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Abstract. The exploration problem has been extensively studied in un-
safe networks containing malicious hosts of a highly harmful nature,
called black holes, which completely destroy mobile agents that visit
them. In a recent work, Královič and Miklík [SIROCCO 2010, LNCS
6058, pp. 157–167] considered various types of malicious host behavior
in the context of the Periodic Data Retrieval problem in asynchronous
ring networks with exactly one malicious host. In this problem, a team
of initially co-located agents must report data from all safe nodes of the
network to the homebase, infinitely often. The malicious host can choose
whether to kill visiting agents or allow them to pass through (gray hole).
In another variation of the model, the malicious host can, in addition,
alter its whiteboard contents in order to deceive visiting agents. The goal
is to design a protocol for Periodic Data Retrieval using as few agents as
possible.
In this paper, we present the first nontrivial lower bounds on the num-
ber of agents for Periodic Data Retrieval in asynchronous ring networks.
Specifically, we show that at least 4 agents are needed when the malicious
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host is a gray hole, and at least 5 agents are needed when the malicious
host whiteboard is unreliable. This improves the previous lower bound
of 3 in both cases and answers an open question posed in the aforemen-
tioned paper.

On the positive side, we propose an optimal protocol for Periodic Data
Retrieval in asynchronous rings with a gray hole, which solves the prob-
lem with only 4 agents. This improves the previous upper bound of 9
agents and settles the question of the optimal number of agents in the
gray-hole case. Finally, we propose a protocol with 7 agents when the
whiteboard of the malicious host is unreliable, significantly improving
the previously known upper bound of 27 agents. Along the way, we set
forth a detailed framework for studying networks with malicious hosts
of varying capabilities.

Keywords: periodic data retrieval, malicious host, gray hole, red hole,
unreliable whiteboard

1 Introduction

In distributed mobile computing, one of the main issues is the security of both
the agents that explore a network and the hosts. Various methods of protecting
mobile agents against malicious nodes as well as of protecting hosts against
harmful agents have been proposed (see, e.g., [19] and references therein).

In particular, the exploration problem has been extensively studied in un-
safe networks which contain malicious hosts of a highly harmful nature, called
black holes. A black hole is a node which contains a stationary process destroy-
ing all mobile agents visiting that node, without leaving any trace. In the Black
Hole Search problem (BHS in short) the goal for the agents is to locate the
black hole within finite time. More specifically, at least one agent has to survive
knowing all edges leading to the black hole. The problem has been introduced
by Dobrev, Flocchini, Prencipe, and Santoro in [7,10]. Since any agent visiting
a black hole vanishes without leaving any trace, the location of the black hole
must be deduced by some communication mechanism employed by the agents.
Four such mechanisms have been proposed in the literature: a) the whiteboard
model [5,9,10,2,16] in which there is a whiteboard at each node of the net-
work where the agents can leave messages, b) the pure token model [14,1] where
the agents carry tokens which they can leave at nodes, c) the enhanced token
model [6,11,23] in which the agents can leave tokens at nodes or edges, and d)
the time-out mechanism (only for synchronous networks) in which one agent
explores a new node and then, after a predetermined fixed time, informs another
agent who waits at a safe node [21].

In an asynchronous network, the number of nodes of the network must be
known to the agents, otherwise the problem is unsolvable [10]. If the graph
topology is unknown, at least ∆+1 agents are needed, where ∆ is the maximum
node degree in the graph [9]. Furthermore, the network should be 2-connected.
It is also not possible to answer the question of whether a black hole exists in
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the network. If the agents have a map of the network or at least a sense of
direction [17,18] and can use whiteboards, then two agents with memory suffice
to solve the problem. In asynchronous networks with dispersed agents (i.e., not
initially located at the same node), the problem has been investigated for the
ring topology [8,10] and for arbitrary networks [15,3] in the whiteboard model,
while in the enhanced token model it has been studied for rings [12,13] and
for some interconnected networks [23]. The problem has been also studied in
synchronous networks. For a survey on BHS the reader is referred to [21].

As already mentioned, a black hole is a particular type of malicious host
with a very simple behavior: killing every agent instantly without leaving any
trace. In reality, a host may have many more ways to harm the agents: it may
introduce fake agents, change the contents of the whiteboard, or even confuse
agents by directing them to ports different from the requested ones.

In [20,22], Královič and Miklík studied how the various capabilities of a
malicious host affect the solvability of exploration problems in asynchronous
networks with whiteboards. They first consider networks with a malicious host
(called gray hole) which can at any time choose whether to behave as a black-
hole or as a safe node. Since the malicious behavior may never appear, the agents
might not be able, in certain cases, to decide the location of the malicious host.
Hence, they introduce and study the so called Periodic Data Retrieval problem in
which, on each safe node of the network, an infinite sequence of data is generated
over time and these data have to be gathered in the homebase. The goal is to
design a protocol for a team of initially co-located agents so that data from every
safe node are reported to the homebase, infinitely often, minimizing the total
number of agents used. One agent can solve the problem in networks without
malicious hosts, where the problem reduces to the Periodic Exploration problem
(e.g., see [4] and references therein) in which the goal is to minimize the number
of moves between two consecutive visits of a node. When the malicious host is
a black hole, the Periodic Data Retrieval and the Periodic Exploration problem
are solved by the same number of agents. As observed in [20], n − 1 agents are
sufficient for solving the Periodic Data Retrieval problem in any 2-connected
network of n nodes with one malicious host when the topology is known to the
agents: each of the n − 1 agents selects a different node of the network and
periodically visits all other nodes. The authors show that two agents are not
sufficient to solve the problem in a ring with a gray hole and they present a
protocol which solves the problem using 9 agents. They also consider a second
type of malicious host which behaves as a gray hole and, in addition, can alter
the contents of its whiteboard; they show that 27 agents are sufficient to solve
the Periodic Data Retrieval problem in a ring, under this type of malicious host.

Our contribution. In this paper, we study and refine the model of [20]. We
present the first nontrivial lower bounds on the number of agents for Periodic
Data Retrieval in asynchronous rings. Specifically, we show that at least 4 agents
are needed when the malicious host is a gray hole, and at least 5 agents are needed
when the malicious host whiteboard is unreliable. This improves the previous
lower bound of 3 agents in both cases and answers an open question posed
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in [20]. On the positive side, we propose an optimal protocol for Periodic Data
Retrieval in asynchronous rings with a gray hole, which solves the problem with
only 4 agents. This improves the previous upper bound of 9 agents and settles
the question of the optimal number of agents in the gray-hole case. Finally, we
propose a protocol with 7 agents when the whiteboard of the malicious host
is unreliable, significantly improving the previously known upper bound of 27
agents. Along the way, we set forth a detailed framework for studying networks
with malicious hosts of varying capabilities.

In order to derive the lower bounds, we make extensive use of certain configu-
rations which the adversary can enforce in a benign execution (i.e., an execution
in which the malicious host obeys the protocol), in particular 2-traversals and
3-traversals (informally, configurations in which some agent traverses an edge
“with the intention” to eventually advance one or two more edges in the same
direction, respectively). We are then able to exploit the fact that we can think of
the adversary as not having to commit to a particular location of the malicious
host as long as the execution remains benign. For the upper bound in the case of
the gray hole, we use the well known cautious step technique, which is also em-
ployed in [20]. However, in our case the agent marks both nodes involved in the
cautious step, thus considerably reducing the number of agents that can enter
the same link from the opposite direction. When the malicious host whiteboard
is unreliable, we employ a natural extension of the cautious step, the cautious
double step.

Due to lack of space, all missing proofs, as well as the detailed pseudocode
for the proposed algorithms, are deferred to the full version of the paper.

2 Preliminaries

2.1 System Model

The agents operate in a ring network where each node contains one host (we
will use the terms “host” and “node” interchangeably). Each host is identified
by a unique label, and is connected to each of its two neighbors via labeled
communication ports. Each port is associated with two order-preserving queues:
one for incoming agents and a second one for outgoing agents. Additionally, each
host contains a whiteboard, i.e., a piece of memory that is shared among the
agents present in the node at any given time, and a queue of agents who are
waiting to acquire access to the whiteboard. Neighboring hosts are connected
via bidirected asynchronous FIFO links, forming an undirected graph G.

The agents are modeled as deterministic three-tape Turing machines: the
first tape serves as the private memory of the agent, the second tape holds the
label of the port to which the agent wishes to be transferred, and the third tape
holds a copy of the whiteboard of the current node, if the agent has acquired
access to the whiteboard. All agents are initially located on the same node of
the network, which we will call “the homebase.” Each agent possesses a distinct
identifier and knows the complete map of the network. The only way for agents
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to interact with each other is through the whiteboards: they are not aware of
the presence of other agents on the same node or on the same link, and they
cannot exchange private messages.

Each host is responsible for removing agents from the front of its incoming
queue and executing them, i.e., advancing each agent’s state according to its
transition function until the agent requests to be transferred. We assume that
this happens in one atomic step, i.e., as soon as one agent A is removed from
the front of an incoming queue, no other agent in that node can execute a
transition before A executes its own first transition. The host is also responsible
for executing the agent that is at the front of the whiteboard queue. Finally,
the host is responsible for removing agents from the front of its outgoing queues
and transmitting them over the link to the neighboring node (the whiteboard
tape is not transmitted). The host has to perform these tasks while ensuring
that no queue is neglected for an infinite amount of time. Each host is capable of
executing multiple agents concurrently. The set of states of each agent contains
special states corresponding to the following actions:

1. Request the whiteboard lock (qreq): When an agent enters this state, it is
inserted in the whiteboard queue. We assume that this happens atomically,
i.e., any other agent who subsequently enters this state will be placed in
the whiteboard queue behind this agent. Its execution is suspended until
it reaches the front of the queue. When this happens, the host continues
to execute this agent (possibly concurrently with other agents who are not
accessing the whiteboard) without removing him from the whiteboard queue.
Simultaneously with the transition from qreq, the whiteboard of the node is
copied to the third tape of the agent.

2. Release the whiteboard lock (qrel): When an agent enters this state, its white-
board tape is copied back to the whiteboard of the node and the agent is
removed from the whiteboard queue.

3. Leave through a specified port (qport): When an agent enters this state, it is
atomically inserted in the outgoing queue of the port indicated on its second
tape. If the agent has not yet released the whiteboard lock, its whiteboard
tape is also copied back to the whiteboard of the node and the agent is
removed from the whiteboard queue.

