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Abstract

Dimitrios-Georgios Akestoridis.

Bachelor of Science, Department of Computer Science and Engineering, University of

Ioannina, October 2013.

Congestion Control with Adjustable Fairness in Opportunistic Networks.

Advisor: Assistant Professor Evangelos Papapetrou.

In Opportunistic Networks, where the topology is stochastic and unknown, the nodes

have to seize the opportunities of forwarding data to other nodes, in order to deliver

them to their destinations successfully. For this reason, the routing protocols that have

been proposed for these networks use various techniques to determine the suitable data

carriers. However, it has been observed that the performance of these networks depends

heavily on a small subset of important nodes, which results in an unbalanced traffic load

distribution. These nodes are usually under congestion, which leads to packet drops due

to the storage constraints.

In this thesis we study the problem of congestion control in Opportunistic Networks

and we propose a new congestion control mechanism with adjustable fairness, which

provides a trade-off between efficiency and overhead. The proposed mechanism achieves

high delivery ratio and low delay, without excessive use of the most important nodes, by

taking into account the destination of each message and the saturation state of each node.

Finally, we show that we can significantly improve the performance of the network with

a slight distortion of fairness.

Keywords: Congestion Control, Fairness, Routing, Opportunistic Networks, Delay-

Tolerant Networks, Intermittently Connected Networks.
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Εκτεταμένη Περίληψη

Δημήτριος-Γεώργιος Ακεστορίδης του Δημητρίου και της Ελευθερίας.

Πτυχίο, Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής, Πανεπιστήμιο

Ιωαννίνων, Οκτώβριος 2013.

΄Ελεγχος Συμφόρησης με Ρυθμιζόμενη Δικαιοσύνη σε Οπορτουνιστικά Δίκτυα.

Επιβλέπων: Επίκουρος Καθηγητής Ευάγγελος Παπαπέτρου.

Τα πρώτα Ασύρματα Δίκτυα Υπολογιστών υλοποιήθηκαν τη δεκαετία του 1970, ενώ

τα πρώτα προϊόντα Ασύρματων Τοπικών Δικτύων έγιναν διαθέσιμα στην αγορά στις αρχές

της δεκαετίας του 1990. Ωστόσο, η απουσία ενός κοινού προτύπου είχε ως αποτέλεσμα τα

περισσότερα από αυτά τα προϊόντα να είναι σπάνια συμβατά μεταξύ τους. Η πρώτη έκδοση

του προτύπου IEEE 802.11 προτάθηκε το 1997 ορίζοντας δύο βασικούς τρόπους λειτουργίας,

τη λειτουργία υποδομής όπου οι χρήστες επικοινωνούν μέσω ασύρματων σημείων πρόσβασης

και την κατά περίπτωση λειτουργία όπου οι χρήστες επικοινωνούν απευθείας μεταξύ τους.

Τα Κινητά Κατά Περίπτωση Δίκτυα επεκτείνουν την κατά περίπτωση λειτουργία, παρέχοντας

τη δυνατότητα επικοινωνίας πολλών αλμάτων, καθώς ο κάθε χρήστης μπορεί να λειτουργήσει

ως δρομολογητής δεδομένων.

Για την επιτυχή παράδοση των δεδομένων στα Κινητά Κατά Περίπτωση Δίκτυα είναι

απαραίτητη η ύπαρξη συνεχούς συνδεσιμότητας, η οποία ωστόσο μπορεί να μην υφίσταται

σε ορισμένες περιπτώσεις. Στα Δίκτυα Διακοπτόμενης Συνδεσιμότητας δεν υπάρχει κα-

μία εγγύηση ότι ένα πλήρως συνδεδεμένο μονοπάτι μεταξύ οποιουδήποτε ζεύγους χρηστών

υφίσταται σε οποιαδήποτε χρονική στιγμή. Εφαρμογές αυτών των δικτύων αποτελούν τα

Δίκτυα Ανεκτικά σε Καθυστέρηση, τα οποία μπορούν να ανεχθούν καθυστερήσεις μεγάλης

χρονικής διάρκειας. Προκειμένου να αντιμετωπιστεί το πρόβλημα της συνδεσιμότητας, οι

χρήστες πρέπει να είναι σε θέση να κρατήσουν αποθηκευμένα τα δεδομένα που λαμβάνουν για

μεγάλα χρονικά διαστήματα, έως ότου βρεθεί ο κατάλληλος χρήστης για να τα προωθήσουν.
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Επιπλέον, τα Δίκτυα Διακοπτόμενης Συνδεσιμότητας μπορούν να κατηγοριοποιηθούν με

βάση τη γνώση της τοπολογίας του δικτύου.

Στα Οπορτουνιστικά Δίκτυα, όπου η τοπολογία είναι στοχαστική και άγνωστη, οι κόμβοι

πρέπει να αδράξουν τις ευκαιρίες προώθησης δεδομένων σε άλλους κόμβους, προκειμένου

να τα παραδώσουν στους προορισμούς τους επιτυχώς. Για αυτόν τον λόγο, τα πρωτόκολ-

λα δρομολόγησης που έχουν προταθεί για αυτά τα δίκτυα χρησιμοποιούν διάφορες τεχνικές

για να καθορίσουν τους κατάλληλους μεταφορείς δεδομένων. Ωστόσο, έχει παρατηρηθεί

ότι η απόδοση αυτών των δικτύων εξαρτάται σε μεγάλο βαθμό από ένα μικρό υποσύνολο

σημαντικών κόμβων, το οποίο έχει ως αποτέλεσμα μία μη ισορροπημένη κατανομή του κυ-

κλοφοριακού φόρτου. Αυτοί οι κόμβοι είναι συνήθως υπό συμφόρηση, η οποία οδηγεί σε

απώλειες πακέτων λόγω των αποθηκευτικών περιορισμών.

Στην παρούσα εργασία μελετάμε το πρόβλημα του ελέγχου της συμφόρησης σε Οπορτου-

νιστικά Δίκτυα και προτείνουμε έναν νέο μηχανισμό ελέγχου συμφόρησης με ρυθμιζόμενη

δικαιοσύνη, ο οποίος παρέχει τη δυνατότητα συμβιβασμού μεταξύ αποδοτικότητας και επι-

βάρυνσης. Ο προτεινόμενος μηχανισμός επιτυγχάνει υψηλή αναλογία παράδοσης και χαμηλή

καθυστέρηση, χωρίς υπερβολική χρήση των πιο σημαντικών κόμβων, λαμβάνοντας υπόψη

τον προορισμό του κάθε μηνύματος και την κατάσταση κορεσμού του κάθε κόμβου. Τέλος,

δείχνουμε ότι μπορούμε να βελτιώσουμε σημαντικά την απόδοση του δικτύου με μία μικρή

διαστρέβλωση της δικαιοσύνης.

Λέξεις Κλειδιά: ΄Ελεγχος Συμφόρησης, Δικαιοσύνη, Δρομολόγηση, Οπορτουνιστικά

Δίκτυα, Δίκτυα Ανεκτικά σε Καθυστέρηση, Δίκτυα Διακοπτόμενης Συνδεσιμότητας.
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Chapter 1

Introduction

1.1 Opportunistic Networking

The world’s first wireless network was the ALOHANET, which was developed at the Uni-

versity of Hawaii and became operational in June 1971 [1, 2]. A temporary experimental

license was obtained in order to use two 100 kHz bandwidth channels at 407.350 MHz and

413.475 MHz, since frequency assignments for commercial applications were not available

at that time. In May 1985, the Federal Communications Commission (FCC) established

a set of rules for governing unlicensed access to the 902-928 MHz, 2400-2483.5 MHz,

and 5725-5875 MHz radio bands, also known as Industrial, Scientific, and Medical (ISM)

bands.

The first workshop on Wireless Local Area Networks (WLANs) was organized by the

Institute of Electrical and Electronic Engineers (IEEE) in May 1991. At that time, the

first WLAN products had just become available in the market, but without a common

wireless standard they were rarely compatible. The first version of the IEEE 802.11

standard was released in 1997 [3] and since then several amendments have followed [4].

