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Abstract. A black hole is a highly harmful stationary process residingin a node of a network and
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en Outaouais
Address for correspondence: E. Markou, Department of Informatics & Telecommunications, National Kapodistrian University
of Athens, Panepistimiopolis 15784, Athens, Greece



230 J. Czyzowicz, D. Kowalski, E. Markou, A. Pelc / Complexity ofsearching for a black hole

1. Introduction

1.1. The background and the problem

Security of mobile agents working in a network environment is an important issue which has recently
attracted attention of many researchers. Protecting mobile agents from “host attacks”, i.e., harmful items
stored in nodes of the network, has become almost as urgent asprotecting a host, i.e., a node of the
network, from an agent’s attack [12, 13]. Various methods ofprotecting mobile agents against malicious
hosts have been discussed, e.g., in [7, 8, 10, 12, 13, 14].

In this paper we consider hostile hosts of a particularly harmful nature, calledblack holes[1, 2, 3, 4,
5]. A black hole is a stationary process residing in a node of anetwork and destroying all mobile agents
visiting the node, without leaving any trace. Since agents cannot prevent being annihilated once they
visit a black hole, the only way of protection against such processes is identifying the hostile node and
avoiding further visiting it. Hence we are dealing with the issue of locating a black hole: assuming that
there is at most one black hole in the network, at least one surviving agent must find the location of the
black hole if it exists, or answer that there is no black hole,otherwise. The only way to locate the black
hole is to visit it by at least one agent, hence, as observed in[3], at least two agents are necessary for one
of them to locate the black hole and survive. Throughout the paper we assume that the number of agents
is minimum possible for our task, i.e., 2, and that they startfrom the same node.

In [2, 3, 4, 5] the issue of efficient black hole search was extensively studied in many types of
networks. The underlying assumption in these papers was that the network is totally asynchronous, i.e.,
while every edge traversal by a mobile agent takes finite time, there is no upper bound on this time. In this
setting it was observed that, in order to solve the problem, the network must be 2-connected, in particular
black hole search is infeasible in trees. This is because, inasynchronous networks it is impossible to
distinguish a black hole from a “slow”link incident to it. Hence the only way to locate a black hole is to
visit all other nodes and learn that they are safe. (In particular, it is impossible to answer the question of
whether a black hole actually exists in the network, hence [2, 3, 4, 5] worked under the assumption that
there is exactly one black hole and the task was to locate it.)

Totally asynchronous networks rarely occur in practice. Often a (possibly large) upper bound on the
time of traversing any edge by an agent can be established. Hence it is interesting to study black hole
search in such partially synchronous networks. Without loss of generality, this upper bound on edge
traversal time can be normalized to 1 which yields the following definition of the time of a black hole
search scheme: this is the maximum time taken by the scheme, i.e. the time under the worst-case location
of the black hole (or when it does not exist in the network), assuming that all edge traversals take time 1.
This was the scenario adopted in [1], and we use it in the present paper as well.

The partially synchronous scenario makes a dramatic changeto the problem of searching for a black
hole. Now it is possible to use the time-out mechanism to locate the black hole in any graph, with only
two agents, as follows: agents proceed along edges of a spanning tree. If they are at a safe nodev, one
agent goes to the adjacent node and returns, while the other agent waits atv. If after time 2 the first
agent has not returned, the other one survives and knows the location of the black hole. Otherwise, the
adjacent node is known to be safe and both agents can move to it. This is in fact a variant of thecautious
walkdescribed in [3] but combining it with the time-out mechanism makes black hole search feasible in
any graph. Hence the issue is now not the feasibility but the time efficiency of black hole search, and the
present paper is devoted to this problem.
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In all previous papers on black hole search it was assumed that the starting nodes is safe (otherwise
the agents would be immediately anihilated) and the black hole can be located in any other node. How-
ever, in practice, some other nodes may also be known as safe,e.g., because they were already verified
in some previous network exploration. Hence we adopt a more general scenario in which an arbitrary
subset of nodes of the network, containing the starting node, is safe, and the black hole can be located in
one of the remaining nodes.