Note that an agent actually traverses a link only when the source host decides
to remove it from the outgoing queue and transmit it to the target host. Link
traversal is not instantaneous. Its duration is determined by the adversary.

The system is asynchronous, meaning that any agent can be stalled for an
arbitrary but finite amount of time while executing any computation or travers-
ing any link. We assume that the system contains exactly one malicious host
which may deviate from the system specification in several ways:

Definition 1 (Malicious behavior from the malicious host). The mali-
cious host in the system may choose to:

1. Kill any agent which is stored in any of its queues or is being executed. In
this case, the agent disappears without leaving any trace, apart from what it
may have already written on the whiteboards.
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2. Operate without fairness, i.e., it can neglect one or more of its queues forever.
3. Transmit an agent to a node different from the one that it requested to be

transmitted to, or it can transmit an agent without the agent asking for a
transmission, or misreport its own node label to agents requesting it.

4. Execute (resp. forward) any agent in the incoming or the whiteboard (resp.
outgoing) queues, without respecting the queue order.

5. Create and execute multiple copies of an agent at any stage.
6. Provide to each agent that requests access to the whiteboard an arbitrary

whiteboard tape, possibly erroneous or inconsistent with the whiteboard tapes
that it has provided to the other agents.

We classify the various types of malicious host behavior in order of increasing
power as follows:

Definition 2. The malicious host is called:

– 1-malicious or black hole if it kills every agent that appears in any of its
queues at every time t ≥ 0.

– 2-malicious if it kills every agent that appears in any of its queues or is being
executed at every time t ≥ t0, where t0 ≥ 0 is chosen by the adversary. Until
time t0, which may even be equal to +∞, it acts as a safe node.

– 3-malicious or gray hole if it can choose whether to deviate (or not) from
the protocol in the way described in item 1 of Definition 1 at any time t ≥ 0.

– 4-malicious if it can choose whether to deviate (or not) from the protocol in
any of the ways described in items 1-5 of Definition 1 at any time t ≥ 0.

– 5-malicious or red hole if it can choose whether to deviate (or not) from the
protocol in any of the ways described in items 1-6 of Definition 1 at any time
t ≥ 0.

The agents do not have any information on the location of the malicious host,
except from the fact that the homebase is safe.

2.2 Periodic Data Retrieval

We assume that every host in the system generates over time an infinite sequence
of data items, all of which have to eventually reach the homebase. The agents
operate in the network and their aim is to deliver the data from any safe node
to the homebase infinitely often. Once an agent has acquired a chunk of data
items from a host, the data may be stored at an intermediate node and possibly
read by another agent before reaching the homebase. This problem is known as
the Periodic Data Retrieval problem [20].

Definition 3. An instance of Periodic Data Retrieval is a tuple 〈G, λ,H, k, ω,m〉,
where G is an undirected graph, λ is a function that assigns labels to nodes and
local ports of the nodes, H ∈ V (G) is the homebase, k is a positive integer rep-
resenting the number of agents starting on the homebase, ω ∈ V (G) \ {H} is
the malicious host, and m ∈ {1, 2, 3, 4, 5} is the maliciousness level of ω as per
Definition 2.
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Definition 4. An execution of an algorithm on an instance is completely de-
termined by a sequence of choices made by the adversary. The adversary can
choose which agents are activated at any given time, the speed at which agents
are executed and the speed at which they perform each edge traversal, as well
as any malicious behavior on the part of the malicious host. An execution E ′

is a continuation of an execution E from time t0 if E ′ is identical to E up to
time t0. An execution is called benign if the malicious host exhibits no malicious
behavior.

During an execution, we will say that an agent is frozen, either on an edge
or at a node, if the adversary has decided to delay the actions of that agent. If
an agent is frozen at some time t, the adversary has to unfreeze it at some finite
time t′ > t.

Definition 5. Given an execution of an algorithm, a node v is said to be t-
reported if there exists a time t′ > t such that at time t′ the homebase whiteboard
contains all the data items that v has generated up to time t.

Definition 6. An algorithm A is (k,m)-correct if for every Periodic Data Re-
trieval instance I = 〈G, λ,H, k, ω,m〉, for every execution E of A on I, for every
node v ∈ V (G) \ {ω}, and for every time t, node v is t-reported.

Remark 1. A necessary condition for v to be t-reported is that there exist a
natural number r, a sequence of (not necessarily distinct) agents A0, . . . , Ar, a
sequence of nodes v0, . . . , vr, and an increasing sequence of times t0 < · · · < tr,
such that v0 is v, vr is the homebase, t ≤ t0, and, for each i, agent Ai visits
node vi at time ti and node vi+1 at time t′i, where ti < t′i < ti+1. If ω is a red
hole, then in addition we must have that ω 6∈ {v0, . . . , vr}.

Propositions 1-3 follow directly from the definitions.

Proposition 1. Let A be any algorithm. Every execution of A on some in-
stance I = 〈G, λ,H, k, ω,m〉 is also an execution of A on I ′ = 〈G, λ,H, k, ω,m′〉,
where m′ ≥ m.

Proposition 2. If an algorithm is (k,m)-correct, then it is (k,m′)-correct for
all m′ ≤ m.

Proposition 3. Let A be any algorithm. Every benign execution of A on some
instance I = 〈G, λ,H, k, ω,m〉, where m ≥ 2, is also a benign execution of A on
I ′ = 〈G, λ,H, k, ω′, 2〉, for all ω′ ∈ V (G) \ {H}.

3 Lower Bounds on the Number of Agents

In this section, we give lower bounds on the number of agents required to achieve
Periodic Data Retrieval in rings with gray holes (Section 3.1) and red holes
(Section 3.2). We give two more definitions before presenting the results. Let Cn

denote an undirected ring with n nodes.
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Definition 7 (Waiting). Let E be an execution of an algorithm A on in-
stance I = 〈G, λ,H, k, ω,m〉. Let W be a set of nodes that induces a connected
subgraph G(W ) of G. We say that an agent A is waiting on W at time t0 under E
if the agent is in G(W ) at time t0 and, under any continuation of E from t0 in
which agent A does not perceive any changes in the whiteboard contents of the
nodes in W (with respect to their contents at time t0) except for those made by
itself, agent A never leaves G(W ).
When W = {v}, we will say that agent A is waiting on the node v. When
W = {u, v}, we will say that agent A is waiting on the edge (u, v).

Definition 8 (ℓ-traversal). Let E be an execution of A on I = 〈Cn, λ,H, k, ω,m〉
and let ℓ ≥ 1. We say that an agent A performs an ℓ-traversal from node v0 at
time t0 under E if all of the following hold:

1. Nodes v0, v1, . . . , vℓ are successive on the ring and none of them is the home-
base.

2. At time t0, agent A traverses the edge (v0, v1).
3. At time t0, no other agent is located on nodes v1, . . . , vℓ−1 or their incident

edges.
4. Under any continuation of E from t0 in which agent A is not killed and the

only changes in the whiteboards of nodes v1, . . . , vℓ−1 (with respect to their
contents at time t0) that are observed by agent A until it reaches node vℓ are
the changes made by itself, agent A reaches node vℓ in finite time without
visiting node v0 in the meantime.

Note that a 1-traversal is simply a traversal of an edge that is not incident to
the homebase. A direct corollary of Definition 8 is the following:

Corollary 1. If there exists an execution E of A on I = 〈Cn, λ,H, k, ω,m〉
such that properties 1–3 of Definition 8 hold and, in addition, there exists a
continuation of E from t0 such that agent A reaches node vℓ in finite time without
visiting node v0 in the meantime and no other agent traverses any of the edges
(v0, v1) and (vℓ−1, vℓ) from t0 up to the first time when agent A reaches node vℓ,
then agent A performs an ℓ-traversal from node v0 at time t0 under E.

3.1 Three Agents are not Enough for Gray Holes

The inexistence of (1, 3)-correct or (2, 3)-correct algorithms has already been
demonstrated in [20]. In this section, we show that no algorithm can be (3, 3)-
correct. We achieve this by proving that, if there existed a (3, 3)-correct algo-
rithm, then the adversary would be able to force one of the agents to perform
a 2-traversal (Lemma 3). However, we also prove that if any agent performs a
2-traversal while executing a (3, 3)-correct algorithm, then the adversary can
kill all three agents (Lemma 4). This establishes that a (3, 3)-correct algorithm
cannot exist.

Before we can prove Lemma 3, we need Definition 9, Lemmas 1 and 2, and
Proposition 4 below.
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Definition 9. A 3-converging configuration occurs at a node v whenever there
is one agent on v and two agents traversing links toward v.

Lemma 1. Let A be a (3, 3)-correct algorithm and let I = 〈G, λ,H, 3, ω, 3〉. If
there exists a benign execution E of A on I under which an agent A waits on
a node v which is at distance two or more from the homebase at some time t0,
then there exists a benign continuation of E from t0 in which a 3-converging
configuration occurs at v.

Proof. Let A be the agent that starts waiting on v at time t0 under E . Note that,
under any benign continuation of E from t0, at least one other agent B has to
visit node v. Otherwise, we could choose an instance I ′ = 〈G, λ,H, 3, ω′, 3〉 where
ω′ 6∈ {H, v}, in which, by Propositions 1 and 3, we would have a benign execution
under which the safe node v would never be reported. Therefore, under E , there
must exist a time t1 ≥ t0 when some agent B traverses the edge (u, v), where u

is a neighbor of v, while A is still waiting on v.
We now continue E from t1 in an arbitrary benign manner, except that

we keep agent B frozen on the link (u, v). Let E(1) be the resulting execu-
tion. For the sake of contradiction, suppose that, under E(1), there does not
occur a 3-converging configuration at v at any time after t1. This implies that
the third agent C never traverses any link incident to v. Consider an execu-
tion E(2) which is identical to E(1), except that, at time t1, agent B is killed by u

while it is in its outgoing queue. Clearly, E(2) is a valid execution for the in-
stance I ′′ = 〈G, λ,H, 3, u, 3〉. Moreover, for each node, the contents of its white-
board under E(2) on instance I ′′ at any time t are identical to to the contents
of its whiteboard under E(1) on instance I at time t. This implies that the re-
maining agent C after time t1 will perform exactly the same actions under E(2)

on I ′′ as under E(1) on I. In particular, C will never visit node v under E(2)

on I ′′. This contradicts the correctness of A, since the safe node v will never be
reported. ⊓⊔

Lemma 2. Let A be a (3, 3)-correct algorithm and let I = 〈G, λ,H, 3, ω, 3〉.
Under any benign execution E of A on I, no agent can ever wait on any node
at distance two or more from the homebase.

