here,
we follow a more efficient relaxation approach. We allow
replication when Ru =Rt provided that Rv =Rt. The latter
equality means that Uv(d) and τpv reside in the same cluster,
i.e., the packet carrier v and the carrier with the highest utility
have similar delivery capacity, thus the packet has not moved
to a better cluster. When this happens, τpv will be updated to a
new value so that Rt>Rv , which will deactivate the relaxation.
Again, when Ru=Rt the traditional rule (Uu(d)>τ

p
v) acts as a

safeguard. As a final note, all CbR flavors are also compatible
with destination independent utility functions.

V. EVALUATION

We evaluate the performance of all CbR flavors under
various opportunistic environments. To this end, we use the
Adyton [17] simulator. For the evaluation we use traces
that represent opportunistic networks of different scale. More
specifically, we used two conference traces, namely Info-
com’05 [18] and Sigcomm’09 [19], two traces from campuses,
the MIT Reality [13] and the Milano pmtr datasets [11], and
a city-level trace collected in Cambridge, UK, the Cambridge
upmc [20]. CbR is able to work with virtually any proposed
utility metric. Clearly, the utility choice impacts performance.
Thus, we use a collection of five well-known utilities, both
destination dependent (DD) and independent (DI) ones, to
assess the performance of CbR. More specifically, we use:
a) the DestEnc [1] utility that captures the total number of
contacts with a specific node and therefore is DD, b) its DI
version Enc [4] that captures the number of contacts with
all nodes, c) the LTS [7] DD utility which depends on the
time elapsed since the last contact with the destination, d) the
Prophet [9] utility which is also DD and captures the fitness of
a node to deliver a message both directly and indirectly, and
e) the SPM [12] DD utility that depends on the frequency,
the longevity and the regularity of past contacts with the
destination.

Regarding the clustering settings, the analysis of data from
real contact traces revealed that using a small value for Kmax

such as 4 is sufficient for capturing reasonable estimates of the

number of clusters. Furthermore, we used a training period of
50 samples, i.e., NTR=50. Finally, the LVQ learning rate was
set to 0.05, i.e., the center moves towards the newly added
value so that the distance is reduced by 5%.

In each experiment we use a traffic load of 1000 packets
generated uniformly in the interval during which both the
source and the destination are present in the network. To
eliminate statistical bias and monitor the network in its steady
state, we use a warm-up and a cool-down period during which
packets are not generated. The duration of both periods is 20%
of the total trace duration. We report results as average values
of 20 repetitions. In each repetition we randomly select the
source/destination pair and the generation time for each packet.

We test the performance of all three flavors of CbR in all
traces, using each time a different utility metric. To eliminate
other interfering factors, we assume an infinite buffer in each
node. We use the routing gain (RG), i.e., the percentage of
transmissions saved when using CbR, to capture the extend
at which CbR reduces the replicas and therefore the number
of transmissions. More specifically, we monitor the quantity
(1 − TCbR/T)%, where T is the number of transmissions
per delivered packet for the underlying algorithm, i.e., either
CnR, DF or COORD, and TCbR is the same number for its
CbR flavor. Fig 4 illustrates the routing gain provided by
CbR when used on top of CnR (fig. 4(a)), DF (fig. 4(b)) and
COORD (fig. 4(c)). In all cases there is a significant gain that,
depending on the baseline algorithm and the utility metric,
ranges from ∼ 5% to an impressive ∼ 60%. Reasonably, the
routing gain is smaller when CbR is integrated into DF and
COORD since those algorithms already significantly reduce
transmissions compared to CnR. Therefore there is a smaller
room for improvement. Still, CbR achieves gains that reach
up to∼40%−45%. What is of great importance is that CbR’s
routing gain comes at limited or virtually no delivery cost,
i.e., CbR clearly improves the delivery efficiency-cost trade-
off. The first value in Table I presents the normalized delivery
rate for all CbR flavors, i.e., the delivery rate of a CbR flavor
normalized to that of the underlying algorithm. We report
results for the two traces that posed the most serious challenge
to CbR in terms of delivery efficiency, namely Reality and
Cambridge. The performance of all CbR flavors is in most
cases within∼1% of the performance of the baseline algorithm
and in all cases within ∼3%. Besides being minimal, this
performance degradation can be justified if we bear in mind
that even random contacts help nodes communicate. However,
such random contacts are not predictable and the only way to
exploit them is to increase replication. Furthermore, our results

