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Abstract—The set cover problem has been extensively used in
broadcast algorithms to model the process of selecting the nodes
that should forward a message. Surprisingly, none of the research
efforts focuses on solving the set cover problem. Instead, virtually
every broadcast scheme uses the well known and generic purpose
Greedy Set Cover (GSC) algorithm to tackle the problem. We
focus on solving the set cover problem in the context of wireless
ad hoc networks and show that providing an efficient solution
has a significant performance impact on broadcast algorithms.

I. INTRODUCTION

A plethora of mechanisms in wireless ad hoc networks,
ranging from routing to resource discovery, utilize broadcast-
ing for collecting and/or disseminating network information.
An implementation of broadcasting that minimizes the number
of transmissions is of paramount importance due to the sparsity
of resources such as bandwidth, power, processing, etc [1].
The proposed algorithms follow two major approaches [2]. In
the first, each node uses a heuristic to decide when to refrain
from forwarding a message. A more elaborate approach is
to use a connected dominating set (CDS) for determining the
forwarders of a message. In most CDS-based algorithms, each
node decides which neighbors should forward a message by
modeling the selection process as a set cover problem [3]–[7],
which is known to be NP-hard [8]. However providing a good
approximate solution is essential for reducing the number of
transmissions. Surprisingly, almost every broadcast scheme re-
lies on the generic purpose Greedy Set Cover (GSC) algorithm
[8] to solve the problem, obviously due to the well-established
view that there is not enough room for improving GSC. The
only exception is MPR [5], in which GSC is enhanced with a
heuristic that is known to improve performance [9].

In this letter, we make the observation that providing a good
approximate solution to the set cover problem, in the context of
CDS-based broadcast algorithms for wireless ad hoc networks,
may result in significant performance gains. More specifically,
we propose a greedy algorithm that extends GSC as well
as the MPR heuristic by preprocessing the list of candidate
forwarders in order to narrow it down. The intuition is that
such a strategy will increase the efficiency of the choices made
by both algorithms. The proposed modification can be ported
to every CDS-based algorithm that uses GSC with or without
the MPR heuristic. We show that it can provide a significant
reduction of transmissions with a low computational cost.

In the following, in Section II, we provide some background
knowledge while in Section III, we discuss our motivation and
delineate the proposed algorithm. Its evaluation is presented
in Section IV and conclusions are drawn in Section V.

II. PRELIMINARIES

We first provide some background on broadcast algorithms
that utilize the set cover model. In the following, the network

is modeled as an undirected graph G(V,E), where V is the set
of network nodes and every edge (v,u)∈E indicates that node
u lies in v’s transmission range and vice versa. Furthermore,
N(v) denotes the neighborhood of v, i.e. the set of nodes that
lie within v’s range while N(N(v)) is the 2-hop neighborhood,
i.e. the set of nodes that lie within 2 hops from v.

A. The Set Cover Problem in Broadcasting

As discussed previously, in a plethora of broadcast algo-
rithms for wireless ad hoc networks, each node v calculates a
CDS for its 2-hop neighborhood by modeling the problem as
a set cover problem [8]. To understand this approach, note that
the CDS consists only of v’s direct neighbors since all strictly
2-hop neighbors, i.e. nodes in N(N(v))−N(v), are neighbors
of at least one node in N(v). Let:

• B(v) denote the set of nodes that are candidates for the
CDS, thus B(v)=N(v)

• U(v) denote the set of strictly 2-hop neighbors, i.e.
U(v) = N(N(v))−N(v)

Then, v should select as a CDS the minimum subset F (v) ⊆
B(v) such that every node in U(v) has at least one neighbor
in F (v). In other words, if every node in F (v) forwards
a message from v then all nodes in U(v) will receive that
message. Therefore, F (v) is called the forwarding set of v.
The problem of calculating F (v) can easily be modeled as a
set cover problem if B(v) is seen as a set of sets by replacing
each node w ∈ B(v) with the set:

C(w) = N(w) ∩ U(v) (1)
which is the part of N(w) that lies in U(v) (see fig. 1 where
dashed lines indicate C(w), ∀w ∈ B(v)). We say that:

Definition 1: A node w ∈ B(v) covers a node z ∈ U(v)
iff z ∈ C(w).