Proof. Suppose that there exists a benign execution E of A on I, under which
some agent waits on v at time t0, where v is at distance two or more from H .
By Lemma 1, there exists a benign continuation E(1) of E from t0 in which
a 3-converging configuration occurs at v at time t1 ≥ t0. By Propositions 1
and 3, E(1) is also a benign execution on I ′ = 〈G, λ,H, 3, v, 3〉. Consider an
execution E(2) on I ′, which is identical to E(1) up to time t1, at which point
all three agents are unfrozen and killed by v upon arrival. The existence of E(2)

contradicts the correctness of A. ⊓⊔

Proposition 4. Let A be a (k,m)-correct algorithm with m ≥ 2 and let I =
〈G, λ,H, k, ω,m〉 with |V (G)| ≥ 3. Under any benign execution of A on I, for
every time t0, every node must be visited at least once by some agent after t0.
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Proof. Suppose that there exists a time t0 and a benign execution E of A on I
in which some node v is never visited by any agent after t0. By Proposition 3,
E is an execution on I ′ = 〈G, λ,H, k, ω′, 2〉, where ω′ 6∈ {H, v}. But then v is
a safe node in I ′ and it is never visited under E after t0. This contradicts the
correctness of A. ⊓⊔

Lemma 3. Let A be a (3, 3)-correct algorithm and let I = 〈Cn, λ,H, 3, ω, 3〉
with n ≥ 6. There exists a benign execution of A on I under which some agent
performs a 2-traversal.

Proof. Let H → u → v → w and H → u′ → v′ → w′ be the two paths of length
three extending from the homebase in the two possible directions.

We construct the claimed benign execution as follows: As long as all the
agents are confined in the nodes {H,u, u′} and in the edges incident to the
homebase, we perform an arbitrary benign execution. Whenever one agent, which
we will call “stray”, traverses the edge (u, v) or (u′, v′), we perform an arbitrary
benign execution in which all agents except the stray agent are frozen until either
it goes back to distance one from the homebase (i.e., back to node u or u′) or it
reaches distance three from the homebase (i.e., node w or w′).

Note that, in view of Lemma 2, the stray agent never waits on nodes v, v′.
Therefore, every stray agent eventually either goes back to distance one or
reaches distance three from the homebase. Moreover, by Proposition 4, we must
have at least one stray agent and, in particular, we must have at least one
that reaches distance three from the homebase. Let A be the first stray agent
that reaches distance three (without loss of generality, assume that it reaches
node w), and let t0 be the last time before it reached w at which it traversed
the edge (u, v).

We claim that agent A performed a 2-traversal from node u at time t0. It
is straightforward to verify that properties 1–3 of Definition 8 are satisfied. The
claim follows by Corollary 1. ⊓⊔

Before we can prove Lemma 4, we need Proposition 7 below. Propositions 5
and 6 are stated without proof.

Proposition 5. Let A be any algorithm and let E be a benign execution of A
on I = 〈G, λ,H, k, ω,m〉, m ≥ 2, such that at some time t0 a set D of agents
are either on a certain node v 6= H or on its incident edges, traversing them in
any direction. Then, there exists an execution E ′ of A on I ′ = 〈G, λ,H, k, v, 2〉
such that all agents in D are killed by v.

Proposition 6. Let A be any algorithm and let E be a benign execution of A
on I = 〈G, λ,H, k, ω,m〉, m ≥ 2, such that after some time t0 a set D of
agents are frozen either on a certain node v 6= H or on its incident edges, while
traversing them in any direction. Furthermore, no other agent traverses the edges
incident to v after time t0. Then, there exists an execution E ′ of A on I ′ =
〈G, λ,H, k, v, 2〉 such that all agents in D are killed by v and the remaining
agents perform exactly the same actions as under the execution E on I.
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Proposition 7. Let A be a (k,m)-correct algorithm with m ≥ 2 and let I =
〈G, λ,H, k, ω,m〉. Let E be a benign execution of A on I such that, at some
time t0, a set D of agents are traversing the same edge (u, v) in any direction,
with H 6∈ {u, v}. Then, there exists an instance I ′ = 〈G, λ,H, k, ω′, 2〉 and an
execution E ′ of A on I ′ under which at least min{k, |D|+ 1} agents are killed.

Proof. Let D denote the set of agents traversing edge (u, v) at time t0 under E .
By Proposition 5, there exists an execution on I ′ = 〈G, λ,H, k, v, 2〉 under which
at least |D| agents are killed. This proves the claim in the case where |D| = k.
Now, assume that |D| < k. Consider an arbitrary benign continuation E ′ of E
from t0 in which all the agents in D are frozen on the edge (u, v). At least one
agent must visit node u or v under E ′ after time t0.

If not, then we obtain a contradiction as follows: By Proposition 3, E ′ is a
benign execution of A on I ′ = 〈G, λ,H, k, v, 2〉. Moreover, by Proposition 6,
there exists an execution E ′′ of A on I ′ under which all agents in D are killed
and, by assumption, no agent ever visits the safe node u after time t0. Therefore,
algorithm A is not (k, 2)-correct and hence, by Proposition 2, it is not (k,m)-
correct for any m ≥ 2.

So, without loss of generality, some agent A 6∈ D visits node u at some time
after t0 under execution E ′ on I. By Proposition 5, there exists an execution
on I ′′ = 〈G, λ,H, k, u,m〉 under which all the agents in D∪{A} are killed by u.

⊓⊔

Lemma 4. Let A be a (3, 3)-correct algorithm and let I = 〈Cn, λ,H, 3, ω, 3〉.
Under any benign execution of A on I, no agent can ever perform a 2-traversal.

Proof. Suppose that there exists a benign execution E of A on I, under which
some agent A performs a 2-traversal from v at time t0, and let v, w, x be the nodes
that A intends to traverse. We continue E from t0 by performing an arbitrary
benign execution in which agent A is frozen on (v, w). Let E(1) be the resulting
benign execution. Under E(1), there must exist a time t1 ≥ t0 when another
agent B traverses a link incident to w.

If not, then we obtain a contradiction as follows: Let E(2) be an execution
which is identical to E(1), except that at time t0, agent A is killed by node v while
it is in its outgoing queue. Clearly, E(2) is a valid execution on instance I ′ =
〈Cn, λ,H, 3, v, 3〉, under which the safe node w is never reported after t0.

Now, under E(1), agent B traverses one of the two links (v, w) or (x,w) at
time t1. In the first case, Proposition 7 applies immediately and it yields an
instance on which all three agents are killed, thus contradicting the correctness
of A. In the second case, we continue E(1) from t1 by freezing all agents except A.
Since A is in the process of performing a 2-traversal and the whiteboard of w
has not changed with respect to time t0, A will traverse the link (w, x) in finite
time. Again by Proposition 7, we get that A is incorrect. ⊓⊔

By Lemmas 3 and 4, the existence of a (3, 3)-correct algorithm yields a con-
tradiction. Therefore, we have proved the following:

Theorem 1. There does not exist a (3, 3)-correct algorithm.
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3.2 Four Agents are not Enough for Red Holes

In view of Proposition 2, the impossibility result in [20] together with Theo-
rem 1 imply that there do not exist (1, 5)-correct, (2, 5)-correct, or (3, 5)-correct
algorithms. In this section, we show that no algorithm can be (4, 5)-correct. To
this end, we first prove in Lemma 7 that, under any (4, 5)-correct algorithm, the
adversary can force some agent to perform a 3-traversal (in fact, this can even
be enforced under any (4, 3)-correct algorithm). Then, we derive a contradiction
by showing in Lemma 8 that if an agent performs a 3-traversal, then four agents
can die in the red hole and thus the algorithm cannot be (4, 5)-correct.

Before proving Lemma 7, we need Lemmas 5 and 6 below.

Lemma 5. Let A be a (4, 3)-correct algorithm and let I = 〈Cn, λ,H, 4, ω, 3〉
with n ≥ 9. If there exists a benign execution E of A on I under which an agent
waits on a node which is at distance two or more from the homebase at some
time t0, then there exists a benign continuation of E from t0 in which some agent
performs a 3-traversal.

Proof. We will construct a continuation of E from t0 with the desired property.
Let A be the agent that starts waiting on some node v at time t0. Note that,
under any benign continuation of E from t0, at least one other agent B has to
visit node v. Otherwise, we could choose an instance I ′ = 〈Cn, λ,H, 4, ω′, 3〉 with
ω′ 6= v, in which, by Propositions 1 and 3, we would have a benign execution
under which the safe node v would never be reported. Therefore, under E , there
must exist a time t1 ≥ t0 when some agent B traverses the edge (u, v), where u

is a neighbor of v.
We now continue the execution from t1 in an arbitrary benign manner, except

that we freeze every agent that traverses edge (u, v). Let E(1) be the resulting
execution and let w be the other neighbor of v. Exactly one of the following can
happen under E(1):

1. No agent ever traverses edge (w, v) after t1 and there exists a time t2 ≥ t1
when k ≥ 1 agents are frozen on edge (u, v) and no agent ever attempts to
traverse edge (u, v) after t2.

2. There exists a time t2 ≥ t1 when some agent C traverses edge (w, v) and
k ≥ 1 agents are frozen on edge (u, v).

In case 1, consider an execution E(2) which is identical to E(1) except that,
at time t2, all agents which are attempting to traverse edge (u, v) are killed
by u while they are in its outgoing queue. Clearly, E(2) is a valid execution for
the instance I ′ = 〈Cn, λ,H, 4, u, 3〉. Moreover, for each node, the contents of its
whiteboard under E(2) on instance I ′ at any time t are identical to the contents
of its whiteboard under E(1) on instance I at time t. This implies that any
remaining agents after time t2 will perform exactly the same actions under E(2)

on I ′ as under E(1) on I. In particular, no agent will traverse the edge (w, v)
under E(2) on I ′. This contradicts with the correctness of algorithm A, since the
safe node v will never be reported. Thus, case 1 cannot happen.
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In case 2, note that we must have k ≤ 2, since there are a total of four agents
operating on G. We can rule out the case k = 2 as follows: E(1) is a benign exe-
cution, so by Propositions 1 and 3 it is valid for instance I ′′ = 〈Cn, λ,H, 4, v, 3〉.
But, on instance I ′′, we can continue E(1) from t2 by unfreezing all agents and
killing all of them on node v. This contradicts the correctness of A.