TABLE I
NORMALIZED DELIVERY RATE AND DELAY OF CNB FLAVORS

DestEnc Enc LTS PRoPHET SPM
MIT Reality trace

CnB-CnR 0.998-1.016 0.997-1.076 0.996-1.085 0.998-1.052 0.997-1.026
CnB-DF 0.997-1.004 0.994-1.045 0.996-1.007 0.995-1.028 0.998-1.008
CnB-COORD 0.998-1.017 0.999-1.036 0.996-1.015 0.995-1.034 0.998-1.008

Cambridge trace
CnB-CnR 0.997-1.000 0.967-0.983 0.990-1.003 0.979-0.996 0.982-0.993
CnB-DF 0.992-0.985 0.993-0.995 0.990-0.984 0.984-1.008 0.995-0.995
CnB-COORD 0.993-0.987 1.001-1.006 0.990-0.980 0.984-1.008 0.9950.995

 0

 10

 20

 30

 40

 50

 60

 70

Milano Reality Infocom05 Sigcomm09 Cambridge

R
ou

tin
g

G
ai

n
(%

)
DesEnc

Enc
LTS

Prophet
SPM

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Milano Reality Infocom05 Sigcomm09 Cambridge

R
ou

tin
g

G
ai

n
(%

)

DesEnc
Enc
LTS

Prophet
SPM

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Milano Reality Infocom05 Sigcomm09 Cambridge

R
ou

tin
g

G
ai

n
(%

)

DesEnc
Enc
LTS

Prophet
SPM

(c)
Fig. 4. Routing gain of the CbR approach in various traces and for various utility metrics: a) CbR-CnR, b) CbR-DF, and c) CbR-COORD

in a more realistic setting with limited buffer size (omitted for
reasons of brevity) show that when the node’s buffer size re-
duces this minimal degradation of delivery efficiency is almost
eliminated and in many cases turns into an improvement.

The reduced level of replication in CbR, as expected, also
interferes with the delivery delay. The second value in Table I
presents the normalized delay of CbR flavors in the Reality
and the Cambridge datasets. In the case of the Reality trace
there is a limited increase of delay. An easy way to explain this
observation is to visualize replication as a process that delivers
multiple copies to a destination through different paths. Re-
ducing replication is equivalent to pruning some paths. This
delays the packet delivery unless none of the pruned paths
is the shortest one, which is rather unlikely. To increase the
probability that the shortest path will survive pruning, one
should provide a high rank to the contacts comprising this
path. However, this is the responsibility of the utility metric
and not of CbR. Indeed, note that the delay increase is smaller
when the utility takes into account delay-related connectivity
aspects such as the frequency and the regularity of contacts
(e.g. SPM). In the Cambridge trace, the impact of replication
on the delay is limited. An apparent reason is that Cambridge
is a more dense trace with a higher contact rate, thus denying
replication to a contact results in a smaller delay increase.
Note that in some cases the delay of CbR in fact reduces.
This decrease is minimal and statistically insignificant. It is
attributed to the statistical bias due to the lower delivery rate.
This phenomenon is not evident in the Reality trace because
contacts are less frequent, thus reduced replication results in
more delay which cloaks that statistical bias.

VI. CONCLUSION

Dynamic replication schemes provide a flexible forwarding
solution for mobile opportunistic networks. Their disadvantage
is the tendency to over-replication. We tackle the problem by
using a novel approach. We cluster the nodes based on their
utility value. Then, instead of replicating a packet to a node
with a better utility value, we replicate the packet that belongs
to a cluster of better utility values. We first validated that utility
values form clusters and that these clusters can be identified
by a node using lightweight clustering algorithms. Then, we
delineated a forwarding policy that can be used to transform
the decision making process of traditional dynamic replication
schemes to one that relies on cluster-based decisions. We
experimentally demonstrated the significant benefits of cluster-
based replication. As a future work, we plan to investigate

alternative clustering approaches for updating a node’s view
about the clusters of utility values. Furthermore, we aim to
adapt the proposed method so that it can be integrated into
replication schemes that use two or more utility functions,
e.g., a destination dependent and an independent one.

