
Online Graph Exploration with Advice?

Stefan Dobrev1 and Rastislav Královič2 and Euripides Markou3

1 Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovakia.
Stefan.Dobrev@savba.sk

2 Department of Computer Science, Comenius University, Bratislava, Slovakia.
kralovic@dcs.fmph.uniba.sk

3 Department of Computer Science & Biomedical Informatics, University of Central
Greece, Lamia, Greece. emarkou@ucg.gr

Abstract. We study the problem of exploring an unknown undirected
graph with non-negative edge weights. Starting at a distinguished ini-
tial vertex s, an agent must visit every vertex of the graph and return
to s. Upon visiting a node, the agent learns all incident edges, their
weights and endpoints. The goal is to find a tour with minimal cost of
traversed edges. This variant of the exploration problem has been intro-
duced by Kalyanasundaram and Pruhs in [18] and is known as a fixed
graph scenario. There have been recent advances by Megow, Mehlhorn,
and Schweitzer ([19]), however the main question whether there exists
a deterministic algorithm with constant competitive ratio (w.r.t. to of-
fline algorithm knowing the graph) working on all graphs and with arbi-
trary edge weights remains open. In this paper we study this problem in
the context of advice complexity, investigating the tradeoff between the
amount of advice available to the deterministic agent, and the quality
of the solution. We show that Ω(n logn) bits of advice are necessary
to achieve a competitive ratio of 1 (w.r.t. an optimal algorithm know-
ing the graph topology). Furthermore, we give a deterministic algorithm
which uses O(n) bits of advice and achieves a constant competitive ratio
on any graph with arbitrary weights. Finally, going back to the original
problem, we prove a lower bound of 5/2− ε for deterministic algorithms
working with no advice, improving the best previous lower bound of 2−ε
of Miyazaki, Morimoto, and Okabe from [20]. In this case, significantly
more elaborate technique was needed to achieve the result.

1 Introduction

The exploration of an unknown environment is a well studied problem under
many different scenarios. This problem appears in many areas, such as terrain
exploration by robots, network exploration by agents, maintaining security of
large networks or searching for data in the internet and ad-hoc networks. As
the agent has initially limited knowledge about the network topology and this

? E. Markou was supported in part by a research grant offered by the Ministries of
Education of Greece and Slovakia (Bilateral Exchange Programme for Researchers)
and by THALES: ALGONOW project funded by the Greek Ministry of Education.

knowledge grows only by the agent observing its immediate neighbourhood, in
order to perform exploration (and/or construct a complete map of the network)
the agent has to visit each node.

In the online graph exploration problem an agent starts at a node s of an
undirected labeled graphG = (V,E), with |V | denoted by n. Each edge e ∈ E has
a non-negative weight, also called length or cost of e. The agent has no knowledge
about the topology of G. The task of the agent is to visit every node of the graph
and return to s. The agent can move only along the edges of G, each time paying
the respective edge cost. In the particular variant we consider in this paper, when
the agent arrives at a node u ∈ G, it learns all incident edges, their weights
and their endpoints. This scenario has been introduced by Kalyanasundaram
and Pruhs in [18] and is known as a fixed graph scenario. While learning the
endpoints of the incident edges is stronger than the typical exploration scenario,
it does have justification (see [18] and [19]); it also corresponds to previously
studied neighbourhood sense of direction [8].

The quality of an exploration algorithm under the above scenario is usually
measured by a competitive analysis ([4]), which compares the solution of an algo-
rithm with an optimal offline solution, i.e., the solution of an optimal algorithm
which has access to a complete and accurate map of the network. This analysis
is complicated by the fact that the underlying offline problem corresponds to
the Traveling Salesman Problem (TSP), which is known to be NP-hard, even to
get a constant-approximation (e.g., see [14]).

Related work: A simple and fast heuristic for the traditional TSP offline setting
which has been studied a lot is the greedy algorithm Nearest Neighbor (NN):
Once at a node u, go to the closest yet unexplored vertex v and repeat the
process until all vertices have been explored. This algorithm also applies in the
online setting, achieving competitive ratio of Θ(log n) ([21]), which is tight even
on planar unit-weight graphs ([16]).