The only remaining possibility, then, is to have agent A waiting on node v,
agent B frozen on edge (u, v), and agent C attempting to traverse edge (w, v)
at time t2 under E(1). We freeze agent C at time t2 and continue E(1) from t2
in an arbitrary benign manner while keeping agents B,C frozen. Let E(3) be
the resulting execution. By reiterating the argument of the previous paragraph,
we can rule out the possibility of the remaining agent D traversing any of the
edges (u, v), (w, v). We now claim that, while agents B and C are frozen, agent D
must visit periodically all of the nodes in G except v. Indeed, if there is a
time t3 ≥ t2 after which agent D never visits node x 6= v under E(3), then
consider the execution E(4) on I ′′ which is identical to E(3) up to time t3, when
agents B,C are unfrozen and killed together with agent A on node u. The
trajectory of D under E(4) on I ′′ will be exactly the same as under E(3) on I,
therefore the safe node x will never be reported. This contradicts the correctness
of A.

We conclude, then, that, under the benign execution E(3), which is a con-
tinuation of E from t0, agent D must traverse at least once after time t2 the
arc u  w that does not contain v. Moreover, agent D will be the only agent
that is moving during that time. Therefore, since the ring contains at least 9
nodes, agent D will perform a 3-traversal by Corollary 1. ⊓⊔

Lemma 6. Let A be a (4, 3)-correct algorithm and let I = 〈Cn, λ,H, 4, ω, 3〉 with
n ≥ 9. If there exists a benign execution E of A on I in which, at some time t0,
two agents are traversing an edge (u, v) in any direction, where H 6∈ {u, v}, then
there exists a benign continuation of E from t0 in which some agent performs a
3-traversal.

Proof. Let A and B be the agents that are traversing edge (u, v) at time t0
under E . Let E(1) be an arbitrary benign continuation of E from t0, under which
agents A and B are frozen on edge (u, v).

We claim that there must exist a time t1 ≥ t0 when some agent C traverses
either (w, u) or (x, v) under E(1), where w and x are the other neighbors of u
and v, respectively. Otherwise, consider an execution E(2) which is identical
to E(1) except that, at time t0, agents A and B are killed by u. Clearly, E(2) is a
valid execution for the instance I ′ = 〈Cn, λ,H, 4, u, 3〉. Moreover, for each node,
the contents of its whiteboard under E(2) on I ′ at any time t are identical to the
contents of its whiteboard under E(1) on I at time t. This implies that the safe
node v in I ′ will never be visited after time t0 under E(2). This contradicts the
correctness of A.

Without loss of generality, we assume that at time t1, agent C traverses
edge (w, u) under E(1). Consider an arbitrary benign continuation E(3) of E(1)

from t1 in which agents A, B, and C are frozen. Agent D cannot traverse any
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of (w, u) or (v, u), otherwise the algorithm would fail on the instance I ′ (every
agent would be killed by u). Moreover, agent D must visit periodically all nodes
in Cn except u, otherwise the algorithm would again fail on the instance I ′. We
conclude, then, that, under the benign execution E(3), which is a continuation
of E from t0, agent D must traverse at least once after time t2 the arc w  v

that does not contain u. Since the ring contains at least 9 nodes, agent D will
perform a 3-traversal. ⊓⊔

Lemma 7. Let A be a (4, 3)-correct algorithm and let I = 〈Cn, λ,H, 4, ω, 3〉
with n ≥ 9. There exists a benign execution of A on I under which some agent
performs a 3-traversal.

Proof. Let H → u → v → w and H → u′ → v′ → w′ be the two paths of length
three extending from the homebase in the two possible directions. Our first goal
is to prove that there exists an execution E of A on I under which some agent
performs a 2-traversal.

We construct E as follows: We perform an arbitrary benign execution as long
as all the agents are confined in the nodes {H,u, u′} and in the edges incident to
the homebase. Whenever one agent, which we will call “stray”, traverses the edge
(u, v) or (u′, v′), we perform an arbitrary benign execution in which all agents
except the stray agent are frozen until either it goes back to distance one from
the homebase (i.e., node u or u′), or it reaches distance three from the homebase
(i.e., node w or w′).

Note that, in view of Lemma 5, we may assume that the stray agent does not
wait on node v or v′, for otherwise the proof is complete. Therefore, every stray
agent eventually either goes back to distance one or reaches distance three from
the homebase. Moreover, by Proposition 4, we must have at least one stray agent
and, in particular, we must eventually have one that reaches distance three from
the homebase.

Let A be the first stray agent that reaches distance three and, without loss of
generality, assume that it has strayed in the direction of nodes {u, v, w}. Let t0 be
the last time before it reached w at which it traversed the edge (u, v). We claim
that agent A performed a 2-traversal from node u at time t0. Indeed, properties
1-3 of Definition 8 are easily seen to hold and the claim follows by Corollary 1.

Now, let E(1) be an arbitrary benign continuation of E from t0 in which
agent A is frozen on the edge (u, v) and the other agents are unfrozen. Under E(1),
there must exist a time t1 ≥ t0 when another agent B traverses a link incident
to v.

If not, then we obtain a contradiction as follows: Let E(2) be an execution
which is identical to E(1), except that at time t0, agent A is killed by node u while
it is in its outgoing queue. Clearly, E(2) is a valid execution on instance I ′ =
〈Cn, λ,H, 4, u, 3〉, under which the safe node v is never reported after t0.

Now, under E(1), agent B traverses one of the two links (u, v) or (w, v) at
time t1. In the first case, Lemma 6 applies immediately and it yields a benign
continuation under which some agent preforms a 3-traversal. In the second case,
we continue E(1) from t1 by freezing all agents except A. Since A is in the process
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of performing a 2-traversal and the whiteboard of v has not changed with respect
to time t0, A will traverse the link (v, w) in finite time. Again by Lemma 6, we
obtain a benign continuation under which some agent performs a 3-traversal. ⊓⊔

Lemma 8. Let A be a (4, 5)-correct algorithm and let I = 〈Cn, λ,H, 4, ω, 5〉.
Under any benign execution of A on I, no agent performs a 3-traversal.

Proof. Suppose that there exists a benign execution E of A on I, under which
some agent A performs a 3-traversal from u at time t0, and let u, v, w, x be the
nodes that A intends to traverse in that 3-traversal. Let y be the other neighbor
of x.

We freeze A and perform a benign continuation of E from t0 with the following
properties: All agents except those which are frozen on (u, v) are executed in an
arbitrary benign manner. Whenever any agent attempts to traverse (u, v), it is
frozen and remains frozen. Whenever one agent, which we will call “inbound”,
traverses (x,w), all agents except the inbound agent are frozen. We have the
following cases regarding the behavior of the inbound agent:

1. The inbound agent reaches node v in finite time, without attempting to
traverse (x, y).

2. The inbound agent traverses the edge (w, x) back and forth a finite number of
times without attempting to traverse (x, y), and in finite time starts waiting
on w.

3. The inbound agent traverses the edge (w, x) back and forth a finite number of
times without attempting to traverse (x, y), and at some finite time t1 starts
waiting on (w, x). Moreover, there exists a benign continuation from t1 in
which all agents except those on edge (u, v) are activated, such that at some
time t2 ≥ t1 some agent (other than the inbound agent) traverses (x,w).

4. The inbound agent traverses the edge (w, x) back and forth a finite number
of times without attempting to traverse (x, y), and at some finite time t1
starts waiting on (w, x). Moreover, under every benign continuation from t1
in which all agents except those on edge (u, v) are activated, no agent other
than the inbound agent traverses (x,w).

5. The inbound agent traverses the edge (w, x) back and forth a finite number of
times without attempting to traverse (x, y), and in finite time starts waiting
on x.

6. The inbound agent traverses the edge (w, x) back and forth a finite number
of times and in finite time traverses (x, y).

If the inbound agent falls in one of the cases 4-6, the execution continues as
follows: In case 4, we continue from t1 by performing an arbitrary benign exe-
cution of all agents except those on (u, v), which are frozen. There must exist
a time t2 ≥ t1 at which the whiteboard contents of x are such that the in-
bound agent stops waiting on (x,w), otherwise the algorithm fails on the in-
stance I ′ = 〈Cn, λ,H, 4, u, 5〉 by killing all agents attempting to traverse (u, v),
because the safe node v will never be visited after t0. At time t2, we freeze ev-
ery agent except the inbound agent and allow it to arrive at node x. Then, we
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Fig. 1. Different continuations in the proof of Lemma 8, when the inbound agent B

falls in case 1. Dashed lines illustrate the agent’s intended trajectory. Hosts are shown
as white-filled circles, except after the adversary has committed to the location of the
malicious host, which is then shown as a black-filled circle.

continue the execution in an arbitrary benign manner (still keeping the agents
on (u, v) frozen) until there is a new inbound agent. In cases 5 and 6, let t1 be
the time at which the inbound agent starts waiting on x or attempts to tra-
verse (x, y). Again, we continue the execution from t1 in an arbitrary benign
manner, keeping the agents on (u, v) frozen, until there is a new inbound agent.

We now claim that at least one inbound agent will fall in one of the cases 1-3.
Indeed, if all inbound agents fall in cases 4-6, then the algorithm fails on the
instance I ′ = 〈Cn, λ,H, 4, u, 5〉 by killing all agents attempting to traverse (u, v),
because the safe node v will never be visited after t0. Let B be the first inbound
agent that falls in one of the cases 1-3 and let t3 be the time at which it tra-
verses (x,w) for the first time. Figure 1 illustrates the rest of the proof when B

falls in case 1.

Let E(1) be the benign execution described so far. We construct a contin-
uation E(2) of E(1) from t3, distinguishing three cases according to the case in
which the inbound agent B belongs:

Case 1. Freeze all agents but B and activate it until the time t4 ≥ t3 at which
it traverses (x,w) for the last time. At time t4, freeze B and all agents on (u, v)
and take an arbitrary benign continuation from t4. At some time t5 ≥ t4, some
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agent C must traverse (x,w), otherwise the algorithm fails on the instance I ′′ =
〈Cn, λ,H, 4, v, 5〉 (the safe node w is never visited).