The time of a black hole search scheme should be distinguished from the time complexity of the
algorithm producing such a scheme. While the first was definedabove for a given input consisting of a
network and a starting node, and is in fact the larger of the numbers of time units spent by the two agents
in the worst case, the second is the time of producing such a scheme by the algorithm. In other words,
the time of the scheme is the time of walking and the time complexity of the algorithm is the time of
thinking.

1.2. Our results

We show that the problem of finding the fastest possible blackhole search scheme by two agents in
an arbitrary graph is NP-hard, and we give a 9.3-approximation for this problem, i.e., we construct a
polynomial time algorithm which, given a graph with a subsetof safe nodes and a starting node as input,
produces, in polynomial time, a black hole search scheme whose time is at most 9.3 times larger than the
time of the fastest scheme for this input.

2. Model and terminology

We consider a graphG with nodes which is the starting node of both agents. We assume that a subset
S of nodes containings cannot contain a black hole. These nodes are calledsafe. Each of the remaining
nodes can contain a black hole; they are calledunsafe. We assume that there is at most one black hole
in the network. This is a node which destroys any agents visiting it. A black hole search scheme (BHS-
scheme) for the input(G,S, s) is a pair of sequences of edge traversals (moves) of each of the two agents,
with the following properties.

• Each move takes one time unit (if the agent moved faster, it waits till the end of the time unit at the
target node).

• Upon completion of the scheme there is at least one survivingagent, i.e., an agent that has not
visited the black hole, and this agent either knows the location of the black hole or knows that
there is no black hole in the graph. The surviving agents mustreturn tos.

The time of a black hole search scheme is the number of time units until the completion of the scheme,
assuming the worst-case location of the black hole in the complement ofS (or its absence, whichever
is worse). It is easy to see that the worst case for a given scheme occurs when there is no black hole in
the network or when the black hole is the last unvisited node outside ofS, both cases yielding the same
time. A scheme is calledfastestfor a given input if its time is the shortest possible for thisinput.

An unsafe node is calledexploredat a given step of a BHS-scheme if the remaining agents know if
it is a black hole.
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Any BHS-scheme must have the following property: after a finite number of steps, at least one agent
stays alive and all unsafe nodes are explored (there is at most one black hole, so once the black hole has
been found, all unsafe nodes are explored).

Theexplored territoryat stept of a BHS-scheme is the set of explored nodes. At the beginningof a
BHS-scheme the explored territory is empty. We say that ameetingoccurs in nodev at stept when the
agents meet at nodev and exchange information whichstrictly increasesthe explored territory. Nodev
is called ameeting point.

In any step of a BHS-scheme, an agent can traverse an edge or wait in a node. Also the two agents
can meet. If at stept a meeting occurs, then the explored territory at stept is defined as the explored
territory after the meeting. The sequence of steps of a BHS-scheme between two consecutive meetings
is called aphase.

3. Preliminary results

Lemma 3.1. In a BHS-scheme, an edge towards an unsafe unexplored node cannot be traversed by both
agents.

Proof:
Suppose that an edgef towards an unexplored nodev has been traversed by an agent and whilev remains
unexplored (which means that the two agents have not yet met after the traversal off ), the other agent
traversesf . If v is a black hole, then both agents vanish, which means that this is not a BHS-scheme.⊓⊔

Hence in a BHS-scheme, an unsafe node can be explored only in the following way: an agent visits
it and then a meeting is scheduled. Whether it occurs or not (in the latter case the agent vanished in the
black hole) the node becomes explored.

Lemma 3.2. During a phase of a BHS-scheme an agent can visit at mostoneunsafe unexplored node.

Proof:
Suppose that an agent visits two unexplored nodes. If one of them is a black hole and hence the agent
vanishes then there is no way for the other agent to locate theblack hole without vanishing, which means
that this is not a BHS-scheme. ⊓⊔

Therefore an unsafe node could be explored in the next phase only if it is adjacent to the explored
territory. Recall that the explored territory increases only at scheduled meeting points.