While NN is non-competitive on general graphs, it performs quite well (with
competitive ratio of 3/2 ([1])) on simple cycles. A close lower bound of 5/4 was

also proved in [1]. These results for cycles have been later improved to 1+
√
3

2
matching lower and upper bound [20].

For graphs in which all edges have the same weight, a Depth First Search
(DFS) is 2-competitive, as the weight of a Minimum Spanning Tree (MST) is a
lower bound. This has been shown to be optimal in [20]. A sophisticated general-
ization of DFS (named ShortCut), introducing a parameterized condition which
determines when to diverge from DFS, has been proposed in [18]. ShortCut has
been shown to achieve competitive ratio of 16 in planar graphs; it has been long-
standing hypothesis that it is in fact constant competitive. ShortCut has been
reformulated in [19] and the upper bound has been generalized to 16(1 + 2g) for
graphs of genus at most g. However, it has been shown in [19] that neither of
these algorithms is constant competitive in general graphs with arbitrary weight.
In fact there are classes of graphs for which their competitive ratio is arbitrarily
large. Finally, a generalization of DFS that can be seen as a hierarchical DFS
was shown to be constant competitive on graphs with a bounded number of dif-

ferent edge weights. A slight generalization of this algorithm achieves Θ(log n)
competitive ratio for graphs with arbitrary weights.

Advice complexity: The impact of additional (typically structural) informa-
tion on complexity of algorithms has been a longstanding and rich field of study.
Impact of various aspects of structural information (e.g. knowledge of network
size and/or network topology, presence of sense of direction, availability of dis-
tinct node IDs) has been extensively studied for various problems. In general,
this information has been of qualitative type, i.e. the questions asked were of
the type ”what is the impact of presence/absence of specific structural informa-
tion?”.

A new line of research focusing on quantitative aspects of such information
has has recently become popular. The idea is to provide the algorithm/agent
with some additional information (advice) given explicitly as a binary string,
thus allowing to measure the information quantitatively. We use the model from
[5, 10] where the advice is given to the agent at the beginning of the algorithm.
Alternatively, the advice could be stored in a distributed fashion in the nodes
of the network (see e.g. [9, 11–13, 17]), and the maximum or average size of the
advice per node be considered. The advice encodes problem-relevant information
about unknown facts (i.e. topology in case of distributed algorithms) and can be
seen as computed by an oracle (of unlimited power) that knows the missing in-
formation the algorithm wants to use. This approach allows to precisely measure
the amount of additional information provided to the agent and facilitates study
of the tradeoff between the size of the advice, and the quality of the solution.

In the context of online algorithms, analogous concept has been indepen-
dently proposed in [6], and has been developed in two ways: the model from [7]
considers that the algorithm receives, with each request, some fixed amount of
b bits of advice. In the model from [3] (see also [2, 15]), on the other hand, the
whole advice is given to the algorithm at the beginning.

Our Results: Our primary interest is in the study of the tradeoff between the
advice size and the quality of the solution for the case of general graphs with
arbitrary weights. As a first step, we show (in Section2.1) that in order to have
an optimal algorithm with competitive ratio strictly 1, advice of size Ω(n log n)
bits is needed.

The primary question we are interested in is what is the smallest advice with
which there is a constant competitive algorithm. This can be seen as a relaxation
of the original question whether there is a constant competitive algorithm with
no advice at all. We provide an upper bound (in Section 3), presenting an algo-
rithm that achieves constant competitive ratio 6 + ε using O(n) bits of advice.
This result seems rather weak as we had to pay O(n) bits of advice to reduce
the competitive ratio by a factor of O(log n). However, it took a quite elabo-
rate algorithm to achieve even this result. As the algorithm has to make many
decisions over the whole network, using o(n) bits of advice and still achieving
constant competitive ratio would require significant new insight.

Going back to the original problem with no advice, we prove (in Section 2.2)
that without advice the competitive ratio of any deterministic online algorithm

cannot be less than 5/2− ε. The best previous lower bound of 2− ε is from [20]
and concerns graphs with unit weights (for which there is also a matching upper
bound). Our lower bound is significantly more involved, necessarily employing
edges of many different weights in an elaborate hierarchical structure. Due to
space constraints the proofs of lemmas and theorems and some of the more
technical parts will appear in the full version of the paper.