Case 2. Freeze all agents but B and activate it until the time t4 ≥ t3 at which
it traverses (x,w) for the last time. At time t4, freeze B and all agents on (u, v)
and take an arbitrary benign continuation from t4. At some time t5 ≥ t4, some
agent C must traverse (x,w), otherwise the algorithm fails on the instance I ′′ =
〈Cn, λ,H, 4, v, 5〉 (B never leaves the safe node w, which is never reported).

Case 3. Freeze all agents but B and activate it until the time t4 ≥ t3 at
which it starts waiting on (x,w). Now, take a benign continuation from t4 in
which all agents except those on edge (u, v) are activated, and in which at some
time t5 ≥ t4 some agent C traverses (x,w), tweaking it a little bit if necessary so
that agent B is traversing (x,w) in any direction at time t5. This continuation
exists by our assumption for case 3.

Note that, in any case, E(2) is a benign execution of A on I, so by Proposi-
tions 1 and 3 it is a benign execution of A on Iw = 〈Cn, λ,H, 4, w, 5〉. Moreover,
note that the whiteboard contents of v at time t5 are the same as at time t0,
whereas the whiteboard contents of w may have changed. Let D be the fourth
agent. Consider the following continuation E(3) of E(2) on Iw: Agents B, C,
and D are frozen and agent A is allowed to move. Every time A visits w, the
malicious node w presents to A the appropriate whiteboard contents that will
allow it to conclude its intended 3-traversal by traversing the edge (w, x) at some
time t6 ≥ t5.

We now construct a different continuation E(4) of E(1) from t3 as follows: All
agents except A are frozen and A is allowed to complete its intended 3-traversal
by traversing (w, x) at some time t7 ≥ t3. Note that the whiteboard contents of v
and w at time t3 are the same as at time t0, therefore the 3-traversal will indeed
be completed. Note that E(4) is a benign execution of A on I, so by Propositions 1
and 3 it is a benign execution of A on Ix = 〈Cn, λ,H, 4, x, 5〉. Consider the
following continuation E(5) of E(4) from t7 on Ix: Agents A and B are frozen
and the two remaining agents are executed exactly in the same manner as they
were executed under E(2) from time t3 and on. Every time one or both of them
visit the malicious node x, they are presented with the appropriate whiteboard
contents that will allow them to replicate the execution E(2). By construction
of E(2), at some time t8 ≥ t3, the same agent C as under the execution E(2) will
traverse (x,w). Moreover, at that time, the remaining agent D will be in exactly
the same position and state, and the whiteboard contents of all nodes in the
arc v  H  y will be exactly the same.

This implies that, under any continuation of E(3) from t6 on Ix in which
only D is allowed to move and under any continuation of E(5) from t8 on Iw in
which only D is allowed to move, D will perform exactly the same actions. In
particular, it must visit at least one of the nodes {w, x}, otherwise the algorithm
fails on both Iw and Ix by having the respective malicious host kill the three
agents A, B, and C while they are traversing (w, x). But if D visits w, then
the algorithm fails on Iw by having the malicious host w kill all agents when D
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arrives. Similarly, if D visits x, the algorithm fails on Ix. This contradicts the
correctness of A. ⊓⊔

By Lemmas 7 and 8 and Propositions 1 and 2, the existence of a (4, 5)-correct
algorithm yields a contradiction. Therefore, we have proved the following:

Theorem 2. There does not exist a (4, 5)-correct algorithm.

4 An Optimal Algorithm for Rings with a 4-Malicious

Host

In view of Theorem 1, no algorithm can achieve Periodic Data Retrieval on a
ring with a 4-malicious host using only three agents (in fact, not even on a ring
with a 3-malicious host). In this section, we present algorithm PDR_Rings_4-

malicious, which solves the problem in the presence of a 4-malicious host in a
ring, using an optimal number of four agents.

Remark 2. In order to simplify the presentation, we will not make explicit the
part of the algorithm that is responsible for picking up the data from nodes
and delivering it to the homebase or to an intermediate node to be picked up by
another agent. We assume that each agent, after getting access to the whiteboard
of any node, reads all the node data that has been generated from the node or
left there from other agents and also leaves a copy of the node data that it is
already carrying but is not present in the node. In the following, we will deal
explicitly only with the part of the algorithm that ensures that four agents are
sufficient to ensure Periodic Data Retrieval in the presence of a 4-malicious host.

Before presenting the algorithm, we outline the interface exposed by the
nodes to visiting agents:

– Each node exposes to the agents two functions: getNodeID() and transfer(port).
The former returns the ID of the current node (recall that this may be mis-
reported by ω). The latter places the agent in the outgoing queue of the port
specified in its argument, releasing the whiteboard lock if necessary.

– Additionally, each node exposes to the agents which it is executing the white-
board object WB , which has two members, WB .list and WB .flags , and two
methods, WB .access() and WB .release(). WB .access() requests the white-
board lock and thus results in the agent being placed in the whiteboard
queue. The agent remains inactive until it reaches the front of the queue.
At that point, it gains access to WB .list and WB .flags . WB .list contains
quadruples of the form 〈id, op, port, s〉, where id is an agent identifier, op
is one of the constants {ARR,DEP}, port is a port number, and s is a
non-negative integer. If op = ARR, the entry means that the agent with
the specified id arrived from the specified port after traversing s edges. If
op = DEP, the entry means that the agent with the specified id departed
from the specified port before traversing its (s+1)-st edge. WB .flags contains
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pairs of the form 〈id, dir〉, where id is an agent identifier and dir ∈ {+,−}.
The meaning of an entry in WB .flags will become apparent when we describe
the algorithm.

While moving from node to node, agents perform several low-level operations
outlined below:

– When arriving at a node, the agent requests whiteboard access and, when
this is granted, it inserts a quadruple 〈id,ARR, p, s〉 into WB .list . The agent
releases the whiteboard lock just before it leaves the node, after inserting
a quadruple 〈id,DEP, p′, s〉 into WB .list . However, if the agent is granted
whiteboard access and it detects that some other agent has inserted its ARR-
quadruple but not the corresponding DEP-quadruple, it releases the white-
board lock without writing anything and requests whiteboard access de novo,
waiting for the other agent to conclude its computation on the node.

– Additionally, before leaving each node, the agent keeps a copy of WB .list .
When arriving at the destination node, after being granted whiteboard access
for the first time, the agent checks the following conditions and halts if any
of them is true: (a) The current node, as reported by getNodeID(), is not the
same as its intended destination node. (b) A DEP-quadruple by the agent
itself at its current step already exists on the node. (c) The ARR-quadruple
that the agent wishes to insert into WB .list is already there. (d) One of
the agents which reported their departure from the previous node has not
reported its arrival at the current node.

Note that, by waiting for agents already present at the node to conclude
their interaction with the whiteboard before initiating its own, the algorithm
guarantees that an agent which is killed by the malicious host while holding the
whiteboard lock will also cause future agents visiting the host to effectively kill
themselves, as they will keep requesting the whiteboard lock forever. Moreover,
the conditions (a)–(c) ensure that if the malicious host forwards an agent to
the wrong node, or does not forward an agent at all and pretends to be the
destination node, or attempts to re-forward a duplicate copy of an agent, then
the offended agent will detect this and kill itself instead of continuing the protocol
erroneously and disrupting the entire system. Finally, condition (d) ensures that
if the malicious host disrupts the FIFO order of its queues, the agents which are
pushed forward in the queues will detect this and kill themselves.

We now give a high-level description of the algorithm. An agent is always in
one of two modes: clockwise (+) or counterclockwise (−). In any configuration of
the system in which a node u contains an entry of the form 〈id,+〉 (resp. 〈id,−〉)
in WB .flags , we will say that u contains the flag u+ (resp. u−), or that the
flag u+ (resp. u−) is present. An agent in clockwise mode performs consecutive
cautious steps in the clockwise direction, until it detects a node w with a flag
(either w+ or w−), at which point it bounces and starts performing cautious
steps in the counterclockwise direction. Let u be a node and v its clockwise
neighbor. A cautious step starting from u in the clockwise direction entails the
following sequence of operations:
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Fig. 2. A diagram of the basic operations of Algorithm PDR_Rings_4-malicious.
“move +” (resp. “move −”) stands for traversing an edge in the clockwise (resp. coun-
terclockwise) direction.

– An Explore(+) step: The agent inserts a flag 〈id,+〉 and moves to v.
– A Return(+) step: The agent inserts a flag 〈id,−〉 and moves back to u.
– A Finish(+) step: The agent removes its 〈id,+〉 flag, moves to v, removes its

〈id,−〉 flag, and then starts an Explore(+) step from v.

However, if after the Explore(+) step the agent detects a flag at v, then it
performs a Bounce(+) step instead: The agent moves back to u without inserting
a flag in the whiteboard of v, removes its 〈id,+〉 flag, and then either switches
to counterclockwise mode and starts an explore step in the counterclockwise
direction if there is no u− flag, or remains in clockwise mode and starts an
explore step in the clockwise direction if there is a u− flag.

An agent in counterclockwise mode operates in a completely symmetric fash-
ion and performs consecutive cautious steps in the counterclockwise direction,
until it bounces and switches to clockwise mode. Note that an agent can start the
algorithm in clockwise or counterclockwise mode: this is decided when the agent
begins its execution, depending on which flags are present on the homebase.
Figure 2 illustrates the high-level workings of the algorithm.

The next lemma follows by a straightforward adaptation of the proof of
Theorem 1 in [20].

Lemma 9 ([20]). Under any execution of PDR_Rings_4-malicious in which
not all agents are killed, Periodic Data Retrieval is achieved.

In order to show that PDR_Rings_4-malicious works with four agents,
we reason as follows: First, we show that under any benign execution, at most
three agents can be in the queues of the same node at the same time (Lemma 13
below). For this, we take advantage of the flags left by the agents during the
cautious step. Then, we show how to convert any execution in which four agents
die into a benign execution in which all four agents are in the queues of the
malicious host at the same time. This contradicts the immediately preceding
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statement, thus the malicious host cannot kill four agents, and thus, by Lemma 9,
the (4, 4)-correctness of the algorithm follows (Theorem 3 below). The low-level
operations of the algorithm play a crucial role in the proof of Theorem 3.