In 1999, a group of major companies formed the Wi-Fi Alliance, originally known as the

Wireless Ethernet Compatibility Alliance (WECA), in order to promote WLAN products

based on the IEEE 802.11 standard and to certify their interoperability. Nowadays,

WLANs are widely used to extend existing wired networks in homes and offices, as well

as to provide wireless Internet access in public places such as airports, restaurants, hotels,

hospitals, and libraries.
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The IEEE 802.11 standard defines two basic modes of operation, the infrastructure

mode and the ad hoc mode. In infrastructure mode, mobile units communicate through

access points that serve as gateways to an infrastructure network. Each access point,

together with all the mobile units associated with it, form a basic service set (BSS). An

extended service set (ESS) is a set of BSSs, connected by a distribution system. In ad

hoc mode, mobile units communicate directly with each other, forming an independent

basic service set (IBSS). Infrastructure mode may provide more stability, however the

mobility is limited within the communication range of the access points. On the other

hand, ad hoc mode offers greater mobility and flexibility, but most importantly it can

achieve communication in circumstances that would not be possible with infrastructure

mode, since it does not rely on any infrastructure.

The concept of Mobile Ad hoc Networks (MANETs) was introduced by the Defense

Advanced Research Projects Agency (DARPA) with the Packet Radio Network (PRNet)

project in 1973 [5, 6]. MANETs extend the ad hoc mode to provide multi-hop communi-

cation, which means that a mobile unit may serve as a router for others. This approach

enhances the communication capabilities of the network, because a pair of mobile units

can communicate even if they will never be within each other’s communication range.

The communication links between the mobile units of the network may vary over time

due to their mobility, which means that the topology of the network is constantly chang-

ing. There are plenty of routing protocols that cope with the dynamic topology of these

networks, such as DSDV [7], DSR [8], AODV [9], LAR [10], ZHLS [11], OLSR [12], and

others [13, 14]. MANETs can be used for emergency networking in case of natural or

man-made disasters, data collection with sensors, military operations, commercial and

educational applications, coverage extension, and many more [15].

All the routing protocols that have been proposed for MANETs assume that there is

always a contemporaneous end-to-end path for each pair of mobile units in the network.

Unfortunately, this assumption may not be true in networks with frequent and long-

lasting disconnections. In Intermittently Connected Networks (ICNs), also known as

Challenged Networks, there is no guarantee that a fully connected path between any

pair of mobile units exists at any time. Delay-Tolerant Networks (DTNs), also known

as Disruption-Tolerant Networks, are applications in ICNs that tolerate delays beyond

conventional forwarding [16]. The Delay-Tolerant Networking Research Group (DTNRG)

2
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Figure 1.1: An example of data delivery in an Intermittently Connected Network

of the Internet Research Task Force (IRTF) has proposed a DTN architecture, which

is based on an abstraction of message switching [17]. The provision of connectivity to

remote regions [18, 19, 20], vehicular networks [21, 22, 23], wildlife tracking [24, 25],

sparse sensor networks [26], military networks [27], and the Interplanetary Internet [28]

are a few examples of such networks.

The continuous disconnections may complicate the task of data delivery in an ICN, but

this problem can be reduced by taking advantage of the mobility of the nodes [29]. This

approach led to the use of the store-carry-and-forward paradigm, in which a node receives

and carries data from other nodes until a more suitable carrier is available. The routing

protocols that have been proposed for these networks use various techniques to tackle

this problem by exploiting the available information in the network.1 Their purpose is to

determine if an encountered node is suitable to carry a message, so that it will eventually

reach its destination.

An illustration of the store-carry-and-forward paradigm is shown in Figure 1.1, as a

series of snapshots from an ICN. In the first snapshot, node S generates some data that

it wants to send to node D. However, since there is no one in its communication range,

node S carries that data and waits for an opportunity to arise. In the second snapshot,

node R1 and node R2 are within the communication range of node S. Then, based on the

underlying routing algorithm, node S decides to forward the data destined for node D

to node R2. Similarly in the third snapshot, node R2 forwards the data to node R3, and

finally in the fourth snapshot, node R3 delivers the data generated from node S to node

D. Although there was no contemporaneous path from node S to node D at any time,

the data were successfully delivered by using the store-carry-and-forward paradigm.
1Some of the most prominent routing protocols are described in Section 2.1.
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Furthermore, ICNs can be classified based on the knowledge of the topology. If the

topology is deterministic and known, or at least predictable, the required forwards can be

scheduled ahead of time [30]. In Opportunistic Networks the topology is stochastic and

unknown, which leads nodes to seize the opportunities of forwarding data to other nodes.

Since human mobility is often unpredictable, an Opportunistic Network can be formed

by people carrying mobile devices that can communicate with each other. Hence, social

network analysis techniques could be used in order to distribute data, since people tend

to form communities. The Haggle project is mainly focused on prototyping this type of

networks, which they refer to as Pocket Switched Networks (PSNs) [31].

1.2 Scope of the Thesis

The majority of the routing protocols that have been proposed for Opportunistic Networks

uses some utility functions to determine how capable each node is to deliver a message to

its destination. The nodes rely on these utility functions in order to route their messages.

However, the fact that some nodes are more important than others, which corresponds

to higher utility values, results to an unbalanced traffic load distribution that intensifies

when the utility functions are destination-independent [32]. Even worse, the performance

of the network degrades significantly due to the limited resources that cause congestion

in the most important nodes. The main contributions of this thesis are the following:

1. We propose a congestion control mechanism that handles each message differently,

based on the utility values and the saturation state of the relay nodes, which can be

implemented in any utility-based routing protocol. Moreover, our congestion control

mechanism provides a trade-off between efficiency and overhead by adjusting the

fairness in the network.

2. We show that a significant performance gain can be obtained with a limited cutback

in fairness. Thereby, we take advantage of the most important nodes in the network

without overusing them, while maintaining a relatively fair resource allocation. We

evaluated several congestion control mechanisms on three different real-world data

sets, from which similar conclusions were drawn.

4



1.3 Overview of the Thesis

The rest of the thesis is organized as follows. Chapter 2 reviews state-of-the-art routing

protocols that have been proposed for Opportunistic Networks and strategies to cope with

the resource constraints. Chapter 3 demonstrates the need for adjustable fairness in these

networks and describes in detail the proposed congestion control mechanism. Chapter 4

describes the simulation environment and the evaluation metrics that were used, followed

by the results of the simulations. Chapter 5 summarizes our findings and provides a list

of possible extensions of this work. Finally, detailed descriptions of the two main routing

protocols that were used in this thesis are given in Appendices A and B respectively,

while a further experimental analysis of our congestion control mechanism can be found

in Appendix C.

5



Chapter 2

Background and Related Work

2.1 Routing in Opportunistic Networks

Each routing protocol that has been proposed for Opportunistic Networks can be classified

as either single-copy [33] or multi-copy [34], regardless of the heuristic methods that it may

use. In single-copy routing protocols, each message is unique in the network. Therefore,

when a message is forwarded to a new carrier, the previous one deletes it. On the other

hand, in multi-copy routing protocols, each message may have multiple copies carried

by multiple nodes in the network. However, the process of replication can be defined

variously for each routing protocol.

Figure 2.1 depicts the differences in the process of delivering a message with a single-

copy routing protocol and a multi-copy routing protocol. It is clear that the single-

copy approach performs fewer transmissions and consumes less storage resources than

the multi-copy approach. However, since the multi-copy approach spreads each message

(a) (b)

Figure 2.1: An illustration of (a) Single-Copy and (b) Multi-Copy Routing
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across multiple nodes, it has a higher probability of successful delivery and it may also

be able to deliver the message faster than the single-copy approach. Eventually, the

choice between single-copy and multi-copy routing is a trade-off between performance

and overhead.