REFERENCES

[1] V. Erramilli, M. Crovella, A. Chaintreau, and C. Diot, “Delegation
Forwarding,” in Proc. ACM MobiHoc, 2008, pp. 251–260.

[2] N. Papanikos and E. Papapetrou, “Coordinating Replication Decisions
in Multi-copy Routing for Opportunistic Networks,” in Proc. IEEE Int.
Conf. Wireless and Mobile Comput., Netw. and Commun. (WiMob),
2014, pp. 8–13.

[3] E. M. Daly and M. Haahr, “Social network analysis for information flow
in disconnected delay-tolerant MANETs,” IEEE Trans. Mobile Comput.,
vol. 8, no. 5, pp. 606–621, 2009.

[4] S. C. Nelson, M. Bakht, and R. Kravets, “Encounter-based routing in
DTNs,” in Proc. IEEE INFOCOM, 2009, pp. 846–854.

[5] X. Chen, J. Shen, T. Groves, and J. Wu, “Probability delegation
forwarding in delay tolerant networks,” in Proc. IEEE ICCCN, 2009.

[6] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient routing
in intermittently connected mobile networks: the multiple-copy case,”
IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 77–90, 2008.

[7] T. Spyropoulos, T. Turletti, and K. Obraczka, “Routing in delay-tolerant
networks comprising heterogeneous node populations,” IEEE Trans.
Mobile Comput., vol. 8, no. 8, pp. 1132–1147, 2009.

[8] W. Moreira, P. Mendes, and S. Sargento, “Opportunistic routing based
on daily routines,” in IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), June 2012.

[9] A. Lindgren, A. Doria, E. Davies, and S. Grasic, “Probabilistic Routing
Protocol for Intermittently Connected Networks,” RFC 6693, Aug. 2012.

[10] E. Yoneki, P. Hui, and J. Crowcroft, “Visualizing community detection
in opportunistic networks,” in Proc. of ACM CHANTS, 2007, pp. 93–96.

[11] S. Gaito, E. Pagani, and G. P. Rossi, “Strangers help friends to
communicate in opportunistic networks,” Computer Networks, vol. 55,
no. 2, pp. 374 – 385, 2011.

[12] E. Bulut and B. K. Szymanski, “Exploiting friendship relations for
efficient routing in mobile social networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 12, pp. 2254–2265, 2012.

[13] N. Eagle and A. S. Pentland, “CRAWDAD data set mit/reality (v. 2005-
07-01),” Downloaded from http://crawdad.org/mit/reality/, Jul. 2005.

[14] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[15] L. Kaufman and P. Rousseeuw, Finding Groups in Data: an introduction
to cluster analysis. Hoboken, NJ, USA: Wiley, 1990.

[16] T. Kohonen, “Learning vector quantization,” in The Handbook of Brain
Theory and Neural Networks, 1st ed., M. Arbib, Ed. MIT Press, 1995.

[17] N. Papanikos, D.-G. Akestoridis, and E. Papapetrou, “CRAWDAD
toolset tools/simulate/uoi/adyton (v. 2016-04-21),” Downloaded from
http://crawdad.org/tools/simulate/uoi/adyton/20160421, Apr. 2016.

[18] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau,
“CRAWDAD data set cambridge/haggle (v. 2006-01-31),” Downloaded
from http://crawdad.org/cambridge/haggle/, Jan. 2006.

[19] A.-K. Pietilainen, “CRAWDAD data set thlab/sigcomm2009 (v. 2012-
07-15),” Downloaded from http://crawdad.org/thlab/sigcomm2009/.

[20] J. Leguay, A. Lindgren, and T. Friedman, “CRAWDAD
data set upmc/content (v. 2006-11-17),” Downloaded from

http://crawdad.org/upmc/content/, Nov. 2006.