2 Lower Bounds

2.1 Advice Size for Optimal Solution

Let {v0, v1, . . . , vn−1} be a set of vertices. Define w(vi) = n − i. Denote by Kw
n

the clique on vertices v0, v1, . . . , vn−1 in which the edge between vertices vi and
vj is of weight w(vi, vj) = max(w(vi), w(vj)).

Lemma 1. There is a unique (up to reversal) walk π (visiting all nodes of
Kw

n) of a minimum cost in Kw
n with endpoints v0, vn−1. Furthermore, π =

{v0, v1, . . . , vn−1}.

Consider now Kw
n in which the adversary assigns the IDs visible to the ex-

ploring agent. Hence, when at node vi, the agent can from the weights of the
incident edges deduce i and the IDs of the nodes vj for j < i. However it cannot
distinguish between the n− i edges of weight w(i) leading to not-yet-visited ver-
tices. Therefore, in order to ensure the vertices are visited in the optimal order
v0, v1, . . . , vn−1, the agent needs advice of size log(n − i) at vertex i. Assuming
the agent starts at vertex v0 and summing up over all vertices yields Ω(n log n)
bound on the advice.

However, since the reverse of π is also an optimal path, the adversary can
give the advice (of size log n) which edge leads to vn−1. Once the agent is in
vn−1, it can from the weight of the incident edges deduce the remainder of the
optimal traversal sequence. Hence an agent could complete a cycle visiting all
nodes of Kw

n using just log n bits of advice. In order to prevent this exploit,
consider the graph G consisting of two copies of Kw

n and two additional edges
of unit weight. An example with two copies of Kw

8 is shown in Figure 1. Using

v0

v1v2

v3

v4

v5 v6

v7

8

7

6

5

4
3

2

8

v′3

v′2v′1

v′0

v′7

v′6 v′5

v′4

6

7

8

8

2
3

4

5

1

1

Fig. 1. The lower bound graph. The bold line is the optimal exploration path.

Lemma 1 we show that the optimal cycle including all nodes of G is:

{v0, v1, . . . , vn−1, v′n−1, v′n−2, . . . , v′0, v0}

Hence, to traverse this cycle, the agent needs Ω(n log n) bits of advice in at least
one copy of Kw

n .

Theorem 1. There is a family of graphs for which any optimal-cost algorithm
solving the graph exploration problem needs Ω(n log n) bits of advice.

2.2 Lower Bound for the Case of No Advice

Theorem 2. For any deterministic algorithm A and any 1
2 > ε > 0 there exists

a graph Glb such that the competitive ratio of A is at least 5
2 − ε. Moreover, Glb

has rO(log r) vertices, where r = 2/ε.

The lower bound graph Glb consists of a backbone cycle and additional return
and skip edges. At the highest level, Glb includes x level-k (x and k will be
determined later, x is odd) blocks connected in a backbone cycle, and x − 1
additional skip edges to be described later. Each block of level-i, where i > 1
consists of x sub-blocks of level-(i− 1) forming a line connected by level-(i− 1)
backbone edges. The agent starts exploration in the middle of a level-k block.
Each block has a right and left side; which side is which is decided based on
algorithm’s actions. In particular, the side whose endpoint is first reached by the
agent is by definition the right side; an adversary decides how the left and right
sides of neighbouring blocks align.

Let v be the rightmost vertex of a level-i block B such that B is the highest
level block for which v is the rightmost vertex. Then v is connected to the next
level-i block by two level-i edges: the backbone edge leading to the leftmost
vertex of the next level-i block, and the skip edge leading to the middle of the
next level-i block. There are two exceptions (the middle block has two skip edges,
and one block has no skip edges). Additionally, there is a level-i return edge from
v to the middle of the leftmost sub-block of B. The weights of these three level-i
edges incident to v are the same and are equal to the cost of the minimum cost
(we also call it shortest) path (by the cost of a path we mean the sum of the
weights of the edges of the path) connecting the endpoints of the return edge and
not using those three level-i edges. Note that if v is also the rightmost vertex of
a lower-level block B′ then B′ does not contain a return edge of its level. When
given a choice (i.e., the algorithm wants to traverse an edge whose endpoint’s ID
has not yet been seen) the adversary’s order of preference is return edge, then
skip edge, then backbone edge.