Flooding-based routing protocols are by definition multi-copy routing protocols, since

each node forwards a copy of each message that it holds to all or part of the nodes that

it encounters. Utility-based routing protocols use some utility functions to make their

routing decisions, which means that they can operate as either single-copy or multi-copy

routing protocols. These utility functions can be destination-dependent, destination-

independent, or a combination of both. However, there are several types of utility-based

routing protocols that differ on the techniques that they use. History-based routing

protocols use the history of encounters to estimate their likelihood to be repeated. Social-

based routing protocols attempt to predict future interactions by exploiting the social

behavior of the nodes.

An outline of the most notable routing protocols for each of these categories is given

below. It should be noted that there are several other categories of routing protocols

for Opportunistic Networks that rely on different techniques. For instance, some routing

protocols exploit temporary network partitions to use MANET techniques [35, 36], while

others may even use infrastructure devices or mobility characteristics in order to enhance

the performance of the network [37, 38].

2.1.1 Flooding-Based Routing Protocols

One of the earliest approaches to cope with the intermittent connectivity of these networks

is Epidemic Routing [39]. Each node maintains a summary vector that indicates the

messages that it carries. When two nodes meet, they exchange their summary vectors

and each node requests copies of the unknown messages that the other node carries. In

scenarios without tight resource constraints, Epidemic Routing is able to deliver most of

the messages, by spreading them to all the nodes in the network and eventually reaching

their destinations. However, Epidemic Routing not only has high overhead due to the

many unnecessary transmissions, but the performance may also significantly degrade if

the resources are limited [40, 41].

7



Several routing protocols have been proposed that aim to control the flooding of mes-

sages in the network [42]. The Spray and Wait routing protocol [43] reduces the overhead

of flooding by bounding the number of copies each message has in the network. The rout-

ing process is divided into two phases, the spray phase and the wait phase. In the spray

phase, a fixed number of copies of the original message is disseminated in the network. In

the wait phase, each node that carries a copy of the message will wait to meet its destina-

tion to deliver it directly. Afterwards, in the Spray and Focus routing protocol [44], the

wait phase was replaced with the focus phase. In the focus phase, each node can forward

the copy that it holds to another node, based on a utility function. Network coding can

also be used to reduce the number of transmissions in the network [45, 46, 47, 48]. Instead

of simply transmitting one packet at a time, each node can combine several packets and

transmit them as one.

2.1.2 History-Based Routing Protocols

The most representative history-based routing protocol is PRoPHET, which stands for

Probabilistic Routing Protocol using History of Encounters and Transitivity [49, 50]. This

approach is based on the assumption that if two nodes have met several times in the past,

it is very likely that they will meet again in the future. Each node maintains a delivery

predictability for each known destination, which indicates how likely this node is to en-

counter a certain destination in the future. When two nodes meet, they exchange their

delivery predictabilities so that they can update their estimates. The nodes that are fre-

quently encountered have high delivery predictabilities for each other that decrease over

time to avoid obsolete information. A transitive property is also applied to these esti-

mates, so that the messages can be forwarded to nodes that encounter their destinations

indirectly. Therefore, each message is forwarded to the node that has the highest deliv-

ery predictability for its destination. An improved version has also been proposed, called

PRoPHETv2 [51], where the equations that update the delivery predictabilities have been

refined to solve two problems that were later observed.

Similarly, in a routing protocol called NECTAR [52], each node calculates a Neigh-

borhood Index for all the other nodes in the network based on the history of its contacts.

This index is then used to determine the route that each message should take, since it
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favors the nodes that have met the destination recently. MEED is another history-based

routing protocol, which stands for Minimum Estimated Expected Delay [53]. Each node

records the contact and inter-contact duration that it has with the other nodes in the

network over a sliding history window, in order to estimate the expected time for the

next contact.

2.1.3 Social-Based Routing Protocols

Social-based routing protocols take advantage of the long-term social relationships be-

tween the users of an Opportunistic Network in order to achieve data delivery. A wide

range of human mobility traces have been analyzed to develop realistic models of human

mobility and to determine the extent of its predictability [54, 55], as well as to study the

characteristics of the contacts between human-carried devices [56, 57, 58]. It has been

observed that in most real social networks, each pair of individuals is connected through

a short chain of acquaintances, which is known as the small-world phenomenon [59, 60].

It has also been shown that the physical encounters of mobile devices carried by people

are sufficient to build social graphs with small-world properties [61]. The combination of

short average path lengths and high clustering coefficient of their structure makes them

suitable for routing decisions [62, 63, 64]. Numerous social measures have been proposed

in order to evaluate the significance of each node in the social graph and to predict future

interactions [65, 66, 67, 68].

SimBet [69] uses two social metrics, betweenness centrality and similarity, on a social

graph that constructs based on the contacts of the nodes. The betweenness centrality

metric is used to identify “bridges” in the social graph, while the similarity metric is used

to identify nodes that are “close” to the destination. Unfortunately, the betweenness cen-

trality measure cannot be used in real networks, because it requires complete knowledge

of the network. Alternatively, each node calculates the betweenness centrality of its ego

network, called egocentric betweenness [70], that consists of the ego node, its neighbors,

and all the links among them.1 An extension of SimBet was later proposed, named Sim-

BetTS [71], which includes another social metric, called Tie Strength, in order to evaluate

the “strength” of each link in the social graph.

1Further details on the SimBet algorithm are given in Appendix A.
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Bubble Rap [72, 73] relies on the concept of community and centrality in order to solve

the routing task. It is assumed that each node belongs to at least one community, even

if it is a single-node community. Additionally, each node has a global centrality across

the whole network and a local centrality for each of the communities that it belongs. If a

node carries a message destined for a node that belongs in another community, it uses the

global centrality to forward the message, until a node that belongs to the same community

with the destination is found. Then, the forwarding decisions are made based on the local

centrality of the community, until the destination is reached. Therefore, Bubble Rap

requires a community detection mechanism, as well as a technique to approximate the

centrality values [74, 75, 76].

Friendship Based Routing [77, 78] has also been proposed, that exploits the concept

of friendship in order to make routing decisions. The quality of friendship of two nodes

is defined by the time that they were connected over a certain period. Then, friendship

communities of nodes are constructed, that have a quality of friendship greater than a

threshold. Messages are forwarded only to nodes that are stronger friends than the current

carrier and in the same friendship community with their destinations.

2.2 Coping with Resource Constraints

Regardless of the routing heuristics that may be used in an Opportunistic Network, there

are several resource limitations that may hinder the successful delivery of messages. Since

the nodes have buffers of finite capacity, they can only carry a certain amount of messages

at a time. In addition to that, we also have to consider about the limited bandwidth, the

limited computing power, and the energy consumption of each node.

Efficient scheduling and drop policies are essential for the performance of the network.

Scheduling policies are used to determine the importance of each message, so as to give

priority to the most important messages, because limited bandwidth and unexpected

contact interruptions may prevent the transmission of all the anticipated messages. Drop

policies are used to determine which message to discard when congestion occurs. Some

of these policies use local information such as the number of times each message has

been forwarded [79, 80], while others use network-wide information such as the number

of copies each message has in the network [81, 82].

10



RAPID [83, 84] is one of the first routing protocols that takes into account resource

constraints and handles the routing process as a resource allocation problem. The order

in which the messages are replicated depends on their utilities, so that a specific routing

metric can be optimized. Similarly, ORWAR [85] replicates the messages with the highest

utility values first and discards the messages with lowest utility values when needed.

Additionally, Delegation Forwarding [86] has been proposed that reduces the overhead of

transmissions by forwarding messages only to the highest-quality nodes.

Several congestion control strategies have been proposed for Opportunistic Networks

that aim to maintain high delivery ratio and low delay, as if there were no resource

constraints [87]. These strategies can be classified based on the number of copies that

the underlying routing protocol uses to deliver each message. Some of the most notable

strategies are described below.

2.2.1 Strategies for Single-Copy Routing Protocols

In single-copy routing protocols, the packets that each node is forced to drop will not be

able to be delivered to their destinations, since there are no other copies in the whole

network. Therefore, some packets may be delivered from alternative paths that are less

congested, in order to avoid as many packet drops as possible. However, the use of

alternative paths may lead to an increase in delivery time [88].