Definition 2: Node w is said to cover k nodes in U(v)
if |C(w)|=k.
It is clear that U(v) =

∪
∀w∈B(v) C(w). The solution to the

set cover problem is to define the minimum set F (v) ⊆ B(v)
such that:

U(v) =
∪

∀f∈F (v)

C(f) (2)

Finally, note that although the simplest approach in defin-
ing B(v) and U(v) is to set B(v) = N(v) and U(v) =
N(N(v))−N(v), there exist algorithms [3], [4], [6], [7] that
utilize knowledge about the nodes that have already received
a message in order to reduce B(v) and U(v).
B. Solving the Set Cover Problem

Minimizing |F (v)| is of paramount importance for mini-
mizing the number of transmissions in the network. However,
producing the minimum set cover, i.e. the minimum forward-
ing set, is known to be NP-hard [8]. In the context of broad-
casting, there exist two approaches for providing solutions
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Fig. 1. The set cover problem for a typical definition of B(v) and U(v).

that approximate the minimum sized forwarding set. The first
utilizes the well known greedy set cover (GSC) algorithm [8].
GSC uses a simple heuristic for electing the forwarding nodes.
More specifically, GSC elects from B(v) the node that covers
more nodes in U(v), i.e. it elects the node f for which |C(f)|
is maximum. When a node f is elected, the covered nodes,
i.e., the nodes in C(f), are removed from U(v). The process
repeats until no node is left in U(v). The second approach
utilizes the algorithm proposed in the context of MPR [5],
hereafter called MPR for simplicity. The MPR algorithm
extends GSC by introducing another heuristic in which the
algorithm first elects as forwarders the nodes that are unique
in covering a node in U(v), i.e. a node f ∈ B(v) is elected if
∃z ∈ U(v) : [z ∈ C(f)] ∧ [z /∈ C(w), ∀w ̸= f ∈ B(w)].

III. ELIMINATING FULLY COVERED NODES

It is clear that both heuristics that have been proposed so
far by GSC and MPR focus on identifying the best criterion
for selecting forwarders from the set of candidates B(v). The
motivation for this work has been the observation that the
performance of the aforementioned heuristics can be improved
if we narrow down the candidates. This can be done by
identifying and ruling out the nodes that should not be elected
as forwarders. To this end, we propose an algorithm that
extends the operation of MPR (recall that MPR implements
both aforementioned heuristics), by introducing a preprocess-
ing of B(v). We call the proposed algorithm greedy set cover-
eliminate fully covered nodes (GSC-EFCN). The observation
made by GSC-EFCN (hereafter called EFCN) is that a node
f1∈B(v) should not be elected as a forwarder if there exists
another node f2∈B(v) such that C(f1)⊆ C(f2) (recall that
C(i)=N(i)∩U(v) is the set of nodes in U(v) which node i
covers). The rationale is that f2 is a more suitable candidate
since it can forward the message to more nodes lying in U(v),
i.e. |C(f2|≥|C(f1)|. We say that:

Definition 3: A node f2 ∈ B(v) fully covers node f1 ∈
B(v) iff C(f1) ⊆ C(f2).
Correspondingly, we say that a node f1 is fully covered if there
exists at least one node f2 that fully covers f1.

The pseudocode of EFCN is illustrated in fig. 2. In the first
phase (lines 3-7) all fully covered nodes are eliminated, i.e.:
First phase: Every node f1 ∈ B(v) for which:

∃f2 ∈ B(v) : C(f1) ⊆ C(f2) (3)
is identified and eliminated from B(v). In the case that
∃ f1, f2 ∈ B(v) :C(f1)=C(f2) (nodes f1 and f2 are mutually
fully covered), then only one node is maintained in B(v). The
node id may be used to break the tie. After the elimination of
fully covered nodes, EFCN continues with the second phase
where it focuses on candidate forwarders that are unique in
covering a node in U(v).