Definition 10. We say that an agent is going from u to v if it has written its
DEP-quadruple on u and requested to be transferred to v, but has not yet written
its corresponding ARR-quadruple on v. This means that the agent could be either
in the outgoing queue of u, or in the process of being transferred to v, or in the
incoming queue of v, or in the whiteboard queue of v. An agent is traversing an
edge (u, v) if it is going from u to v or from v to u. An agent is on a node u if it
has written its ARR-quadruple on u but has not yet written its DEP-quadruple.

Proposition 8 below states an easy to check property of the algorithm.

Proposition 8. Under any benign execution of PDR_Rings_4-malicious,
at most one agent can be on a given node at a given time.

Let A be an agent which is making a move from node u to a neighboring
node v, i.e., A has inserted a DEP-quadruple at u but has not yet inserted the
corresponding ARR-quadruple at v. If this move is part of an Explore(+) step,
we assign to agent A the tag E+. Similarly, we use the tags R+, F+, and B+ for
the Return(+), Finish(+), and Bounce(+) steps, respectively, and the tags E−,
R−, F−, and B− for the symmetric counterclockwise-mode steps.

By a careful case analysis, we can show that if two agents are traversing the
same edge in any direction, the only possible combinations of tags are: {E+, B−},
{E+, F+}, {E−, B+}, {E−, F−}, {E+, E−}, and {B+, B−}. Using this charac-
terization, we can prove Lemma 12.

Lemma 10. Under any benign execution of PDR_Rings_4-malicious, if
two agents are traversing the same edge in the same direction, the only pos-
sible combinations of tags are the following: {E+, B−}, {E+, F+}, {E−, B+},
and {E−, F−}.

Proof. We eliminate the impossible tag combinations by a case analysis. Let u, v
be two neighboring nodes in clockwise order.

– The combination {E+, E+} can never appear on (u, v), because no agent
initiates an Explore(+) step on a node that already contains a “+” flag.
This follows easily from the algorithm description.

– Suppose that the combination {E+, R−} appears on (u, v). This implies that
u contains one u+ flag from each agent. However, the two flags cannot have
been left at the same time. If the E+ agent was the first to leave its u+ flag,
then the other agent, upon seeing that flag on u, would perform a Bounce(−)
step instead of a Return(−) step. Similarly, if the R− agent was the first to
leave its u+ flag, then the other agent would perform a Bounce(+) step
instead of an Explore(+) step.
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– Suppose that the combination {F+, F+} appears on (u, v). It follows that
there are two v− flags, left by two earlier Return(+) steps from the two
agents. However, the second agent to perform its Return(+) step would have
seen the first v− flag and have performed a Bounce(+) step instead.

– Suppose that the combination {F+, R−} appears on (u, v). This implies that
v contains one v− flag from each agent, one left during an earlier Return(+)
step from the F+ agent, and the other left during an earlier Explore(−) step
from the R− agent. However, the two flags cannot have been left at the same
time. If the F+ agent was the first to leave its v− flag, then the other agent,
upon seeing that flag on v, would never perform an Explore(−) step from v.
Similarly, if the R− agent was the first to leave its v− flag, then the other
agent would never perform a Return(+) step from v.

– The combination {F+, B−} is impossible for the same reason as the previous
combination. The B− agent must have executed an earlier Explore(−) step,
which conflicts with the F+ agent’s earlier Return(+) step.

– The combinations {R−, R−}, {R−, B−}, and {B−, B−} are also impossible,
because in all cases both agents must have executed an earlier Explore(−)
step. However, the second agent to initiate that step would never initiate it,
in view of the v− flag left by the first agent.

– The remaining combinations {E−, E−}, {E−, R+}, {F−, F−}, {F−, R+},
{F−, B+}, {R+, R+}, {R+, B+}, and {B+, B+} are symmetric to the above
and can be eliminated using symmetric arguments.

⊓⊔

Lemma 11. Under any benign execution of PDR_Rings_4-malicious, if
two agents are traversing the same edge in different directions, the only possible
combinations of tags are the following: {E+, E−} and {B+, B−}.

Proof. We eliminate the impossible tag combinations by a case analysis. Let u, v
be two neighboring nodes in clockwise order.

– Suppose that one of the combinations {E+, R+}, {E+, B+}, or {E+, F−}
appears on (u, v). In all cases, the agent moving from v to u must have
performed an Explore(+) step from u at an earlier time. However, the second
of the two agents to perform an Explore(+) step from u would have seen the
first agent’s u+ flag and would not have performed that step.

– Suppose that one of the combinations {F+, R+}, {F+, B+} appears on (u, v).
In both cases, the agent moving from v to u must have performed an
Explore(+) step from u at an earlier time, which must have happened after
the F+ agent started its Finish(+) step and removed its u+ flag. However,
because of the FIFO links, this means that the R+/B+ agent is still per-
forming its Explore(+) step, which is a contradiction.

– Suppose that the combination {F+, F−} appears on (u, v). Earlier, the F+

agent must have performed an Explore(+) step from u, during which it ar-
rived at v and checked for the existence of a flag. If this check was performed
before the F− agent started its Explore(−) step, then the F+ agent left a v−

flag, which would prevent the F− agent from ever initiating its Explore(−)
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step. On the other hand, if the check was performed after the F− agent
started its Explore(−) step, then in fact the check must have happened af-
ter the F− started its Finish(−) step and removed its v− flag (otherwise
the F+ agent would have bounced). In this case, the F+ agent cannot have
concluded its Return(+) step because of the FIFO property of the links.

– Suppose that one of the combinations {R−, R+}, {R−, B+} appears on (u, v).
In both cases, both agents have left a u+ flag at an earlier time. If the R−

agent left its u+ flag first, then the other agent would never have initiated an
Explore(+) step. On the other hand, if the R+/B+ agent left its u+ flag first,
then the R− agent would have bounced instead of performing a Return(−)
step.

– The remaining combinations {E−, R−}, {E−, B−}, {E−, F+}, {F−, R−},
{F−, B−}, {R+, B−} are symmetric to the above and can be eliminated
using symmetric arguments.

⊓⊔

Lemma 12. Under any benign execution of PDR_Rings_4-malicious, it is
not possible for three agents to traverse the same edge at the same time.

Proof. Let u, v be two neighboring nodes in clockwise order. Suppose that three
agents A,B,C are traversing the edge (u, v) at the same time, in any direction.
At least two of them, say A and B, must be traversing the edge in the same di-
rection. By Lemma 10, the possible tag combinations for A and B are {E+, B−},
{E+, F+}, {E−, B+}, and {E−, F−}. If C is moving in the same direction as A
and B, then again by Lemma 10 we get that whatever tag C has, it cannot
be compatible with the tags of both A and B. Similarly, if C is moving in the
opposite direction, then Lemma 11 implies that its tag cannot be compatible
with the tags of both A and B. ⊓⊔

Lemma 12 and Proposition 8 considerably limit the candidate configurations
of four agents in the queues of the same node. By a more elaborate case analysis,
we can also eliminate the remaining possibilities and arrive at a contradiction in
all cases, thus obtaining the following:

Lemma 13. For any node v other than the homebase, under any benign execu-
tion of PDR_Rings_4-malicious, a total of at most three agents can be in
the queues of v at the same time.

Proof. Let u, v, w be consecutive nodes in clockwise order. Suppose that, under
some benign execution, four agents are in the queues of v at the same time. By
Lemma 12 and Proposition 8, the only candidate configurations are the following:
(a) Two agents are traversing the edge (u, v) and two agents are traversing the
edge (v, w), (b) two agents are traversing the edge (u, v), one agent is traversing
the edge (v, w), and one agent is on v, and (c) two agents are traversing the
edge (v, w), one agent is traversing the edge (u, v), and one agent is on v. Since
(b) and (c) are symmetric, it suffices to derive a contradiction for (a) and (b).
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We first remark that it follows from Lemmas 10 and 11 that whenever two
agents are traversing the same edge, there exist flags on both endpoints of that
edge. We now distinguish the two cases:

Configuration (a). Since we have one pair of agents traversing each of the
edges (u, v) and (v, w), it follows that node v contains both flags v+ and v−.
Without loss of generality, we assume that v+ was left first. By Lemmas 10
and 11, the v− flag was left after the v+ flag either by some agent executing an
Explore(−) step from v, or by some agent executing a Return(+) step from v.
However, since v is not the homebase, no agent can start an Explore(−) step
from v when there is already a v+ flag on v (this is an easy property of the
algorithm). Moreover, any agent would perform a Bounce(+) step instead of a
Return(+) step upon perceiving the flag v+. Therefore, we have a contradiction.

Configuration (b). Let A,B be the two agents traversing the edge (u, v). Of
those, let A be the one that left the u+ flag and let B be the one that left the
v− flag. Let C be the agent on node v and D be the agent traversing the edge
(v, w). Since v is not the homebase, C must have arrived at v either from u or
from w.

– If C arrived from u, then it must have performed one of the following steps
from u: Explore(+), Finish(+), Return(−), or Bounce(−). Explore(+) and
Return(−) can be eliminated immediately, since they imply that C has left a
u+ flag which conflicts with the u+ flag of agent A. Bounce(−) is also elim-
inated because it implies an earlier Explore(−) step from v which resulted
in C leaving a v− flag, and this conflicts with the v− flag left by B. Finaly,
Finish(+) is eliminated because it implies that C left a v− flag in an earlier
Return(+) step from v, and this conflicts with the v− flag left by B.

– If C arrived from w, then we can rule out the possibility of arriving by
performing a Bounce(+), Return(+), or Finish(−) step, since in all cases it
would mean that C has earlier left a v+ flag, which conflicts with the v−

flag left by B. It follows that C must have arrived at v by an Explore(−)
step, and therefore there exists a w− flag on w. But this leaves no option for
agent D: whatever step it may be performing, it must have left a flag on v

or w, conflicting with the flags left there by B and C.

We thus have a contradiction in all cases. ⊓⊔

Theorem 3. PDR_Rings_4-malicious is (4, 4)-correct in rings.

Proof. Let ω be the malicious host. In view of Lemma 9, it suffices to prove that
ω cannot kill all four agents. Suppose that there exists an execution E under
which four agents are killed. We will show that there exists an execution E ′

such that at any time all whiteboard contents are the same as under E , and
furthermore the agents are not killed but frozen on ω or in its queues, up to
the time when the last agent arrives there. Since E ′ is a benign execution under
which four agents are in the queues of ω at the same time, we get a contradiction
by Lemma 13.