Level-1 block is analogous: It consists of x vertices connected in a line by
backbone edges of weight 1. There is a difference, though: The return edge leads
to the second leftmost vertex4. As a consequence, the right side of a level-1 block

4 the reason is that the ID of the leftmost vertex might be already known to the
algorithm, allowing to distinguish the incident level-i edges at the rightmost vertex

is the side in which the third vertex from the end is visited first5. The structure
of a level-i block is captured in Figure 2.

exploration sequence until the center of a border block is visited

backbone edge

return edge

skip edge

transit sub-block

special sub-block

Fig. 2. The structure of a level i block (this one is transit). Fat edges are of level i.

In the following, by the cost of a path we mean the sum of the weights of the
edges of the path. Let ri denote the cost of the shortest path from the middle
of a level-i block to its rightmost/leftmost vertex (note that these distances are
the same) Let ti denote the cost of the shortest path using edges of level at most
i − 1 and connecting the endpoints of a level-i return edge. Let oi denote the
cost of the backbone path from the left-most vertex to the right-most vertex of
a level-i block.

Let us classify the blocks as transit and special. A block B of level i is transit,
if and only if all of the following conditions hold:

– B is entered for the first time via the skip edge leading into its center

– at that time, exactly one neighbouring block of B has not been visited – the
block B′

– B′ is visited for the first time via a skip edge from B

– B contains a return edge of level i

All other blocks are special. Observe that in an optimal algorithm, a transit block
has at most 4 special sub-blocks, while a special block may have up to 5 special
sub-blocks.

Let us denote by ei and ẽi the minimal cost (perhaps over several visits)
incurred by the agent in a level-i transit and special block, respectively, until all
vertices of the block have been visited. For the transit blocks, we charge to the
block also the cost of arriving to and leaving the block (if there is such activity)
in the time period between the first arrival of the agent to B and the first leaving

5 once this vertex is visited, it knows the ID of the second-from-end vertex which
would allow to recognize the endpoint of the return edge

of the agent towards B′. From the definition of Glb we have

r1 = 1
2 (x− 1) ri+1 = 1

2 (x+ 1)ri + 1
2 (x− 1)ti

t1 = x− 2 ti+1 = (x− 1)ti + xri
o1 = x− 1 oi+1 = xoi + (x− 1)ti
e1 ≥ 5

2 (x− 1) ei+1 ≥ (x− 4)ei + 4ẽi + (x− 1)ti + ti+1 + ri+1 − ri =
(x− 4)ei + 4ẽi + 5

2 (x− 1)ti + 3x−1
2 ri

ẽ1 ≥ x− 1 ẽi+1 ≥ (x− 5)ei + 5ẽi + (x− 1)ti

Consider the highest-level ring of blocks of level k. As there are two special
blocks in an optimal algorithm (the starting one, and its left neighbour), the
exploration cost is at least (x− 2)ek + 2ẽk + xtk. The optimal traversal cost (of
an algorithm using a map of the graph) is xok +xtk. Putting this in ratio yields
the approximation factor

(x− 2)ek + 2ẽk + xtk
xok + xtk

=
5

2

Corollary 1. The competitive ratio of any deterministic algorithm on n-vertex

graphs is at least 5
2 − 2−O(

√
logn).

3 Upper Bounds

Let M be the weight of a Minimum Spanning Tree (MST) of G. We design
the exploration algorithm to incur cost O(M) and hence achieve constant ap-
proximation ratio. Intuitively the algorithm classifies edges of G into groups
depending on their weight and leads (by providing O(n)− bits of advice) the
agent to explore G by traversing components of an MST and some not very
‘heavy-weight’ edges connecting those components. All the advice described is
stored in self-delimited way; this ensures that the cost of an advice of number s
is O(log s) regardless of the potential range the value s is from. As a first step,
the advice given is n and l = dlog(M/n)e. Although l can be unbounded w.r.t.
n, it can be encoded in O(log n) bits in the following way: Advice (n′, p, l′) is
given, interpreted as follows: Keep exploring the cheapest outgoing edge from
the currently explored subgraph until n′-th vertex is encountered. Consider its
p-th incident edge e, let w(e) be its weight. Then l = dlogw(e)e+ l′. (n′, p, l′) are
chosen in such way that e is the first encountered edge of weight between M/n2