Lemma 3.3. At the end of each phase, the explored territory is increasedby one or two nodes.

Proof:
By the end of a phase the explored territory is increased by atleast one node. By Lemma 3.2, an agent
can visit at most one unsafe unexplored node during a phase, thus both agents can visit a total of at most
two unexplored nodes during a phase. ⊓⊔
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We define asingle exploration phase(SE-phase) to be a phase in which exactly one node is explored.
Similarly, we define adouble exploration phase(DE-phase) to be a phase in which exactly two nodes
are explored. In view of Lemma 3.3, every phase is either a SE-phase or a DE-phase.

A nodep is called alimit of the explored territory at stept if it is either safe or explored, and it is
adjacent to an unexplored node.

A way of exploring exactly one node in a phase is the following: one of the agents walks through
safe or explored territory to its limitp, while the other agent walks through the safe or explored territory
to p, visits an unexplored node and returns top. If we assume that both agents are at a limitp of the
explored territory at stept andv is an unexplored node adjacent top, we define the following procedure:

probe(v): one agent traverses edge(p, v) and returns to nodep to meet the other agent that waits. If
they do not meet at stept+ 2 then the black hole has been found.

4. The NP-hardness of the black hole search problem

In this section we prove that the following optimization problem is NP-hard:
The BHS problem.

Input: GraphG with a subsetS of safe nodes, starting nodes ∈ S.
Find the fastest BHS scheme for the input(G,S, s).

In order to prove NP-hardness of the BHS problem, we present areduction from the NP-complete
Hamiltonian Cycle Problem (HC problem) to the decision version of the BHS problem, which we call
dBHS.

The HC problem.

Input: GraphG
Question: DoesG contain a Hamiltonian cycle?

The dBHS problem.

Input: graphG′ with a subsetS of safe nodes, starting nodes ∈ S, positive integerX.
Question: Does there exist a BHS scheme for the input(G′, S, s), with time at mostX?

4.1. Construction

Let a graphG with n nodes ande edges be an instance of the HC problem. We construct a new graphG′

as follows. Call the nodes of graphG old nodes. In each edge ofG we add2 new unsafe nodes adjacent
to endpoints of this edge andM = 4e + 5n − 1 new safe nodes between them, as in Figure 1. Lets be
any node of the oldn nodes. All old nodes excepts are considered unsafe. Hence the setS of unsafe
nodes consists of all old nodes excepts and all nodes adjacent to old nodes.

The instance of the dBHS problem is the graphG′ with n′ = n + (M + 2)e nodes, the setS of
l = n+ 2e− 1 unsafe nodes, nodes as a starting node, and the integerX = M(n + 1) − 1.

The construction of this instance from the graphG can be clearly done in polynomial time. It remains
to prove that the answers “yes” to the HC problem for the inputgraphG and the answer “yes” to the
dBHS problem for the constructed input are equivalent.
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: old node

: new unsafe node island
island

island center

M new safe nodes of a bridge

Figure 1. Construction of a dBHS problem instance

4.2. Analysis of the reduction

Fix a graphG with n nodes ande edges and the graphG′ with n′ nodes wherel of them are unsafe,
constructed as in the previous section. Each nodev of graphG corresponds to a nodev′ of graphG′

calledold node. Any set of nodes of graphG′ consisting of an old nodev′ together with all adjacent
nodes is called anisland (see Figure 1). Nodev′ is called thecenterof the island. Letv1, v2 be two
nodes inG andv′1, v′2 be the corresponding old nodes inG′. The construction ofG′ implies thatv1, v2
are adjacent inG if and only if there is a path inG′ with endpointsv′1, v′2 which does not pass through
any island except those with centersv′1, v′2. We call this path inG′ abridge.