FairRoute [89] is a routing protocol that uses a queue control to distribute the traffic

load fairly among the nodes of the network. It relies on the interaction strength at different

time scales, but it also examines the queue size of each node in order to make routing

decisions. FairRoute uses the queue length of each node as an equivalent of its social

status, so that each node will receive messages only from nodes of equal or higher status.2

Since the queue control mechanism is independent from the routing mechanism, it can

also be implemented in other routing protocols to increase their fairness.

Economic and financial models have also been proposed for congestion control in

Opportunistic Networks, so that each node can decide autonomously whether to accept

to carry a message or not [90, 91]. Another approach that has been introduced for

Congestion Aware Forwarding, called CAFé [92], utilizes buffer and network statistics to

2The detailed description of the FairRoute algorithm can be found in Appendix B.
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predict if the transmission of a message will later cause congestion. Alternatively, Storage

Routing [93, 94] relies on the mitigation of messages from the congested nodes to their

neighbors.

2.2.2 Strategies for Multi-Copy Routing Protocols

Dynamic replication management is needed in multi-copy routing protocols in order to

deal with the problem of storage congestion. In this case, we can tolerate packet drops

to some extent, because there are multiple copies of each packet in the network. Con-

sequently, the buffers of some nodes may be overfilled a lot faster due to the increased

traffic load.

A variety of methods that use “anti-packets” have been proposed, whose aim is to

make better use of the storage capacity of each node by erasing redundant replicas [95].

According to the VACCINE method, when a node delivers a packet to its destination

successfully, it erases its copy of the packet and it keeps an identifier of the delivered

packet, which corresponds to an “anti-packet”. Whenever two nodes meet, they exchange

their “anti-packets” in order to erase the packets that are no longer needed and to prevent

from receiving them again in the future.

Another approach that has been proposed for congestion control in multi-copy routing

protocols aims to control the replication rate, in accordance with the level of congestion

in the network [96]. Similarly, CAFREP [97] controls the number of copies that each node

forwards to another node, according to their buffer and network statistics. Thereby, the

replication rate changes over time based on the available resources.
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Chapter 3

Congestion Control in Opportunistic

Networks

3.1 The Need for Adjustable Fairness

Most of the routing protocols that have been proposed for Opportunistic Networks make

greedy routing decisions that aim to maximize a certain utility function, regardless of

any resource constraints. When two nodes meet, each message is simply forwarded to

the node with the highest utility value for its destination. These utility values are used

to determine which node is more likely to deliver a message to its destination. However,

this process does not take into account storage, bandwidth, or energy constraints. For

instance, according to the SimBet [69] routing protocol, each message is forwarded to the

node with the highest SimBet utility value, even if its buffer is already fully occupied.

More specifically, node i will forward a message, destined for node d, to node j if it is

true that SimBetUtilj (d) > SimBetUtili (d).

This approach leads to an unbalanced traffic load distribution in the network, since

most of the packets are forwarded to the nodes with the highest utility values, which is

even more evident when the utility functions are destination-independent [32]. Due to

storage limitations, these nodes are most of the time under congestion, resulting in loss

of messages. Even worse, in the case of single-copy routing, each time a node is forced

to drop a packet, it is permanently lost because there is no other copy in the network.

Likewise, bandwidth and battery limitations would affect the performance dramatically,
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Figure 3.1: Distribution of Forwards without resource constraints

since the nodes with the highest utility values perform most of the transmissions. On the

other hand, the nodes with the lowest utility values perform far fewer transmissions, since

they are rarely used as intermediate nodes. This phenomenon is particularly aggravated

in the case of social-based routing protocols, because most of the traffic load is carried by

the most popular nodes.

Figure 3.1 shows the distribution of forwards, from simulations of SimBet using the

human mobility traces from the MIT Reality Mining data set [98], without any resource

constraints.1 It is clear that a small subset of the nodes account for most of the forwards

that occurred in the whole network. From a total of 97 nodes, over 50% of the total

number of forwards was held just by the top 6 nodes. If there were storage constraints,

most of these packets would be dropped due to congestion, decreasing the efficiency of

the routing protocol significantly. Even if the top 6 nodes could carry all of these packets,

their batteries would get drained a lot faster. Similar results have been observed for other

routing protocols as well, in a variety of data sets [72, 86, 99, 100].

1More details about the simulation setup will be given in Section 4.1.
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A well-known solution to the unbalanced traffic load distribution is to increase the

fairness in the network. As a result, the traffic load is distributed fairly among all the

nodes in the network, which leads to a reduction in the total number of packet drops.

Unfortunately, if we distribute the packets with absolute fairness, we lose in terms of

delivery ratio and delay [101]. The reason why this happens is because most of the

opportunities to forward a packet to a better node will be lost, just to keep the fair

allocation of resources. Even though there may be several alternative paths to reach

the destination, the delivery time may increase significantly [88]. On the other hand, by

forwarding packets to the nodes with the highest utility values, we increase the likelihood

of delivering them to their destinations and thus reducing the traffic load in the network,

which corresponds to fewer packet drops. Therefore, our goal is to be as fair as possible,

while taking advantage of the important nodes wisely.

3.2 Congestion Control with Adjustable Fairness

In this section we delineate the proposed congestion control mechanism, as well as the

intuition behind it. Initially, we present our methodology for the measurement of the

importance of each packet transmission. Then, we describe how our congestion control

strategy differs from other known approaches. Finally, we define the forwarding condition

of our congestion control mechanism, which also provides a trade-off between efficiency

and fairness through a tunable parameter.

First of all, we need to be able to determine the importance of each forwarding step.

Obviously, when the receiver has much higher utility value than the sender, the likelihood

of successful delivery is significantly increased. However, we also have to take into account

the cases where their utility values are close to 0. The most unfavorable situation is when

a node carries packets for which it has a utility value equal to 0. In such occasions, it is

crucial to forward these packets to nodes that have at least a little higher utility values,

so that there will be a greater chance to find other nodes that will be able to deliver them

to their destinations.

For that purpose, we use the normalized utility value Ui,j (d) that we define in Equation

3.1, where i and j are the two encountered nodes and d is the destination of a packet. This

normalized utility value is equal to 1 only when the current carrier has a utility value that
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Figure 3.2: Two nodes in contact with known utility values and buffer contents

it is equal to 0 and it encounters another node with a utility value greater than 0. However,

this normalized utility value is also close to 1 when the encountered node has a much higher

utility value than the current carrier, which means that it is much closer to the destination.

On the contrary, when the normalized utility value is close to 0, it indicates that both

nodes have almost equal utility values. This normalized utility value can be used in any

utility-based routing protocol, without affecting its performance. For instance, in the

SimBet routing protocol, the forwarding condition SimBetUtilj (d) > SimBetUtili (d) is

equivalent to Ui,j (d) > 0.

Ui,j (d) = utilityj (d)− utilityi (d)
utilityj (d) + utilityi (d)

(3.1)

Figure 3.2 depicts a scenario with two nodes i and j carrying some packets for the

destination nodes d1, ..., d6. Without any congestion control mechanism, node i would

forward all the packets that it carries to node j, simply because node j has a higher utility

value for each one of them. According to other proposed strategies, such as FairRoute

[89], node i would keep forwarding packets to node j until the traffic load is distributed

fairly. In our approach, we may violate the fair traffic load distribution to forward some

crucial packets, based on the normalized utility value Ui,j (d). For example, we would not

forward the packet destined for node d1, because both nodes have almost equal utility

values, but we may forward the packet destined for node d2, since node j has a much

higher utility value than node i.
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Therefore, we also need a measure of the saturation state of each node. We use

the remaining storage space so that when two nodes meet, they both know how many

more packets each node can carry, avoiding unnecessary packet drops. However, since

there is no guarantee that all nodes can carry the same total amount of data, we use

the normalized residual space. The normalized residual space of node i is calculated by

dividing its remaining storage space Ri with the total amount of storage space Bi that

it can allocate. Equation 3.2 defines the forwarding condition of the proposed congestion

control mechanism, which has to be true in order to forward a packet from node i to node

j that is destined for node d.