and M . Note that such an edge must exists, otherwise the MST weight would
not be M . Observe that O(log n) bits are sufficient to encode (n′, p, l′) and the
total exploration cost until e is found is O(M): a)l′ ≤ log n, and b)the cost of
reaching the cheapest outgoing edge is O(M/n) since each so-far explored edge
is of weight at most O(M/n2), and this has to be repeated for at most n times
until a heavier edge is found.

Define for each edge e its level l(e) as follows: If log(w(e)) < l, then l(e) = 0,
otherwise l(e) = dlog(w(e))e− l. Note that in the MST there at most n/2i edges
of level i. Define Gi to be the graph induced in G by the edges of level at most
i. Denote by Gi(v) the connected component of Gi containing vertex v.

From a high level view, the algorithm tries to mimic the MST of G, with
the following modifications: a) The G0 components are explored using DFS, as
the total overhead in them w.r.t. to the MST is O(M), and b) for each level-i
MST edge connecting two G0 components, the algorithm is able to identify (and
traverse) a level i edge (let us call it a tree edge) connecting them, incurring cost
of at most 6 level-i edge traversals (leading to O(M) overall cost).

The main problem is that the tree edges cannot be encoded explicitly, as that
might cost O(n log n) advice bits. Note that all special nodes that need advice to
be stored in them can be encoded in O(n) bits, by storing in each special node the
number of newly visited nodes to skip until the next special node is encountered.
Hence, it is sufficient to focus on how to efficiently (in terms of advice size and
incurred traversal cost) identify the tree edges incident to a source vertex v. As
there are at most n/2i tree edges of level i, we can afford to spend O(i) bits per
tree edge of level i; O(log i) bits are in fact sufficient for our algorithm.

Let us call an edge unexplored if one of its endpoints has not yet been visited
by the agent. A level-i edge (u, v) is an outi edge if v /∈ Gi−1(u), otherwise it is
an ini edge. In the easiest case, all level-i unexplored edges incident to v are outi
edges. This is indicated by advice {Out, i, 0} at v. In such case, the algorithm
can safely cross the incident level-i unexplored edges and recursively explore
the corresponding components. However, it might be the case that there are ini
edges incident to v. In order to avoid taking them (and paying unnecessarily
high cost), a {Wait, i, 0} advice is given. In such case, the algorithm ignores for
now the level-i edges incident to v, with the promise that it will return later
when only outi edges remain unexplored. The right moment to return to v is
when the last ini edge (v, w) incident to v becomes explored (i.e., when the agent
arrives to w). In such case, we say that w is the trigger vertex at level-i for v.
In fact, w can be a trigger vertex for several vertices. This is indicated by an
advice tuple {Trigger, i,mult} at w, where mult is the number of vertices for
which w is trigger. It is too costly to store explicitly for which of w’s neighbours
it is the trigger. Instead, w checks how many of its neighbours are waiting for
trigger. If that number is equal to mult, then w knows that it can trigger all its
level-i neighbours that are waiting for the trigger. However, it may be the case
that w has more level-i neighbours that are waiting for level-i trigger. In such
case, the exploration proceeds without triggering, with the promise that once
w learns whom to trigger (we call it that w is released), it will do so. A vertex
v being triggered (at level i) by w means that the agent travels from w to v,
explores the level-i edges incident to v and returns to w. Before the return to w,
the agent notifies6 all level-i triggers incident to v that v is not waiting anymore
for a trigger. This might release some triggers. In such case, the agent will visit
the released triggers from v before returning to w. In fact, such triggering and
releasing can cascade several levels. Nevertheless, we will show that the overall
cost is still O(M). The pseudocode of the algorithm is given in Algorithm 1 and
Algorithm 2.