Let I be an island. After every meeting of the agents we define the following partition of the set ofn
islands into setsPE of partially explored islandsandU of unexplored islands:

• I ∈ PE , whenI has at least one of its nodes explored

• I ∈ U , otherwise

The above partition is well defined at any moment in which a meeting is scheduled. In the beginning
we have|PE| = 1, |U| = n − 1. At a meeting at timet after a phase in a BHS-scheme one of the
following can happen: a) setsPE , U do not change, b) one island is moved fromU to PE , or c) two
islands are moved fromU to PE . We call the above types of phases0-phase, 1-phaseand 2-phase
respectively. We say that the agentsdiscoveran islandI at timet if and only if I is moved fromU toPE
at t. We callt the time ofdiscoveryof islandI.

Upon completion of any BHS scheme, all islands must have beendiscovered (i.e. moved from set
U to setPE). Consider a BHS schemeσ and letk1 be the number of 1-phases andk2 the number of
2-phases. Since any island is moved fromU to PE at the end of exactly one of the above phases in the
worst case (i.e. when there is no black hole), we havek1 + 2k2 = n− 1.

Lemma 4.1. If graphG has a Hamiltonian cycle, then there exists a BHS scheme on graphG′ starting
at nodes, with time at mostM(n+ 1) − 1.

Proof:
The Hamiltonian cycle inG corresponds to a cycleC in G′ which passes exactly once through every
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center of an island. The two agents agree on a direction of cycle C and they explore graphG′, starting
from s, as follows:

They explore by probing the nodes which are adjacent to the center of the island except the two nodes
which are onC and they return to the center of the island. Then they exploreby probing the unsafe node
of the bridge onC in the chosen direction and they walk along the bridge, till they get to the last safe
node of it. Subsequently, they explore the adjacent unsafe nodev (in the next island) by probing, walk to
it, explore the center of this island by probing and walk to it. They repeat the above procedure in every
island onC until they reach again nodes.

The two agents crossn bridges using the above procedure. They needM + 9 time units to cross
every bridge inC, except the last one which leads tos for which they needM + 7 time units, sinces is
a safe node. Every edge inG corresponds to a bridge inG′. Since there aren bridges in cycleC, there
aree− n bridges not crossed by the two agents. For each not crossed bridge the agents explore2 nodes
(one from each endpoint of the bridge). Therefore they spend4 time units in every bridge which is not
in cycleC. The total time is at most(n− 1)(M + 9) +M + 7 + 4(e− n) = M(n+ 1) − 1. ⊓⊔

We say that a BHS schemeσ onG′ is reducedto a BHS schemeσ′ iff at any stepti where a meeting
occurs inσ the agents inσ′ are at the same node as inσ and the explored territory is the same. Observe
that the time ofσ′ is not longer than the time ofσ.

We call a BHS scheme onG′ regular if and only if it has the following property. Take any meeting
point pi in σ at timeti and any islandI whose center is unexplored atti and the phase ending atti does
not explore any node ofI. Thenpi must be at distance at leastM + 2 from the center ofI.

Lemma 4.2. Every BHS scheme onG′ can be reduced to a regular one.

Proof:
Take the first meetingm which occurs in a BHS schemeσ at stepti at a nodepi, with the following
property: there is an islandI whose center is unexplored atti and the phase ending atti does not explore
any node ofI. Suppose also that the distance between nodepi and the center ofI is less thanM + 2.

Consider the nodep′i which is at distanceM + 2 from the center of islandI on the bridge including
nodepi. We will transform the BHS schemeσ to a BHS schemeσ′ where the two agents meet atp′i at
stept′i < ti and then they walk together till they reach nodepi at stepti.

Sincem is the first meeting with the above property inσ, the meetingm′ beforem in σ could not
have taken place in a node betweenp′i and the center ofI. Therefore there are steps between meetings
m′ andm at which the two agents were at nodep′i (not neccesarily together) inσ. Consider the last time
t1 before stepti when one of the agents, sayR1, was at nodep′i.

If at time t1 the other agentR2 is not in a node between nodesp′i and the center ofI then, in scheme
σ′ the agentR1 waits since stept1 until it meetsR2 and then they walk to nodepi.