(Ui,j (d) > 0) ∧
(
Rj

Bj

>
(
1− (Ui,j (d))δ

) Ri

Bi

)
(3.2)

We also introduce a tunable parameter δ, so that we can adjust our approach either

towards high efficiency or absolute fairness. By raising the normalized utility value Ui,j (d)

to the power of δ, we can choose an appropriate value to define it so that the performance

of the network can meet the needs of a certain application. Figure 3.3 demonstrates the

impact that five different values of δ have on the forwarding condition.2 When we assign

a value to δ from the interval (0, 1), we allow the transmission of even more packets with

a high normalized utility value Ui,j (d) by relaxing the forwarding condition. On the other

2We examine the impact that these values have on the performance of the network in Appendix C.
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hand, by assigning a value to δ greater than 1, we mostly concentrate on maintaining the

load balancing among the nodes by enforcing the forwarding condition. Therefore, we can

fine-tune the δ parameter to achieve either low end-to-end delay or low overhead.

To summarize, in the case where Ui,j (d) → 0, the packet will be forwarded to node

j only if it also contributes at balancing the traffic load between the two nodes. When

Ui,j (d) → 1, we may break the load balancing between their buffers in order to forward

the packet to node j and increase the likelihood of successful delivery. All the packets for

which it is true that Ui,j (d) = 1 will be forwarded to node j, as long as it has enough

space to store them, which means that Rj must be greater than or equal to the size of the

corresponding packet. It should be noted that when δ →∞, our approach resembles the

queue control of FairRoute [89] and when δ → 0 we operate as if there was no congestion

control mechanism, but without overfilling the buffers of the nodes.

3.3 Exploiting Social Preferences and Heterogeneity

In social psychology, the attitude that each individual has for the gain of others in relation

to their own is often called Social Value Orientation (SVO), with several different methods

for its measurement [102, 103, 104, 105]. Selfish people show no concern about the needs

of others but themselves, while altruistic people willingly sacrifice their own welfare for

the benefit of others. The δ parameter can be considered as the social preferences that

each node has towards allocating its resources for the sake of others. When δ is close to

0 the nodes behave altruistically, because they are contributing all of their resources to

help others achieve communication. Selfish nodes would have high δ values, so that they

could avoid using their resources to help others.

In this work, we assume that the δ parameter is the same fixed number for all the

nodes in the network. Therefore, in order to achieve high delivery ratio and low delay,

we need to define the δ value so that the nodes will behave cooperatively. However, each

node could define its own δ value in accordance with its social preferences, which could

also change over time. In that case, the most efficient solution may result from a mixture

of selfish, prosocial, and altruistic nodes. It is evident that a self-configuring method is

required in order to dynamically adjust the value of the δ parameter, which we intend to

investigate in future work.
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Furthermore, in a real scenario it is very likely that the total amount of storage space

would vary from node to node. The performance of the network would be significantly

affected if some of the most important nodes had very limited storage space. Even worse,

if these nodes were also acting selfishly, it would require much more time to deliver

each packet through alternative routes. Additionally, in cases where there are energy

constraints, we should also take into account the battery level of each device in order to

avoid node overloading.
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Chapter 4

Experimental Evaluation

4.1 Simulation Setup

In collaboration with the other members of the Networks Research Group, we have devel-

oped a custom simulator in order to evaluate the performance of various routing proto-

cols that have been proposed for Opportunistic Networks. We have implemented plenty

of routing protocols that have been described in the literature, as well as strategies to

cope with resource constraints, with a variety of mobility traces available for simulations.

Table 4.1 summarizes the characteristics of the data sets that are being used throughout

this thesis, which are available in the CRAWDAD archive [106].

Table 4.1: Characteristics of the data sets

Data Set Reality Mining PMTR Sassy

Institution

Massachusetts

Institute of

Technology

University of

Milan

University of St

Andrews

Number of Nodes 97 44 25

Duration 290 days 19 days 74 days

Radio Range 10 meters 10 meters 10 meters

Granularity 300 seconds 1 second 6.67 seconds

Number of Contacts 113875 11895 112264
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Table 4.2: Simulation Settings

Traffic Type Uniform

Warm-Up Period 20% of Simulation Time

Cool-Down Period 20% of Simulation Time

Buffer Size 20 packets

Scheduling Policy FIFO

Drop Policy Drop Front

Bandwidth Infinite

TTL Infinite

Number of Trials 25

The first data set, called Reality Mining [98], consists of contacts from 97 students and

faculty members at the MIT. They carried mobile phones that were performing Bluetooth

scans every 5 minutes. The second data set, called PMTR [107], contains contacts from

44 students, faculty members, and technical staff at the University of Milan. They used

custom-made devices that were designed to perform scans on a per-second basis. The

third data set, called Sassy [108], comprises contacts from 25 sensors that were carried

by individuals associated with the University of St Andrews. The sensors attempted to

detect each other every 6.67 seconds. Each of these data sets has its own advantages

and disadvantages due to their different number of participants, durations and scanning

intervals.

Table 4.2 provides the simulation settings of the experiments that we performed. The

traffic of each simulation was generated uniformly at random, so that each packet was

created at a random time, with a random pair of source and destination nodes. To avoid

statistical bias, the results were collected only after a warm-up period and before a cool-

down period, each of which lasts as much as 20% of the total simulation time, so that

the network would be in its steady state. Each node could store up to 20 packets in its

buffer, that processes in a FIFO and Drop Front order. We assumed that there are no

bandwidth, time-to-live or energy limitations, so that the storage space would be the only

constraint of our experiments. We examined six different scenarios, where the traffic load
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ranges from low to high, based on the characteristics of each data set. For each scenario

we simulated 25 trials in order to calculate the average values and the 95% confidence

intervals of a variety of evaluation metrics.

4.2 Evaluation Criteria

In order to evaluate the performance of each congestion control strategy, we have to define

a set of evaluation metrics. For each simulation trial, we collected the required data for

the calculation of these evaluation metrics. The definition of each evaluation metric is

given below.

Delivery Ratio

The delivery ratio is defined as the total number of packets that were successfully de-

livered, divided by the total number of packets that were generated. In Opportunistic

Networks, the delivery ratio is rarely close to 100%, mainly because of the intermittent

connectivity of the nodes, the unknown topology, and the resource constraints. Even

without these limitations, some packets cannot be delivered due to the absence of a se-

quence of intermediate nodes that can connect the source node with the destination node

at any time.

Average Delay

Even though the applications in Opportunistic Networks must be able to tolerate long

delivery times, there are many applications that could benefit from delivering the packets

in the minimum possible time. We calculate the average delay by adding all the delivery

times and then dividing them by the total number of packets that were successfully

delivered. Because the process of packet delivery often takes a long time, we measure the

average delay in hours. However, the average delay takes into account only the packets

that were successfully delivered, regardless of the total number of packets that the routing

protocol failed to deliver. For that reason, we also use the cumulative distribution function

of the delay, which describes the fraction of packets with a delivery time less than or equal

to a certain time.
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Overhead

We use the total number of forwards that occurred in the whole network as an approximate

measure of the energy consumption. In order to be able to compare the overhead between

simulations with different traffic load, we normalize the total number of forwards by

dividing them with the total number of packets that were generated. Additionally, we

also calculate the cumulative fraction of forwards in order to evaluate the fairness of each

algorithm, in terms of energy consumption.

Average Number of Hops

The number of hops refers to the number of forwards that occurred in order to deliver

a packet to its destination. The average number of hops is calculated by adding the

number of hops of the delivered packets, divided by the total number of packets that

were successfully delivered. In other words, this metric indicates the average length of

the successful routing paths.

Total Number of Packet Drops

Due to the constraints on storage capacity, a node may be forced to drop some of its

packets, especially if the routing protocol does not use a congestion control mechanism.

However, even if we use an optimal congestion control mechanism, if the resources of

the nodes are not enough to support the overall traffic load, some packets will have to be

dropped. Unfortunately, in the case of single-copy routing, each packet drop automatically

reduces the delivery ratio, since there is no other copy of the packet in the network. In

order to determine if congestion occurs only into a small subset of nodes, we also calculate

the cumulative fraction of packet drops.