6 note that this is just an internal calculation in the agent’s data structures, no actual
traversal is needed

Algorithm 1 Exploration with linear advice

1: procedure ExploreWithAdvice
2: Initialize n, M and l as described above, finishing at vertex v
3: Let next, Waiting(v, lvl) and Trigger(v, lvl) be global variables
4: next← ReadAdvice(integer)
5: call Expand(v)
6: return to the starting vertex
7: end procedure

1: procedure Expand(v)
2: next← next− 1
3: if next = 0 then
4: next←ReadAdvice(integer)
5: adviceList←ReadAdvice(list of triples of integers)
6: call ExpandNeighbours(v, 0)
7: for every tuple {type, lvl, mult} in adviceList do
8: if type = Out then
9: call ExpandNeighbours(v, lvl)

10: else if type = Trigger then
11: W ← {u : l((v, u)) = lvl ∧Waiting(u, lvl) = True}
12: if mult = |W | then
13: call TriggerNeighbours(v, lvl, W)
14: else
15: Trigger(v, lvl)← mult
16: end if
17: else . type = Wait
18: Waiting(v, lvl)← True
19: end if
20: end for
21: else
22: call ExpandNeighbours(v, 0)
23: end if
24: end procedure

In order to complete the description, the advice given (i.e., which vertices
are special, and for which levels) has to be specified. Unfortunately, it is not
possible to reflect in a straightforward manner the structure of the MST edges
connecting the G0 components: Consider the scenario shown in Figure 3. In this
case, both Gi−1(w) and Gi−1(w′) will be reached from v, although (u,w) might
be the MST edge. The solution is simple: drop u as a special vertex, the cost of
reaching w from v is at most twice the cost of reaching it from u. More generally,
the special vertices can be computed as follows:

Simulate the run of the exploration algorithm and whenever you come to a
vertex v with outi edges, mark it as special for level i and add the corresponding
tuple to the advice. Note that this may create many connections to the same G0

component C, potentially substantially increasing advice size. However, these
connections will all stop to be outi edges when C is visited and fully explored
(note that the agent returns from a component only after it has been fully

Algorithm 2 Exploration with linear advice – helper procedures

1: procedure ExpandNeighbours(v, lvl)
2: for all incident edges (v, u) of level lvl do
3: if u has not yet been expanded then
4: go to u
5: call Expand(u)
6: return to v
7: end if
8: end for
9: if lvl > 0 then

10: Waiting(v, lvl)← False
11: T ← {u : l((u, v)) = lvl ∧ Trigger(u, lvl) > 0}
12: for all u ∈ T do
13: Trigger(u, lvl)← Trigger(u, lvl)− 1
14: W ← {w : l((u,w)) = lvl ∧Waiting(u, lvl) = True}
15: if Trigger(u, lvl) = |W | then
16: go to u
17: call TriggerNeighbours(u, lvl, W)
18: return to v
19: end if
20: end for
21: end if
22: end procedure

1: procedure TriggerNeighbours(v, lvl, W)
2: for all u ∈W do
3: go to u
4: call ExpandNeighbours(u, lvl)
5: return to v
6: end for
7: Trigger(v, lvl)← 0
8: end procedure

explored). If it happens that all outi edges of a special vertex v stop being outi
before v had a chance to explore them, the tuple for v, i (and possibly the
corresponding Trigger tuple) are removed from the advice. This leaves at most
n − 1 Out/Wait tuples (plus corresponding Trigger tuples) in the advice. Let
us classify the edges traversed by the algorithm as follows: i) traverse edges: the
edges traversed on lines 4 and 6 of ExpandNeighbours, ii) trigger edges: the
edges traversed on lines 3 and 5 of TriggerNeighbours, and iii) release edges:
the edges traversed on lines 16 and 18 of ExpandNeighbours. Note that no
other edges are traversed by the algorithm.

Lemma 2. The traverse edges form a spanning tree of G of weight O(M), while
the total advice used by the algorithm is of size O(n) bits.

Note that each release edge can be charged to a corresponding trigger edge,
which itself can be charged to the corresponding traversal edge (all of them of
the same level). Combined with Lemma 2 this yields:

u
v

outi edge

ini edge

Gi−1(u)

w w′

Gi−1(w) Gi−1(w′)

Fig. 3. u is visited before v, but v is the first one to expand its neighbours.