If at time t1 the other agentR2 is in a node between nodesp′i and the center ofI then consider the
last timet2 before stept1 when agentR2 was at nodep′i. In schemeσ′ the agentR2 waits since stept2
until stept1, meets the other agent and then they walk to nodepi. ⊓⊔

Lemma 4.3. Any 1-phase in a regular BHS scheme onG′ requires more thanM time units.

Proof:
In view of regularity of the scheme, in a 1-phase there is at least one agent which has to cover a distance
of at leastM + 1 to reach a node of an islandI ∈ U . ⊓⊔
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Lemma 4.4. Any 2-phase in a regular BHS scheme onG′ requires more than2M time units.

Proof:
Consider a 2-phase after which two islandsI, I ′ are discovered. Suppose that nodesv ∈ I andu ∈ I ′

are explored in this 2-phase. In view of regularity of the scheme, the meeting pointp before that 2-phase
is at a distance at leastM + 2 from any of the centers ofI, I ′. Thereforep is at a distance at leastM + 1
from nodesv, u. Suppose thatp is at a distancex from nodev andy from nodeu. Since the centers
of islandsI, I ′ are still unexplored, the bridge that each agent uses to go tothe new meeting pointp′ is
the same as that used to reach the island. Sincex + y > 2M , the agents need at least2M time units to
complete the 2-phase. ⊓⊔

In view of Lemmas 4.3 and 4.4, the time needed in any regular BHS scheme for discovering all
islands is at leastMk1 + 2Mk2 ≥ (n− 1)M .

Lemma 4.5. Consider a regular BHS schemeσ onG′. Suppose thatσ contains a 2-phaseφ in which
islandsI, I ′ are discovered and at the end ofφ the two agents meet at a nodep. Then the distance
between nodep and the center of at least one of the islandsI, I ′ is at leastM + 2.

Proof:
Since the meeting point beforeφ is at a distance at leastM + 2 from any of the centers ofI, I ′ (by
regularity of the scheme) and each agent has to cross the samebridge to go top as that used to reach the
island, the distance between nodep and the center of at least one of the islandsI, I ′ is at leastM+2. ⊓⊔

Let I1, I2, ..., In be the enumeration of islands inG′ in the order of discovery by a BHS-schemeσ.
Let v1, v2, ..., vn be the sequence of nodes inG corresponding to the centers of these islands. Nodev1
corresponds to nodes of G′.

Lemma 4.6. Consider a regular BHS-schemeσ in which all islands are discovered during 1-phases. Let
t be the time of discovery ofIn−1. If t < (n− 1)M then the sequencev1, v2, ..., vn−1 is a path inG.

Proof:
After every meeting just before a 1-phase we may always suppose by symmetry that the same agentR1

goes to the completely unexplored island (we may need just tointerchange the names of the agents in
some meeting points inσ). Each 1-phase takes at leastM time units. There aren− 2 1-phases.

Suppose that the sequencev1, v2, ..., vn−1 is not a path inG. Then there existsi < n − 1 such that
vi andvi+1 are not adjacent inG. Therefore agentR1 moves from islandIi to islandIi+1 via another
island. By regularity of the scheme, the meeting point afterdiscoveringIi−1 is at distance at leastM
from the center ofIi. Hence discoveringIi andIi+1 takes total time at least3M , which implies that the
total time spent by agentR1 on the discovery of islandsI2, ..., In−1 is at least(n− 1)M . ⊓⊔

Lemma 4.7. If G has no Hamiltonian cycle, then any regular BHS schemeσ onG′, starting at a center
of an island, requires time at least(n+ 1)M .