We now show how to construct E ′. Assume that the first agent A is killed at
time tA under E . We distinguish cases according to how A is killed.
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– If A is killed while it is on ω (i.e., having written its ARR-quadruple but not
the corresponding DEP-quadruple), then in E ′ we freeze A at time tA. Note
that this does not make any difference in the whiteboards with respect to
the execution E . Moreover, under E , any agent that visits ω after tA is stuck
waiting for A to write its DEP-quadruple. The same happens under E ′.

– If A is killed while it is in one of the incoming queues of ω, under E ′ we
freeze A while it is in the incoming queue, effectively ignoring that queue
after time tA. Again, note that this does not make any difference in the
whiteboards with respect to E . Moreover, under E , any subsequent incoming
agent from the same port would realize that A has not written yet its ARR-
quadruple on ω and kill itself. Effectively the same thing happens under E ′,
since any subsequent incoming agent from the same port is stuck in the
incoming queue after A.

– If A is killed in an outgoing queue of ω, under E ′ we freeze it in the outgoing
queue, effectively ignoring that queue after time tA. By the same reasoning
as in the previous case, we can continue E ′ by replicating E , except that A

is now frozen instead of killed.
– If A kills itself either on ω or on one of its neighbors because it detects

that it was erroneously transferred, then under E ′ we continue by putting
it in the correct outgoing queue of ω and then freezing it and ignoring the
queue. Again, this does not change the whiteboards with respect to E and
subsequent agents using that outgoing queue will behave in the same manner
under both E and E ′.

– If A kills itself because it detects a violation of the FIFO order of a queue,
then under E ′ we execute the agents that were before A in the queue as they
were executed under E , and when A is at the front of the queue we freeze it
and the queue.

If ω attempts to forward a duplicate copy of an agent under E , then under E ′

we simply ignore that action. This is safe to do, since the duplicate agent has no
effect on the whiteboards and kills itself immediately under E .

We now have an execution which is benign up to the point when the second
agent dies. By performing the above modifications again for the second and the
third agent to die, we get a benign execution in which three agents are in the
queues of ω and the fourth agent necessarily visits it at some point, for it is only
by visiting ω that an agent can be killed. When the fourth agent visits ω, we
have a benign execution E ′ under which four agents are in the queues of ω at
the same time. ⊓⊔

5 An Efficient Algorithm for Rings with a Red Hole

Note that, irrespective of the number of agents, the PDR_Rings_4-malicious

algorithm fails if the malicious host is a red hole. Indeed, the red hole can
kill every clockwise (resp. counterclockwise) agent that approaches it after it
has removed the + (resp. −) flag from the neighboring node and while it is
concluding its Finish(+) (resp. Finish(−)) step on the red hole, by presenting
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Fig. 3. A diagram of the basic operations of Algorithm PDR_Rings_Red. “move +”
(resp. “move −”) stands for traversing an edge in the clockwise (resp. counterclockwise)
direction.

to it a whiteboard which shows that previous clockwise (resp. counterclockwise)
agents were not killed but continued their intended trajectory.

In order to remedy this situation, we propose algorithm PDR_Rings_Red,
which employs a natural extension of the cautious step idea: the cautious double
step. Let u, v, w be consecutive nodes in clockwise order. A cautious double
step starting from u in the clockwise direction entails the following sequence of
operations:

– An Explore1(+) step: The agent inserts a flag 〈id,+〉 and moves to v.
– An Explore2(+) step: The agent moves to w.
– A Return2(+) step: The agent moves back to v.
– A Return1(+) step: The agent moves back to u.
– A Finish(+) step: The agent removes its 〈id,+〉 flag, moves to v, and then

starts an Explore1(+) step from v.

However, if after the Explore1(+) step the agent detects a + flag at v, then it
bounces but first it goes to w anyway. More specifically, in this case the agent
performs the following sequence of operations after the Explore1(+) step:

– An Explore⋆2(+) step: The agent moves to w.
– A Bounce2(+) step: The agent moves back to v.
– A Bounce1(+) step: The agent moves back to u, removes its 〈id,+〉 flag, and

then starts an Explore1(−) step from u.

Under PDR_Rings_Red, a clockwise agent performs consecutive cautious
double steps in the clockwise direction, until it bounces and switches to counter-
clockwise mode. A counterclockwise agent operates completely symmetrically.
Figure 3 illustrates the high-level workings of the algorithm.

We should mention at this point that the low-level operations performed by
this algorithm when an agent moves from node to node are somewhat more
contrived than in the previous case. We highlight the differences below:
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– The ARR- and DEP-tuples now contain more information, namely the mode
of the agent (clockwise or counterclockwise) and the name of the step which it
is currently executing (one of Explore1, Explore2, Return2, Return1, Finish,
Explore⋆2, Bounce2, Bounce1).

– The agent keeps copies of WB .list from each node before every step, and af-
ter every step checks its stored copies against the whiteboard of the current
node for inconsistencies. This allows the agent to verify that each white-
board is consistent with the whiteboards of its neighbors, as well as that
it reports a correct execution of the protocol. If any inconsistency is de-
tected, the agent halts (kills itself). This check supersedes the simpler check
in PDR_Rings_4-malicious, whereby the agent simply checked whether
all agents previously departed from the same port had reached the destina-
tion.

As in the case of PDR_Rings_4-malicious, the agent never walks too far
away from its flag. The agent is always at distance at most 2 from a flag that
it has left behind. In fact, if the agent does not return to pick up the flag, then
this must have happened because it was killed as a result of malicious activity
from the red hole. Therefore, any flag which remains forever on a node after a
given point in time is at distance at most 2 from the red hole. This, together
with the fact that even when an agent decides to bounce, it still goes one step
further in its intended direction (step Explore⋆2), implies that a straightforward
adaptation of the proof of Theorem 1 in [20] yields the following:

Lemma 14. Under any execution of PDR_Rings_Red in which not all agents
are killed, Periodic Data Retrieval is achieved.

A feature of the algorithm is that clockwise agents ignore the flags of coun-
terclockwise agents (i.e., they do not bounce upon detecting such a flag) and vice
versa. This leads to an algorithm which is likely suboptimal, but can be analyzed
more easily by considering the deaths of clockwise agents separately from those
of counterclockwise agents. In fact, one can show that under any execution, we
can have at most three deaths of clockwise agents and, symmetrically, at most
three deaths of counterclockwise agents.

Lemma 15. Under any execution of PDR_Rings_Red, at most three clock-
wise agents die.

Proof (sketch). Let u, v, ω, x, y be consecutive nodes in clockwise order, where
ω is the red hole. We consider first the simple case where the first clockwise
agent that dies has started a cautious double step from u and died between its
Explore2(+) and Return2(+) steps. In this case, it left a u+ flag which will never
be removed. Consequently, all subsequent clockwise agents will detect the flag
at u, go up to v, and then bounce back without being killed, as they do not
visit ω.

We next consider the case where the first clockwise agent that dies has started
a cautious double step from v and died before retrieving its v+ flag. In this case,
all subsequent clockwise agents will start a cautious double step from u, detect
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the v+ flag, visit ω, and then bounce. Note that whenever the red hole decides
to kill one of these subsequent agents, its u+ flag will remain permanently on u,
thus preventing any other clockwise agent from dying.

Finally, we have the more involved case where the first agent dies either on
the Finish(+) step of its cautious double step from v, or after it has started a
cautious double step from ω itself. In both cases, it has removed its v+ flag.
There are a number of subcases, which are handled by similar arguments. Here,
we present in more detail one of these subcases, namely the one where the first
agent that dies has just started a double cautious step from ω. Note that this
means that the agent has left an ω+ flag, but this is inconsequential since the
red hole can alter the whiteboard contents for subsequent incoming agents.

We claim that the next clockwise agent, which starts a double cautious step
from v, will detect the death of the first agent and kill itself, leaving a v+

flag. This, in turn, implies that at most one additional clockwise agent can be
killed. Indeed, an agent B starting a cautious double step from v will know
by examining the whiteboard at v that the previous agent A departed toward ω

with the intention of starting a double cautious step from there. Therefore, when
B reaches ω, the red hole is obliged to present B with a whiteboard which is
consistent with that information (otherwise B will kill itself leaving a v+ flag),
thus B now sees that A started a cautious double step from ω, either in the
clockwise or in the counterclockwise direction. In the former case, B will detect
the death of A when it reaches x and sees no entry of A arriving there after an
Explore1(+) step. In the latter case, B will know that A died when it comes
back to v after its Return1(+) step and sees no record of A arriving there. ⊓⊔

By Lemmas 14 and 15, and by the symmetric of Lemma 15 for counter-
clockwise agents, we obtain that PDR_Rings_Red achieves Periodic Data
Retrieval with seven agents:

Theorem 4. PDR_Rings_Red is (7, 5)-correct in rings.

Remark 3. Note that the red hole might not interfere with the agents in any way,
except by modifying the data items that they store in its whiteboard. In this
case, it could happen that altered or corrupted data from certain nodes reach
the homebase, thus rendering the algorithm incorrect. However, the cautious
double step ensures that any agent which leaves a data item on the red hole will
also leave a copy of it on at least one of its neighbors. Therefore, by enforcing
agents to pick up data items only if they find them twice on two neighboring
nodes, we ensure that an agent will never pick up a corrupted data item from
the whiteboard of the red hole.

6 Concluding Remarks

We gave the first nontrivial lower bounds on the number of agents for Periodic
Data Retrieval in asynchronous rings with either one gray hole or one red hole,
answering an open question posed in [20]. Moreover, we proposed an optimal,
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with respect to the number of agents, protocol for Periodic Data Retrieval in
asynchronous rings with a gray hole, improving the previous upper bound of 9
agents and settling the question of the optimal number of agents in the gray-hole
case. Finally, we proposed a protocol working with 7 agents in the presence of a
red hole, significantly improving the previously known upper bound of 27 agents.

We made no effort to optimize the amount of data stored on the white-
boards of the hosts. Indeed, since the protocol is executed indefinitely, the
amount of data stored in every host under both PDR_Rings_4-malicious

and PDR_Rings_Red grows unbounded. However, it should be clear that
this amount can be reduced to a reasonable function of the number of nodes and
the number of agents, by deprecating and removing information which is known
to be no longer useful. We defer the implementation of this mechanism to the
full version of the paper.