4.3 Performance Analysis

In this section we are going to compare the performance of four different algorithms

on three different data sets. The forwarding condition of each of these algorithms is

specified in Table 4.3, where Ui,j (d) = SimBetUtilj(d)−SimBetUtili(d)
SimBetUtilj(d)+SimBetUtili(d) since we use SimBet

[69] as our reference routing protocol, so that we can compare the effectiveness of three
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Table 4.3: The forwarding condition of each algorithm

Algorithm Forwarding Condition

SimBet Ui,j (d) > 0

SimBet-AF (Ui,j (d) > 0) ∧
(
Rj

Bj

>
(
1− (Ui,j (d))δ

) Ri

Bi

)
SimBet-FR (Ui,j (d) > 0) ∧ ((Qj ≤ Qi) ∨ (Ui,j (d) = 1))

SimBet-LB (Ui,j (d) > 0) ∧
(
Rj

Bj

>
Ri

Bi

)

different congestion control strategies. For every node i in the network, Ri corresponds

to its remaining storage space, Bi corresponds to the total amount of storage space that

it can allocate, and Qi is equal to its queue length. The original version of SimBet

forwards the packets greedily to the nodes with the highest utility values, regardless of

their availability in storage resources. The original forwarding condition of SimBet is

SimBetUtilj (d) > SimBetUtili (d), which is equivalent to Ui,j (d) > 0.

We implemented our proposed congestion control mechanism in SimBet, which we

refer to as SimBet-AF. The major advantage of our approach compared to others is that

it handles each packet differently, based on its importance and the saturation state of the

nodes. It also enables the adjustment of fairness through a tunable parameter δ, so that

we can choose between high performance or low overhead. During the simulations from

which we collected the following results, we had assigned δ = 0.25, based on our empirical

observations.1 In future work, we are going to investigate methods to define the δ value

dynamically, based on local information.

To our knowledge, the most relevant work in the literature is the queue control of the

FairRoute [89] routing protocol, in which each node will accept to carry a packet from

another node, only if the other node has a longer or equal queue length. However, in

case that the current carrier of a packet has a utility value equal to 0, it will be accepted

regardless of their queue lengths, if the other node has a utility value greater than 0. We

implemented the queue control of FairRoute in SimBet, which we call SimBet-FR, so that

we can compare its performance with the other approaches.

1Our experiments in Appendix C show that the most efficient values of δ, in terms of delivery ratio

and delay, lie in the interval of (0, 1).
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In order to examine how beneficial the utility values are for a congestion control mech-

anism, we have also performed simulations for an algorithm that we refer to as SimBet-LB.

This approach aims to distribute the load among the nodes with absolute fairness, regard-

less of the importance of each packet. According to the SimBet-LB algorithm, a node

will accept to carry a packet from another node if and only if the sender is in a higher

saturation state.

We performed simulations on three different data sets, which are known as the Re-

ality Mining, the PMTR, and the Sassy data sets. Their characteristics were previously

presented in Table 4.1. In subsection 4.3.1, we are going to analyze in detail the perfor-

mance of each algorithm on the Reality Mining data set, which is the most widely used

for simulations in such networks. Finally, in subsection 4.3.2 we analyze the results of the

most important evaluation metrics from simulations on the PMTR and Sassy data sets.

4.3.1 Simulations on the Reality Mining Data Set

As we can observe in Figure 4.1a, from the three congestion control strategies that we

implemented, SimBet-AF achieves the lowest average delay under any traffic load. The

SimBet-LB algorithm has the highest delivery time on average, because it tries to balance

the load among each pair of nodes of the network. It should be noted that on average, as

the traffic load increases, the SimBet-FR algorithm delays to deliver the packets to their

destinations as much as the SimBet-LB algorithm. Our approach reduces the delivery

time significantly, because it may violate the load balancing in order to seize some of the

most crucial forwarding opportunities.

Plain SimBet has the lowest average delay, because it can only deliver the packets

that do not have to stay in the buffers of the intermediate nodes for a long period of

time. However, as Figure 4.1b shows, the other three algorithms were able to deliver

these packets in a short period of time as well. Even though SimBet-FR and SimBet-

LB have almost the same average delay, SimBet-FR was able to deliver more packets.

Nevertheless, SimBet-AF manages to deliver even more packets to their destinations, but

also in a much shorter period of time.

Figure 4.1c clearly demonstrates the impact of storage constraints on the performance

of the network, as well as the need for congestion control. Plain SimBet could only
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Figure 4.1: (a) Average Delay, (b) Cumulative Distribution Function of the Delay, (c)

Delivery Ratio, and (d) Average Number of Hops on the Reality Mining data set

deliver about 35% of the packets that were generated under low traffic load, while it

barely surpassed 15% under high traffic load. Even the SimBet-LB approach was able to

achieve a higher delivery ratio, simply because it does not forward the packets blindly. As

we can observe, under high traffic load, both SimBet-AF and SimBet-FR deliver about

the same number of packets. However, under low traffic load, SimBet-AF is able to deliver

more packets than SimBet-FR, because it can adapt to the changes in the network traffic

load. Also, Figure 4.1d depicts the effect of the traffic load on the average route length

of each algorithm.

As we can see in Figure 4.2a, SimBet-AF has about the same total number of packet

drops as SimBet-FR. It should be noted that under high traffic load, SimBet-LB has

more packet drops than the other two congestion control approaches, because the nodes
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Figure 4.2: (a) Total Number of Packet Drops, (b) Cumulative Fraction of Packet Drops,

(c) Overhead, and (d) Cumulative Fraction of Forwards on the Reality Mining data set

are unable to find alternative routes that are not under congestion. In Figure 4.2b we

can clearly see that in the case of plain SimBet, a small subset of nodes is responsible

for almost all the packet drops that occurred in the whole network. In particular, more

than 80% of the total number of packet drops occurred in only 5 nodes, from a total of 97

nodes. Even the SimBet-FR algorithm exhibits this phenomenon to some degree, because

it does not take into account the remaining storage space of the receiver before forwarding

a packet. In contrast, with the SimBet-LB approach most of the nodes drop about the

same amount of packets, but they are also more in total, which corresponds to fewer

successfully delivered packets. The desired solution is given by the SimBet-AF algorithm,

which combines the small number of packet drops with an almost fair distribution of the

packet drops among the nodes.
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Figure 4.3: Average Delay vs. Delivery Ratio on the Reality Mining data set

Although the main goal of each algorithm is to deliver most of the packets in the min-

imum possible time, we also want this process to require a small amount of forwards. As

we can see in Figure 4.2c, the SimBet-LB approach performs the fewest transmissions in

the network, because of its notably stringent forwarding condition. It should be pointed

out that plain SimBet delivered far fewer packets, while performing many more trans-

missions. Both SimBet-AF and SimBet-FR perform about the same number of forwards,

which according to Figure 4.2d are distributed between the nodes in a similar way.

In conclusion, Figure 4.3 makes it clear that our proposed congestion control mecha-

nism is the most efficient in terms of delivery ratio and delay. The queue control that was

proposed by the authors of FairRoute, increases the delivery ratio to a certain degree, but

the delay is significantly high compared to our proposed method. The approach that dis-

tributed the traffic load with absolute fairness caused the least overhead in the network,

but it was not as efficient as the other approaches. We also showed how poorly SimBet

performs under storage constraints without a proper congestion control mechanism, even

under low traffic load.

4.3.2 Simulations on the PMTR and Sassy Data Sets

Since the characteristics of the other data sets are markedly different, we have to change

the traffic load of each scenario in order to examine the performance of each algorithm
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Figure 4.4: (a) Average Delay, (b) Cumulative Distribution Function of the Delay, (c)

Cumulative Fraction of Packet Drops, and (d) Average Delay vs. Delivery Ratio on the

PMTR data set

properly. However, the rest of the simulation settings remain the same, as well as the

δ value of the SimBet-AF algorithm, which is 0.25. The results that we obtained, both

from the PMTR and Sassy data sets, were similar to those that we analyzed previously

from the Reality Mining data set. Therefore, for these data sets we are going to analyze

only the most important evaluation metrics.