Proof:
First suppose there is a 2-phase in schemeσ. Take the last 2-phaseφ in σ and letI, I ′ be the islands
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discovered duringφ. Let p be the meeting point at the end ofφ. In view of Lemma 4.5 the distance
betweenp and the center of at least one of the islandsI, I ′ is at leastM + 2. Let I be that island.
Consider the first phaseψ afterφ in which a nodev of I is explored. Phaseψ cannot be a 2-phase (since
I was already discovered beforeψ). Let p′ be the meeting point at steptψ just beforeψ. If p′ = p then
the distance betweenp′ and the center ofI is at leastM + 2. If p′ 6= p thenψ does not immediately
follow φ and hence, by regularity ofσ the distance betweenp′ and the center ofI is at leastM + 2.

• Suppose that by the end ofψ all islands are discovered.

If ψ is a 0-phase, then the two agents have spent time at least(n − 1)M until steptψ. An agent
needs2M additional time units to go fromp′ to the center ofI and return tos. Hence the total
time is at least(n+ 1)M .

If ψ is a 1-phase, then it means that together with nodev of islandI, a nodeu of another island
J ∈ U is explored. The two agents have spent time at least(n − 2)M until steptψ. Since at step
tψ the center of the islandI is unexplored, any path which connects islandsI, J and can be used
by the agents has length at least2M . Hence phaseψ ends at time at leastnM . After phaseψ
the center ofJ is still unexplored. Therefore an agent needs at leastM time units to go there and
return tos. Therefore the total time is at least(n + 1)M .

• Suppose that after phaseψ there are islands still undiscovered.

If ψ is a 0-phase then it lasted at leastM time units.

If ψ is a 1-phase then it lasted at least2M time units for the same reason as before.

Sinceφ was the last 2-phase ofσ, the last discovery phase ofσ must be a 1-phase. Call itχ. The
two agents have spent time at least(n − 1)M before the start ofχ. By regularity ofσ an agent
needs2M additional time units to go to the center of the last discovered island and return tos.
Hence the total time is at least(n + 1)M .

If there is no 2-phase in the BHS schemeσ then consider the following cases:

• vn is adjacent tovn−1 and tov1 in G.
Since there is no Hamiltonian cycle inG, the sequencev1, v2, ..., vn−1 cannot be a path inG. In
view of Lemma 4.6 the time of discovery ofIn−1 is at least(n−1)M . By regularity of the scheme,
the meeting point after discoveringIn−1 is at distance at leastM from the center ofIn. Hence
discoveringIn and returning tos takes time at least2M which implies that the total time of the
scheme is at least(n+ 1)M .

• vn is not adjacent tovn−1.
By regularity of the scheme,In−2 is discovered in time at least(n − 3)M and the meeting point
after discoveringIn−2 is at a distance at leastM from the center ofIn−1. Sincevn is not adjacent
to vn−1, discoveringIn−1, In and returning tos takes a total time of at least4M which implies
that the total time of the scheme is at least(n+ 1)M .

• vn is not adjacent tov1 in G.
By regularity of the scheme,In−1 is discovered in time at least(n − 2)M and the meeting point
after discoveringIn−1 is at a distance at leastM from the center ofIn. Sincevn is not adjacent to
v1, discoveringIn and returning tos takes a total time of at least3M which implies that the total
time of the scheme is at least(n+ 1)M .



238 J. Czyzowicz, D. Kowalski, E. Markou, A. Pelc / Complexity ofsearching for a black hole

In all cases we showed that the time of the scheme is at least(n+ 1)M . This concludes the proof. ⊓⊔

We can now prove the main result of this section.

Theorem 4.1. The BHS problem is NP-hard.

Proof:
It is enough to show that the answers “yes” to the HC problem for the input graphG and the answer “yes”
to the dBHS problem for the constructed input are equivalent. By Lemma 4.1, ifG has a Hamiltonian
cycle then there exists a BHS scheme onG′, starting ats, with time at most(n+ 1)M − 1. Conversely,
suppose that there is a BHS scheme onG′, starting ats, with time at most(n + 1)M − 1. By Lemma
4.2 it can be reduced to a regular BHS scheme, whose time is also at most(n + 1)M − 1. By Lemma
4.7, graphG has a Hamiltonian cycle. ⊓⊔

5. An approximation algorithm for the BHS problem

In this section we give an approximation algorithm for the BHS problem. The algorithm is based on the
construction of aSteiner Treeof the input graphG, where the unsafe nodes ofG along with the starting
nodes are the required nodes. Recall that a Steiner Tree for a graphG = (V,E) with the setR ⊆ V of
required nodes is any subtree ofG containingR.