Algorithm PDR_Rings_Red is almost certainly suboptimal. In principle,
we should be able to further reduce the total number of agents killed by suitably
marking all of the nodes involved in a cautious double step, and then having
clockwise and counterclockwise agents not ignore each other’s flags. We conjec-
ture that an algorithm along these lines would work with an optimal number
of 5 agents in the presence of a red hole.

One important research direction which remains completely open is the case
of a malicious host which can alter the state of an agent, its memory, or even its
program. It would be particularly interesting to develop algorithms that cope
with this kind of malicious behavior. Another question that remains open is what
happens in other network topologies under the various malicious host models.
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A Algorithm PDR_Rings_4-malicious

⊲ Agent variables

1: id ⊲ Constant agent identifier set at agent

creation
2: prev_node, dest_node, curr_node ⊲ Node labels

3: in_port, out_port ⊲ Port labels

4: step ⊲ Stores number of edge traversals per-

formed
5: initial_mode ⊲ Initial agent mode, takes one of the

values {+,−}
6: prev_list ⊲ Departed agents’ entries from previ-

ous node

7: algorithm PDR_Rings_4-malicious

8: curr_node← getNodeID()
9: step← 0

10: in_port← # ⊲ undefined

11: initial_mode← DecideDirection()
12: Insert 〈id,ARR, in_port, step〉 into WB .list

13: Explore(initial_mode)
14: end algorithm

15: procedure Explore(mode)
16: Insert 〈id,mode〉 into WB .flags

17: Move(mode)
18: if WB .flags is not empty then

19: Bounce(mode)
20: else

21: Return(mode)
22: end if

23: end procedure

24: procedure Return(mode)
25: Insert 〈id,Opposite(mode)〉 into WB .flags

26: Move(Opposite(mode))
27: Finish(mode)
28: end procedure

29: procedure Finish(mode)
30: Remove this agent’s tuple from WB .flags

31: Move(mode)
32: Remove this agent’s tuple from WB .flags

33: if ∃k s.t. 〈k,mode〉 ∈WB .flags then ⊲ Can happen only if current node is

the homebase
34: Explore(Opposite(mode))
35: else

36: Explore(mode)
37: end if

38: end procedure

39: procedure Bounce(mode)
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40: Move(Opposite(mode))
41: Remove this agent’s tuple from WB .flags

42: if ∃k s.t. 〈k,Opposite(mode)〉 ∈WB .flags then ⊲

Can happen only if current node is

the homebase
43: Explore(mode)
44: else

45: Explore(Opposite(mode))
46: end if

47: end procedure

48: procedure Move(dir)
⊲ Implements all the low-level operations and checks while moving from node to

node. After this procedure returns, the agent has access to the whiteboard of the

destination node and has written its ARR-quadruple.

49: dest_node← neighbor of curr_node in direction dir
50: out_port← port out of curr_node in direction dir
51: prev_node← curr_node
52: prev_list ←WB .list

53: Insert 〈id,DEP, out_port, step〉 into WB .list

54: transfer(out_port)
55: WB .access()
56: curr_node← getNodeID()
57: in_port← port leading to direction Opposite(dir)
58: if CheckHalt() then

59: halt ⊲ Malicious behavior detected

60: end if

61: while ∃k, p, p′, s s.t. 〈k,ARR, p, s〉 ∈WB .list and 〈k,DEP, p′, s〉 6∈WB .list do

62: WB .release() ⊲ Some agent is in the middle

63: WB .access() ⊲ of its computation

64: end while

65: Insert 〈id,ARR, in_port, step + 1〉 into WB .list

66: step← step + 1
67: end procedure

68: function CheckHalt

69: if curr_node 6= dest_node then

70: return true ⊲ Malicious host forwarded agent to

wrong node
71: end if

72: if 〈id,DEP, out_port, step〉 ∈WB .list then

73: return true ⊲ Malicious host did not forward agent

and pretends to be destination node
74: end if

75: if 〈id,ARR, in_port, step + 1〉 ∈WB .list then

76: return true ⊲ Malicious host is attempting to re-

forward a copy of this agent
77: end if

78: if ∃k, s s.t. 〈k,DEP, out_port, s〉 ∈ prev_list and 〈k,ARR, in_port, s+ 1〉 6∈
WB .list then
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79: return true ⊲ Some agent attempted to traverse the

link earlier but has not arrived yet
80: end if

81: return false

82: end function

83: function DecideDirection

⊲ Used at the homebase to decide if the agent will start as a clockwise or a counter-

clockwise agent. After this function returns, the agent has access to the whiteboard

of the homebase.

84: WB .access()
85: while ∃k, k′ s.t. 〈k,+〉 ∈WB .flags and 〈k′,−〉 ∈WB .flags do

86: WB .release()
87: WB .access()
88: end while

89: if 6 ∃k s.t. 〈k,+〉 ∈WB .flags then

90: return +
91: else

92: return −
93: end if

94: end function

95: function Opposite(dir)
96: if dir = + then

97: return −
98: else

99: return +
100: end if

101: end function
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B Algorithm PDR-Rings-Red

⊲ Agent variables

1: id ⊲ Constant agent identifier set at agent

creation
2: prev_node, dest_node, curr_node ⊲ Node labels

3: in_port, out_port ⊲ Port labels

4: step ⊲ Stores number of edge traversals per-

formed
5: initial_mode ⊲ Initial agent mode, takes one of the

values {+,−}
6: prev_list0, prev_list1, prev_list2, prev_list3, prev_list4 ⊲

Copy of WB .list before each move of

the double step

7: algorithm PDR_Rings_Red

8: curr_node← getNodeID()
9: step← 0

10: in_port← # ⊲ undefined

11: initial_mode← DecideDirection()
12: Insert 〈id,ARR, in_port, step, initial_mode,#〉 into WB .list

13: Explore1(initial_mode)
14: end algorithm

15: procedure Explore1(mode)
16: Insert 〈id,mode〉 into WB .flags

17: Move(mode,mode,Explore1)
18: if ∃k s.t. 〈k,mode〉 ∈WB .flags then

19: Explore⋆2(mode)
20: else

21: Explore2(mode)
22: end if

23: end procedure

24: procedure Explore2(mode)
25: Move(mode,mode,Explore2)
26: Return2(mode)
27: end procedure

28: procedure Explore⋆2(mode)
29: Move(mode,mode,Explore⋆2)
30: Bounce2(mode)
31: end procedure

32: procedure Return2(mode)
33: Move(Opposite(mode),mode,Return2)
34: Return1(mode)
35: end procedure

36: procedure Return1(mode)
37: Move(Opposite(mode),mode,Return1)
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38: Finish(mode)
39: end procedure

40: procedure Finish(mode)
41: Remove this agent’s tuple from WB .flags

42: Move(mode,mode,Finish)
43: if 6 ∃k s.t. 〈k,mode〉 ∈WB .flags then

44: Explore1(mode)
45: else

46: Explore1(DecideDirection())
47: end if

48: end procedure

49: procedure Bounce2(mode)
50: Move(Opposite(mode),mode,Bounce2)
51: Bounce1(mode)
52: end procedure

53: procedure Bounce1(mode)
54: Move(Opposite(mode),mode,Bounce1)
55: Remove this agent’s tuple from WB .flags

56: if ∃k s.t. 〈k,Opposite(mode)〉 ∈WB .flags then

57: Explore1(mode)
58: else

59: Explore1(Opposite(mode))
60: end if

61: end procedure

62: procedure Move(dir,mode,walk_step)
⊲ Implements all the low-level operations and checks while moving from node to

node. After this procedure returns, the agent has access to the whiteboard of the

destination node and has written its ARR-tuple.

63: dest_node← neighbor of curr_node in direction dir
64: out_port← port out of curr_node in direction dir
65: prev_node← curr_node
66: if walk_step = Explore1 then

67: prev_list0←WB .list

68: else if walk_step = Explore2 or walk_step = Explore⋆2 then

69: prev_list1←WB .list

70: else if walk_step = Return2 or walk_step = Bounce2 then

71: prev_list2←WB .list

72: else if walk_step = Return1 or walk_step = Bounce1 then

73: prev_list3←WB .list

74: else if walk_step = Finish then

75: prev_list4←WB .list

76: end if

77: Insert 〈id,DEP, out_port, step,mode,walk_step〉 into WB .list

78: transfer(out_port)
79: WB .access()
80: curr_node← getNodeID()
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81: in_port← port leading to direction Opposite(dir)
82: if CheckHalt(mode,walk_step) then

83: halt ⊲ Malicious behavior detected

84: end if

85: while ∃k, p, p′, s,m, r s.t. 〈k,ARR, p, s,m, r〉 ∈WB .list and 〈k,DEP, p′, s,m, r〉 6∈
WB .list do

86: WB .release() ⊲ Some agent is in the middle

87: WB .access() ⊲ of its computation

88: end while

89: Insert 〈id,ARR, in_port, step + 1,mode,walk_step〉 into WB .list

90: step← step + 1
91: end procedure

92: function CheckHalt(mode,walk_step)
93: if curr_node 6= dest_node then

94: return true ⊲ Malicious host forwarded agent to

wrong node
95: end if

96: if 〈id,DEP, out_port, step,mode,walk_step〉 ∈WB .list then

97: return true ⊲ Malicious host did not forward agent

and pretends to be destination node
98: end if

99: if 〈id,ARR, in_port, step + 1,mode,walk_step〉 ∈WB .list then

100: return true ⊲ Malicious host is attempting to re-

forward a copy of this agent
101: end if

102: if the “prev_list”s up to the current walk_step are inconsistent with respect
to each other, or with respect to WB .list of the current node, or with respect to
the correct execution of the protocol then

103: return true

104: end if

105: return false

106: end function

107: function DecideDirection

⊲ Used at the homebase or at the end of a Finishstep to decide if the agent will

start as a clockwise or a counterclockwise agent. After this function returns, the

agent has access to the whiteboard of the node.

108: WB .access()
109: while ∃k, k′ s.t. 〈k,+〉 ∈WB .flags and 〈k′,−〉 ∈WB .flags do

110: WB .release()
111: WB .access()
112: end while

113: if 6 ∃k s.t. 〈k,+〉 ∈WB .flags then

114: return +
115: else

116: return −
117: end if

118: end function
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119: function Opposite(dir)
120: if dir = + then

121: return −
122: else

123: return +
124: end if

125: end function
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