Second phase (lines 8-13): Each node f ∈ B(v) for which:
∃z ∈ U(v) : z ∈ C(f) and z /∈ C(w), ∀w ̸= f ∈ B(v) (4)

is identified and elected immediately as a forwarding node.
Then U(v) is updated by removing all the covered nodes
and the process is repeated until no node can be elected as
forwarder. Note that this is the heuristic proposed by the MPR
algorithm [5]. Its rationale is that a node, which is the only one
to cover another node in U(v), will, in any case, eventually
be elected. Therefore, electing such nodes first reduces U(v),
which may potentially lead to the election of less forwarders
[9]. After completing the first two steps, EFCN executes the
steps defined by GSC (lines 14-19). The algorithm terminates
when the set U(v) becomes empty. One would expect that
the first step of EFCN is trivial since the basic operation of
GSC would naturally lead to the elimination of fully covered
nodes. However, we make the observation that eliminating
fully covered nodes in advance, increases the probability that
the heuristic of the second step will be effective in identifying
forwarders, thus minimizing the size of the forwarding set. To
illustrate this, let us consider the example depicted in fig. 3.
When GSC is used, each one of nodes 2, 3 and 4 may be
elected first since they all cover the same number of nodes
in U(k). Suppose that node 3 is elected first, then GSC will
elect either node 2 and 4 or node 1 and 5. The result is a
forwarding set of three nodes. In the case that MPR is used,
the result will be the same since there is no node in U(k)
that is uniquely covered by a node in B(k). On the contrary,
EFCN in its first step will eliminate nodes 1 and 5 since they
are fully covered by nodes 2 and 4 respectively. In the second
step, nodes 2 and 4 will be elected since they are the only ones
to cover some nodes in U(k). At this point the algorithm will
terminate since all the nodes in U(k) are covered. It is clear
from the previous example that eliminating the fully covered
nodes paves the way for the second step of the algorithm,
therefore resulting in smaller forwarding sets.

A. Recursive EFCN
As previously discussed, the rationale behind the elimina-

tion of fully covered nodes from B(v) is that this procedure
increases the probability that the heuristic of the second phase
will result in identifying a forwarder. However, note that in the
latter case the set U(v) is modified. Since this has an impact on
C(w),∀w∈B(v), it is possible that some of the nodes in B(v)

1: procedure EFCN((B(v), U(v)))
2: Fw(v)← ∅
3: for all f1 ∈ B(v) do
4: if ∃f2 : C(f1) ⊆ C(f2) then
5: B(v)← B(v)− f1
6: end if
7: end for
8: for all z ∈ U(v) do
9: if ∃f∈B(v) : [(z∈C(f))∧(z /∈C(w), ∀w ̸=f ∈B(v))] then

10: U(v)← U(v)−N(f)
11: Fw(v)← Fw(v) ∪ f
12: end if
13: end for
14: while U(v) ̸= ∅ do
15: f = argmax

w∈B(v)
{|N(w) ∩ U(v)|}

16: U(v)← U(v)−N(f)
17: Fw(v)← Fw(v) ∪ f
18: end while
19: return Fw(v)
20: end procedure

Fig. 2. The pseudocode of the EFCN algorithm
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Fig. 3. Example of forwarding set construction for EFCN, GSC and MPR.

are now fully covered by other nodes. Therefore, in order to
maximize the algorithm’s performance, we propose a modified
version of EFCN in which the first two steps are repeated until
no forwarder is elected by the heuristic implemented in the
second phase of the algorithm since in that case U(v) is not
modified. We call this algorithm Recursive EFCN (R-EFCN).

B. Complexity Considerations
It is clear that eliminating fully covered nodes from B(v)

comes at a processing cost. Note that identifying fully covered
nodes in B(v) is equivalent to the problem of finding maximal
sets among C(fi), ∀fi ∈ B(v) (a set is maximal if it is
not contained in any other set). Such an algorithm can be
implemented in time O(m·

∑
∀f∈B(v) |C(f)|) [10], where

m ≤ |B(v)| is the number of the maximal sets. It is also
interesting that eliminating the fully covered nodes from B(v)
has a positive impact on the complexity of the following steps
of the algorithm. To explain this, keep in mind that the time
complexity of both the second phase of the algorithm as well
as the GSC part depends on |B(v)|. However, after the first
phase, the size of B(v) is only m. Finally, to reduce the time
complexity, Bloom filters [11] may be used for representing
sets. The tradeoff is that the result of the subset and the set
equality operations depend on the false positive rate (P

f
) of

the filter. However, a negligible P
f

is possible by appropriately
selecting the size of the filter and the number of hash functions
[11]. In this work, we do not consider the use of Bloom filters.