As expected, plain SimBet has the lowest average delay in both data sets, as shown

in Figures 4.4a and 4.5a, because it drops most of the packets due to congestion. Since

there is only one copy of each packet in the network, plain SimBet could only deliver a

small fraction of the generated packets, as we can see in Figures 4.4b and 4.5b. On the

other hand, by including a congestion control mechanism, the total number of success-
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Figure 4.5: (a) Average Delay, (b) Cumulative Distribution Function of the Delay, (c)

Cumulative Fraction of Packet Drops, and (d) Average Delay vs. Delivery Ratio on the

Sassy data set

fully delivered packets is significantly increased. Among the compared congestion control

algorithms, SimBet-AF has the lowest average delay under any traffic load, while both

SimBet-FR and SimBet-LB achieve similar average delivery times on both data sets.

As we can see in Figures 4.4c and 4.5c, plain SimBet causes most of its packet drops

to occur in a small subset of nodes. This feature appeared in all three data sets, however

in the Reality Mining data set we had the most skewed distribution. In the Sassy data

set, SimBet-AF achieves almost as good distribution of the packet drops as SimBet-LB,

while the SimBet-FR algorithm results in a slightly more skewed distribution. However,

in the PMTR data set, all the algorithms have a similar distribution, with the exception

of the plain SimBet.
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Finally, according to Figures 4.3, 4.4d, and 4.5d, SimBet-AF was the most efficient

in terms of delivery ratio and delay, in all three experimental data sets, under any traffic

load. On the other hand, SimBet-FR also had a similar delivery ratio with SimBet-AF in

all three data sets, but with much longer delivery times. The key component that makes

our approach more efficient than the others, is the fact that we handle each forwarding

decision differently. In order to decide if a packet should be forwarded, we take into

account the saturation state of both nodes, as well as how much better the encountered

node is than the current carrier, based on the utility values of the underlying routing

algorithm. In addition to that, we can also adjust the fairness in the network, by tuning

the value of the δ parameter, in order to achieve the desired trade-off between efficiency

and overhead.

31



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In order to achieve data delivery in an Opportunistic Network, some routing protocols

use utility functions to estimate the capability of each node to deliver a message to its

destination. However, there is usually a small subset of important nodes that are more

crucial than others in the process of data delivery. Congestion may occur in these nodes,

even under low traffic load, if the messages are forwarded greedily. It is evident that a

congestion control mechanism is needed that can take advantage of the most important

nodes without excessively using them.

We proposed a congestion control mechanism that handles each message differently,

in accordance with the saturation state and the utility values of the intermediate nodes.

Additionally, a tunable parameter δ was introduced in order to be able to adjust the

fairness in the network. We can perceive the δ parameter as the social preferences that

each node has about allocating its resources to help others communicate. Altruistic

nodes would have a δ value close to 0, while selfish nodes would have the highest δ values.

However, in order to achieve the desired trade-off between efficiency and overhead, the δ

value should lie in the interval of (0, 1), which corresponds to a cooperative behavior of

the nodes.

Our experiments on three different real-world data sets showed that our congestion

control mechanism reduces the average delay significantly, compared to other relevant

approaches, while retaining a high ratio of delivered packets. In addition to that, our
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approach does not overuse the most important nodes in the network, resulting in almost

uniform distributions of packet drops and transmissions. As we concluded, we can signif-

icantly improve the performance of the network by slightly distorting its fairness in terms

of resource allocation.

5.2 Future Work

During this work, the δ parameter was the same fixed number for all the nodes in the

network. We could extend the present approach, by setting the value of the δ parameter

dynamically, based on local information. For example, each node could define its own δ

value, based on its importance in the network or its preference to contribute as a router

for others.

Social selfishness has also been considered as a potential problem in Opportunistic

Networks [109, 110], where most of the nodes are willing to exchange messages only with

those whom they have social relationships. In that case, each node could assign a different

δ value for every other node in the network, based on their social ties. Furthermore, the

nodes could use buffer and network statistics in order to define the δ value accordingly. For

instance, each node could calculate the average time that packets destined for a certain

node stay in its buffer, which may help to make even better use of the most important

nodes.

The forwarding decisions that each node has to make could be considered as social

dilemmas [111], where the nodes have to decide if they will act in favor of their own

resources, or if they will contribute for the better performance of the network. Therefore,

we could apply game theory [112] in order to make the required forwarding decisions that

aim to solve the congestion control problem.
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Appendix A

The SimBet Algorithm

SimBet [69] is a social-based routing protocol for Opportunistic Networks that relies on

two social metrics, betweenness centrality and similarity. In order to be able to calculate

these metrics, a social graph is required that describes the social relations between the

nodes of the network. There are several techniques of contact aggregation that aim to

map the physical encounters of the nodes to social graphs [113]. The original version of

SimBet uses a growing time window to build its social graphs, by adding edges between

nodes that have met at least once in the past.

Centrality is a measure of the relative importance of a node within a graph. There are

several centrality definitions, however the most common are degree centrality, closeness

centrality, and betweenness centrality [65, 66]. SimBet exploits the betweenness centrality,

because it can be regarded as a quantify of the control that a node has over information

flowing between others [68]. The betweenness centrality of node pi is equal to the number

of shortest paths between any pair of nodes pj and pk that pass through node pi, divided

by the total number of shortest paths, as seen in Equation A.1.

CB (pi) =
N∑
j=1

j−1∑
k=1

gjk (pi)
gjk

(A.1)

Unfortunately, the betweenness centrality measure requires complete knowledge of

the network topology, which is not available in Opportunistic Networks due to their

intermittent connectivity. Therefore, SimBet calculates the betweenness centrality of

the ego network (egocentric betweenness), rather than the betweenness centrality of the

complete network (sociocentric betweenness) [70]. An ego network consists of the ego
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Figure A.1: The gray area of the given social graph corresponds to the ego network of

the black node

node, its neighbors, and all the links among them, as illustrated in Figure A.1. Given

the adjacency matrix of the ego network A, the sum of the reciprocals of the entries of

A2[1 − A] is equal to the egocentric betweenness of the ego node [114]. Although the

egocentric betweenness of a node is generally smaller than its sociocentric betweenness,

it has been observed that the ranking of the nodes is similar for both measures.

Social networks are known for their high clustering coefficient and short average path

lengths [62, 63, 64]. Based on this observation, a variety of metrics that rely on neigh-

borhoods of nodes have been proposed, in order to predict future links [67]. SimBet uses

the number of common neighbors, as shown in Equation A.2, to calculate the similarity

metric between two nodes x and y.

P (x, y) = |N (x) ∩N (y)| (A.2)

Therefore, based on the adjacency matrix of the ego network, the ego node can cal-

culate its similarity with any node that has met directly. However, in order to calculate

the similarity of the ego node with nodes that do not belong in its ego network, we need

a list of indirect encounters through its neighbors. When two nodes meet, they exchange

their lists of direct encounters, from which each node can obtain information about its

indirect encounters that can be used for the calculation of the similarity metric.

Each node periodically transmits “hello” messages, so that it can be detected by the

other nodes. Whenever a node receives a “hello” message from another node, which

indicates that they are within communication range, it delivers all the messages that it

48



n m

n m

n m

n m

n m

n m

Hello Message

Deliver Messages

Request Encounters

Encounter Vector

Summary Vector

n m

Message Request Vector

Forward Messages

Figure A.2: Exchange of Messages in SimBet

carries that are destined for that node. Then, it requests the encounter vector of the other

node, so that it can update its ego network and social metrics. After the reception of

the encounter vector, it transmits a summary vector that contains a summary of all the

messages that it holds. Finally, the other node decides which of these messages should be

transmitted, based on their utilities. This process is also described in Figure A.2.

In order to decide which messages should be forwarded, the two nodes have to compare

their utilities. The similarity utility is a comparison of the similarity metrics that nodes n

and m have for the destination node d. Likewise, the betweenness utility is a comparison

of the egocentric betweenness of the nodes n and m. Equations A.3 and A.4 define how

node n calculates its similarity utility and betweenness utility for delivering a message to

node d, compared to node m. The SimBet utility is calculated as a weighted combination

of the similarity utility and the betweenness utility, as given in Equation A.5.