Algorithm Tree

construct a minimum Steiner TreeT containing all the unsafe nodes and nodes;
explore((T, s))

LetG be a graph with a setS of safe nodes and a starting points. We construct a Steiner TreeT where
the unsafe nodes ofG along with nodes play the role of required nodes for the Steiner Tree. We can
construct such a Steiner Tree in polynomial time with approximation ratioα, whereα = 1+ ln 3

2 < 1.55
([9], [11]). More specifically, ifx is the number of unsafe nodes inG plus one for nodes, andy is the
number of safe nodes inT (excluding nodes), while y∗ is a minimum number of safe nodes (excluding
nodes) needed for the optimal Steiner Tree, then(x + y) ≤ 1.55(x + y∗). We then use the procedure
explore(T, s).

Procedure explore((T, v))

for every unexplored nodez adjacent tov do
probe(z);

end for
if every node is exploredthen

repeat walk(s) until both agents are ats
else
next := relocate(v);
explore((T, next))

end if
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The high-level description of the procedure explore is the following. Letv be the meeting point of the
two agents after a phase (initiallyv = s); the unexplored children ofv are explored by calling procedure
probe; this is repeated for any child ofv. The precise formulation of the algorithm is given below.

Function relocate(v) takes as input the current nodev where both agents reside and returns the new
location of the two agents. If there is an unexplored node adjacent to a child ofv then the agents go to
that child. Otherwise the two agents go to the parent ofv.

Function relocate(v)

case 1.1: ∃ an unexplored node adjacent tow ∈ children(v)
walk(w);
relocate:= w

case 1.2: every node adjacent to any child ofv is explored
let t be the parent ofv;
walk(t);
relocate:= t

The time-complexity of Algorithm Tree is polynomial in the size ofG and is dominated by the time
of constructing the Steiner Tree. Procedure explore is in fact a depth first search type algorithm with the
only difference that any unsafe node is visited using a cautious way. The time spent on traversals of any
edge(u, v) (v is a child ofu) of the treeT is at most4 units: the worst case is when edge(u, v) leads to
an unexplored nodev which is not a leaf inT , therefore the agents spend2 time units for probingv, 1
time unit to walk tov and another time unit to return to nodeu - after the exploration of the descedants
of v. The total time needed by the BHS-scheme produced by Algorithm Tree is less than4(x+ y).

Lemma 5.1. Any BHS scheme for the graphG requires at least43(x+ y∗) traversals of edges.

Proof:
Take a BHS schemeσ. Let A∗

i , for 1 ≤ i, denote the set of edges inσ which are traversed exactlyi
times. Leta∗i = |A∗

i |, A
∗ =

⋃
iA

∗

i anda∗ = |A∗|.
Let φ be a phase inσ starting at meeting pointmφ and ending at meeting pointm′

φ. Let pφ, p′φ be
the unsafe nodes explored inφ by agentsR1, R2 respectively (possiblypφ = p′φ).

LetBφ ⊆ A∗

1 be the set of edges traversed byR1 since the start ofφ until R1 reaches nodepφ at time
t. LetCφ ⊆ A∗

1 be the set of edges traversed byR1 sincet to the end ofφ. LetB′

φ ⊆ A∗

1 be the set of
edges traversed byR2 since the start ofφ until R2 reaches nodep′φ at timet′. LetC ′

φ ⊆ A∗

1 be the set of
edges traversed byR2 sincet′ to the end ofφ (see Figure 2).