The processing introduced by EFCN can also be justified
if we keep in mind that, in the context of wireless ad hoc
networks, bandwidth is the resource with the most strin-
gent limitations mostly due to the contention-based nature
of access protocols. On the other hand, the constraints on
processing power are less severe since there exist powerful
and efficient mobile processors [12]. Moreover, reducing the
number of transmissions alleviates the processing related to the
transmission and reception of packets, e.g. transfer a packet
to/from the wireless interface, read packet, etc. Regarding
power consumption, researchers have provided evidence [13]
proving that the energy consumption in a wireless interface,
either for transmitting, receiving or even discarding packets,
is in the order of tens of µW . At the same time, state of the
art mobile processors need as low as 0.625 nW /cycle [12].

IV. SIMULATION FRAMEWORK & RESULTS

To assess the performance of EFCN, we compare it with
GSC and MPR. To this purpose, we implemented all three al-
gorithms in the context of two well known broadcast schemes
that use the set cover problem to model the selection of
forwarders. More specifically, we implemented the DP [3]
and TDP [4] algorithms from the dominant pruning class

of algorithms. In dominant pruning, a node determines the
forwarding set and appends it to the packet. Then, each node in
the forwarding set repeats the process unless a termination cri-
terion is met. We implemented the modified relayed/unrelayed
termination criterion [14] for both algorithms since it results
in the best performance. The difference between DP and TDP
is that in DP U(v)=N(N(v))−N(u)−N(v), where u is the
previous hop node, while in TDP U(v)=N(N(v))−N(N(u)).
In both algorithms, B(v)=N(v)−N(u). In the following, we
will use a notation of the form X(Y), where X indicates the
algorithm used for selecting the forwarding set and Y indicates
the broadcast algorithm, e.g. EFCN(DP) means that EFCN is
used to construct the forwarding set while DP is the broadcast
algorithm. The simulation study has been carried out with ns2
[15]. The simulation model consists of N nodes distributed
in a square area AxA, where A=kR, k∈[2, 8] and R is the
nodes’ transmission range. Since the objective is to reduce
transmissions, we introduce a metric called forward gain (FG):

FG
EFCN

= 1− fn
EFCN

/fn
GSC

(5)
where fn

EFCN
is the number of transmissions when EFCN

is used while fnGSC is the same quantity for GSC. Clearly,
FG

EFCN
captures the improvement achieved by EFCN com-

pared to GSC. Similarly, we define FGMPR for the MPR
algorithm. Furthermore, we adopt the methodology in [2] and
do not consider transmission failures in order to rule out
their impact on FG and capture the true performance of each
algorithm. For the same reason, we do not consider mobility in
the first two experiments. Instead, we determined the positions
of nodes using the distribution that is produced when nodes
move according to the Random Waypoint algorithm [16]. In
the following, we will use RW to denote this distribution. We
also report results obtained using a uniform distribution of
nodes. In each experiment, we considered 500 trials. In each
trial, we produce a different deployment of nodes, according
to the aforementioned distributions. Then, a node is randomly
selected as the source node and broadcasts a single packet. In
the first experiment, we compare the three algorithms for net-
works of different size. More specifically, we vary the number
of nodes (N ∈ [100, 250, 500, 750, 1000]). Two different sizes
of the square area are used, namely k=3 (i.e. each side of the
square area is three times the transmission range) and k=5.
The latter value has been chosen in order to simulate a low
density network but without partitions even when N=100. On
the other hand, k=3 corresponds to a relatively dense network
with a network diameter more than one hop. Fig. 4(a) and
4(b) illustrate the forward gain with respect to the network
size for k=3 and k=5, respectively. EFCN effectively reduces
transmissions and achieves a forward gain of up to ∼ 13%
when k=3 and ∼9% for k=5. Note also that the improvement
is evident for both DP and TDP, which proves the generality
of EFCN. As expected, the improvement is greater when the
network size increases. On the other hand, MPR only manages
an improvement of only ∼ 5% in the best case. This is a
confirmation of our intuition that the elimination of fully
covered nodes from B(v) increases the effectiveness of the
MPR heuristic. This is also confirmed by the recursive version
of EFCN which further increases the gain to ∼16% for k=3
and ∼11% for k=5. In the second experiment, we vary the
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Fig. 4. Forward gain (for RW node distribution) versus: a) number of nodes for k=3, b)number of nodes for k=5, and c) region size for N=500.