SimUtiln (d) = Simn (d)
Simn (d) + Simm (d) (A.3)

BetUtiln = Betn
Betn +Betm

(A.4)

SimBetUtiln (d) = αSimUtiln (d) + βBetUtiln (A.5)
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The SimBet utility is used to make the forwarding decisions, where α and β are

adjustable parameters for which it holds that α + β = 1. These parameters are usually

set to α = β = 0.5, so that the similarity utility and the betweenness utility have the

same importance. Finally, node n will forward messages, destined for node d, to node m

only if SimBetUtilm (d) > SimBetUtiln (d).
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Appendix B

The FairRoute Algorithm

FairRoute [89] is a routing protocol for Opportunistic Networks that uses the interaction

strength between two nodes i and j, in short term σij and in long term λij, in order to

make its routing decisions. The interaction strength increases upon encounter, while it

decreases over time with an exponential rate rσ for short term and rλ for long term, which

means that these parameters must be set so that rλ � rσ. Equations B.1, B.2, and B.3

define how node i updates its perceived interaction strengths when it encounters node j,

where t is the current time, ti is the last time that node i encountered another node, and

Ni is the list of contacts of node i.

σik = σike
−rσ(t−ti) ∀k ∈ Ni (B.1)

λik = λike
−rλ(t−ti) ∀k ∈ Ni (B.2)

(σij, λij) = (σij, λij) + (1, 1) (B.3)

After updating the perceived interaction strengths, the two nodes have to decide which

messages should be forwarded from the one node to the other. FairRoute favors nodes with

high interaction strength in long term, while avoiding nodes with deceptive interaction

strength in short term. Based on their perceived interaction strengths, node i can calculate

its perceived utility of node j to deliver a message to node k, as defined in Equation B.4.

In a similar way, node i calculates its perceived utility of node j to deliver a message to

any node in the network, as shown in Equation B.5. Consequently, node i will forward a
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message to node j, which is destined for node k, only if at least one of the conditions of

Equation B.6 is met.

uijk = λjk (λjk − σjk)
λjk (λjk − σjk) + λik (λik − σik)

(B.4)

uij =
∑
k∈Nj λjk (λjk − σjk)∑

k∈Nj λjk (λjk − σjk) +∑
k∈Ni λik (λik − σik)

(B.5)


uijk >

1
2 ∧ (λik + λjk) > 0

uij >
1
2 ∧ (λik + λjk) = 0

(B.6)

However, this routing strategy is forwarding each message greedily, like most other

routing protocols, causing an unfair traffic load distribution. To overcome this problem,

FairRoute uses a queue control that takes into account the queue length of each node.

According to this queue control, each node will accept messages only from nodes with

higher or equal queue lengths, except from the case where uijk = 1 and (λik + λjk) > 0.

Finally, Equation B.7 modifies the conditions of Equation B.6, by including the queue

control.



uijk >
1
2 ∧ (λik + λjk) > 0 ∧ Qj ≤ Qi

uijk = 1 ∧ (λik + λjk) > 0

uij >
1
2 ∧ (λik + λjk) = 0 ∧ Qj ≤ Qi

(B.7)

This queue control can also be used in other utility-based routing protocols to increase

their fairness, since it is independent from the routing decisions. The authors of FairRoute

argue that the queue size of a node is equivalent to its social status and therefore the nodes

should not accept messages from nodes of lower social status.
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Appendix C

The Impact of Social Preferences

The δ parameter of our proposed congestion control mechanism can be used to define

the social preferences of the nodes. When δ is close to 0, the nodes behave altruistically

by accepting to carry most of the forwarding packets. Alternatively, when a high value

is assigned to the δ parameter, the nodes behave selfishly by rejecting to carry most of

the forwarding packets. In order to examine the impact of five different δ values on the

performance of the network, we are going to evaluate our congestion control mechanism

on the single-copy version of the SimBet routing protocol.

We are going to use the same δ values that were used in Figure 3.3 to explain their

impact on the forwarding condition. For δ = 1 we get a linear relationship between the

importance of each packet and its effect on the forwarding condition. For δ = 0.25 we

relax the forwarding condition so that we can transmit most of the important packets,

while for δ = 4 we enforce the load balancing between each pair of nodes. Finally, we

also examine the two extreme cases, by setting δ = 0.001 and δ = 1000. We will compare

our results from simulations on the Reality Mining data set, with the simulation settings

that were given in Table 4.2.

As Figure C.1a shows, the approaches with the lowest δ values deliver their packets a

lot faster, because the nodes seize most of their opportunities to forward their packets to

more suitable carriers. On the other hand, the approaches with the highest δ values have

longer delivery times, because they search for alternative routes that are less congested.

As expected, by relaxing the forwarding condition, the packets reach their destinations

faster, if they do not get dropped in the mean process due to storage constraints.
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Figure C.1: The impact of δ: (a) Average Delay, (b) Cumulative Distribution Function

of the Delay, (c) Delivery Ratio, and (d) Average Number of Hops

As we can see in Figure C.1b, the approaches with δ equal to 0.001 and 1000 were

unable to deliver packets that required a long period of time to reach their destinations.

This phenomenon is also reflected in the results of the delivery ratio in Figure C.1c.

As we can observe, by relaxing the forwarding condition we can increase the amount of

successfully delivered packets. However, by setting the δ value close to 0 we obtain the

opposite results, because each node accepts all the forwarding packets until it runs out

of space. As a result, the buffers of the nodes with the highest utility values are most

of the time full. Therefore, when they try to generate a new packet, they are forced to

drop another one, which causes the reduction in the delivery ratio. On the other hand, by

assigning a high δ value, most of the opportunities that could help achieve data delivery

will be lost to maintain the load balancing among the nodes.
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Figure C.2: The impact of δ: (a) Total Number of Packet Drops, (b) Cumulative

Fraction of Packet Drops, (c) Overhead, and (d) Cumulative Fraction of Forwards

By looking at the average number of hops in Figure C.1d, it is clear that the approaches

with δ < 1 deliver their packets usually through the most important nodes. This is the

main reason why they are able to deliver their packets faster. On the other hand, the

approaches with higher δ values often search for alternative paths that are less congested

in order to deliver their packets. However, if the traffic load is high, they may not ever find

an alternative path that is not under congestion, resulting in packet drops and reduction

of the delivery ratio.

As we can observe in Figure C.2a, the approaches with high δ values have fewer packet

drops under low traffic load, since it is easier to allocate their resources evenly. On the

contrary, when the traffic load is high, the approaches with low δ values have fewer packet

drops, because they reduce the resources that are needed in order to carry all the packets
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Figure C.3: The impact of δ on the Average Delay vs. Delivery Ratio

by delivering them to their destinations. Furthermore, as we can see in Figure C.2b, the

approaches with high δ values, achieve a nearly uniform distribution of the packet drops,

since they focus on distributing the traffic load among the nodes evenly.

Obviously, the approaches with the lowest δ values tend to have the least forwards, as

shown in Figure C.2c, because of their strict forwarding conditions. However, there are

more factors that affect the total number of forwards in the network. For instance, the

approach with δ = 0.001 does not have the most transmissions among the others, because

a lot of packet drops occurred due to congestion. On the other hand, the approach with

δ = 0.25 performed more forwards, because it was able to deliver most of the packets with

fewer packet drops. As we can see in Figure C.2d, the approaches that have the highest

δ values, also have the most fair distribution of forwards among the nodes. Interestingly,

even the approach with δ = 0.001 does not result in a heavily skewed distribution.

To summarize, we showed that by sacrificing the fairness in the network to a certain

degree, we can improve its performance significantly, without excessive use of the most

important nodes. As shown in Figure C.3, when the δ parameter has a value less than 1,

we can achieve high delivery ratio, as well as low delay. On the other hand, by assigning

a value greater than 1 to the δ parameter, we can increase the fairness in the network

without essentially reducing the delivery ratio.
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