We have:

max{|Bφ|, |Cφ|, |B
′

φ|, |C
′

φ|} ≥
|Bφ| + |Cφ| + |B′

φ| + |C ′

φ|

4
(1)

Notice that ifφ is a SE-phase then at least one ofBφ, Cφ, B
′

φ, C
′

φ is empty and the relation (1) still holds.
We will prove that we can remove any one of the setsBφ, Cφ, B

′

φ, C
′

φ, in every phaseφ in σ and the
resulting graph will still contain a Steiner Tree (with the set of required nodes consisting of the unsafe
ones and of the nodes).

Let< φ1, φ2, ..., φk > be the enumeration of phases in the order that they appear inσ. In each phase
φi we calculateBφi

, Cφi
, B′

φi
, C ′

φi
and we remove the set with the maximum number of edges.
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Figure 2. The setsBφ, Cφ, B
′
φ, C

′
φ consist of edges traversed once inσ, namely only in phaseφ

LetGφ be the graph resulting fromG after removing sets of edges in all phases prior toφ.
Consider a phaseφ. Let P be the path followed by an agent which departs frommφ, explorespφ

and reachesm′

φ. LetP ′ be the path followed by the other agent which departs frommφ, exploresp′φ and
reachesm′

φ. All edges in both these paths belong toGφ because they are traversed either only in phase
φ or traversed at least twice inσ. This implies that nodesmφ,m

′

φ, pφ, p
′

φ are in the same component of
Gφ. After removing one of the setsBφ, Cφ, B′

φ, C
′

φ in phaseφ, nodesmφ,m
′

φ, pφ, p
′

φ are still connected
by one of the previous paths, sayP , and the remaining part ofP ′. Moreovermφ,m

′

φ, pφ, p
′

φ cannot be
disconnected in any later phase, sinceP and the remaining part ofP ′ contain edges traversed only inφ
or traversed at least twice inσ.

Sinces = mφ1
andm′

φi
= mφi+1

, for 1 ≤ i ≤ k − 1, the resulting graph after all the removals of
sets of edges done as above still contains a Steiner Tree (with the set of required nodes consisting of the
unsafe ones and of the nodes).

Let b∗φi
be the number of edges removed in phaseφi and leta∗1(φi) be the number of all edges

traversed only inφi. We haveb∗φi
≥

a∗1(φi)
4 . Since after all removals the resulting graph still contains a

Steiner Tree, we havea∗ − b∗φ1
− b∗φ2

− ... − b∗φk
≥ x + y∗. Thereforea∗ − a∗

1

4 ≥ x + y∗. The total
number of traversals inσ is bounded as follows:

∑

i

i · a∗i ≥ 2 · (a∗ − a∗1) + a∗1.

Hence we get

3

4
·
∑

i

i · a∗i ≥
3

2
· (a∗ − a∗1) +

3

4
· a∗1 ≥

3

4
· a∗1 + a∗ − a∗1 ≥ x+ y∗.

Thus
∑

i i · a
∗

i ≥
4
3(x+ y∗). ⊓⊔
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Theorem 5.1. Algorithm Tree is an approximation algorithm for the BHS problem with ratio9.3.

Proof:
The time needed by a fastest BHS-scheme for the graphG isOPT ≥

P

i
i·a∗

i

2 , since there are two agents.
Hence the time needed by algorithm Tree is at most:

4(x+ y) ≤ 4 · 1.55 · (x+ y∗) ≤ 3 · 1.55 ·
∑

i

i · a∗i ≤ 9.3 ·OPT.

⊓⊔

6. Conclusion

We showed that the black hole search problem is NP-hard and wegave a polynomial approximation
algorithm to solve it. A natural open problem is to decrease the approxiamtion ratio: 9.3 is relatively
high. Another interesting issue is to increase the potential number of black holes. In this case two agents
are not enough: the number of agents must be larger than the maximum number of black holes. Also
connectivity requirements on the graph have to be imposed, in order to make locating all black holes
feasible. A natural generalization of our approach would beto find good approximation algorithms for
the black hole search problem with at mostk holes, usingl > k agents (whenever it is feasible on a given
input).
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