TABLE I
DELIVERY RATE (%) (k=5, N=100, NODE DIST.:RW)

Max speed DP TDP
(m/sec) GSC EFCN REFCN MPR GSC EFCN REFCN MPR

1 99.54 99.53 99.52 99.55 99.53 99.50 99.50 99.51
5 99.44 99.39 99.40 99.43 99.37 99.25 99.25 99.35
10 99.27 99.16 99.14 99.23 98.98 98.83 98.81 98.95
15 99.00 98.95 98.95 98.96 98.56 98.41 98.36 98.43
20 98.80 98.67 98.68 98.72 98.21 97.81 97.77 98.08

size of the square area (k∈ [2, 8]) while N=500. The results
(fig. 4(c)) confirm the previous findings. It is worth noting
that the gain is smaller when the network density is small.
This is reasonable since in that case each node has a small
number of neighbors and almost every neighbor is elected as
a forwarder due to the sparse connectivity. As a result, there is
a little space for improvement. On the contrary, on high density
networks, where reducing the number of transmissions is more
critical, EFCN works better. Qualitative similar results are
obtained when the aforementioned experiments are repeated
with a uniform distribution of nodes. For example, the forward
gain for EFCN(DP)[REFCN(DP)] ranges from 4.46[4.55]%
to 11.96[12.09]% for k ∈ [2, 8] and N = 500, while for
EFCN(TDP)[REFCN(TDP)] it ranges between 3.52[3.57]%
and 10.30[11.88]%. Another important aspect of the presented
results is related to the average energy consumed per node.
Recall, that according to the discussion in Section III-B, en-
ergy consumption is dominated by the number of packet trans-
missions and receptions. Both EFCN and REFCN, besides
the reduction of transmissions, manage a similar performance
for packet receptions. For example, EFCN(DP)[REFCN(DP)]
reduces packet receptions, with respect to GSC, by up to
13.2%[16.21%] when k= 3 and N ∈ [100, 1000], while the
reduction is up to 7.69%[9.85%] when k=5 and N∈[100, 1000]
and up to 10.34%[10.65%] when N=500 and k∈[2, 8]. As a
result, we expect an analogous performance as far as energy
consumption is concerned.

Finally, we evaluate the performance of all algorithms under
various mobility levels for k=5 and N=100. More specifically,
nodes move according to the random waypoint algorithm with
a randomly selected speed in the range (0,max speed], where
max speed∈ [1, 20] m/sec. Hello messages with a period
of 1 sec are used for collecting neighborhood information.
The values of k and N represent a scenario with the lowest
density but without partitions. In this way, we minimize packet
redundancy therefore we capture the highest possible impact of
mobility. Note that, although the algorithms that solve the set
cover problem are not responsible for mitigating the impact
of mobility, such an evaluation is useful for quantitatively
identifying the impact on the delivery rate and fine tuning the

underlying broadcast algorithm. Table I presents the delivery
rate for all algorithms. It is clear that, when EFCN and REFCN
are used, the reduction of the delivery rate compared to GSC
is minimal even in high mobility (0.45% in the worst case).
At the same time, the forward gain is very close to the values
recorded when mobility is not present (a small reduction of
0.36% (0.74%) for EFCN (REFCN) in the worst case).

V. CONCLUSIONS
In this letter we tackled the problem of selecting the

forwarding set in the context of broadcast algorithms that
utilize the set cover model. We proposed a low cost extension
to the well known GSC algorithm, which can be ported to all
broadcast algorithms that use GSC, and proved that a signif-
icant reduction of the transmissions is possible, especially in
networks of high density.
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