Theorem 3. Algorithm 1 explores an unknown n-node graph using advice of
size O(n) and incurring cost linear in the optimal exploration cost.

A more careful analysis shows that exploration cost is at most 3W times the
weight of the MST, where W is the ratio between the weights of the cheapest
and the costliest edge of a level. Combined with the fast that the weight of the
MST itself is a 2-approximation of the optimal cost, this yields approximation
ratio of 6W . In our case, we have chosen W = 2 for simplicity; W can be reduced
to 1 + ε by choosing narrower levels, at the expense of increasing the advice size
(by increasing the number of levels). However, for any constant ε, the resulting
advice size is still linear, providing a 6 + ε′ approximation bound with linear
advice.

4 Conclusion

The question of whether there exists a constant competitive deterministic al-
gorithm for the exploration problem on general graphs with arbitrary weights
remains open. Hence adding to an algorithm the capability of accessing an ad-
vice seems a natural step for getting positive results. This is the case especially
if it turns out that the answer to the above question is negative.

Our original aim was to come up with an algorithm using a small (polylog-
arithmic) advice and achieving constant competitive ratio. The hope was that
such algorithm can perhaps be adapted to not need the advice at all. However,
we did not succeed in this task and were only able to provide an algorithm using
O(n) bits of advice.

The principal problem lies in the fact that the algorithm has to make many
decisions over the whole network. Hence, even reducing the advice to o(n) re-
quires new insight and would be a significant progress. From the lower bound
side, we were able to raise the lower bound from 2−ε to 5/2−ε, although break-
ing the barrier of 2 required use of many different edge weights and elaborate
hierarchial construction. The difficulties in raising the lower bound give hope
that perhaps the answer to the original question is positive. Aside from the very
strict lower bound on advice size for optimal algorithms, the question of lower
bound tradeoff between the advice size and competitive ratio is interesting on
itself and remains widely open.

References

1. Y. Asahiro, E. Miyano, S. Miyazaki, and T. Yoshimuta. Weighted nearest neighbor
algorithms for the graph exploration problem on cycles. Information Processing
Letters, 110(3):93 – 98, 2010.

2. H.-J. Böckenhauer, D. Komm, R. Královič, and R. Královič. On the advice com-
plexity of the k-server problem. In L. Aceto, M. Henzinger, and J. Sgall, editors,
ICALP (1), volume 6755 of LNCS, pages 207–218. Springer, 2011.

3. H.-J. Böckenhauer, D. Komm, R. Královič, R. Královič, and T. Mömke. On the
advice complexity of online problems. In Y. Dong, D.-Z. Du, and O. H. Ibarra,
editors, ISAAC, volume 5878 of LNCS, pages 331–340. Springer, 2009.

4. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis, vol-
ume 2. Cambridge University Press, 1998.

5. D. Dereniowski and A. Pelc. Drawing maps with advice. J. Parallel Distrib.
Comput., 72(2):132–143, 2012.

6. S. Dobrev, R. Královič, and D. Pardubská. Measuring the problem-relevant infor-
mation in input. ITA, 43(3):585–613, 2009.

7. Y. Emek, P. Fraigniaud, A. Korman, and A. Rosén. Online computation with
advice. Theor. Comput. Sci., 412(24):2642–2656, 2011.

8. P. Flocchini, B. Mans, and N. Santoro. Sense of direction in distributed computing.
Theor. Comput. Sci., 291(1):29–53, 2003.

9. P. Fraigniaud, C. Gavoille, D. Ilcinkas, and A. Pelc. Distributed computing with ad-
vice: information sensitivity of graph coloring. Distributed Computing, 21(6):395–
403, 2009.

10. P. Fraigniaud, D. Ilcinkas, and A. Pelc. Impact of memory size on graph exploration
capability. Discrete Applied Mathematics, 156(12):2310 – 2319, 2008.

11. P. Fraigniaud, D. Ilcinkas, and A. Pelc. Communication algorithms with advice.
J. Comput. Syst. Sci., 76(3-4):222–232, 2010.

12. P. Fraigniaud, A. Korman, and E. Lebhar. Local mst computation with short
advice. Theory Comput. Syst., 47(4):920–933, 2010.

13. E. G. Fusco and A. Pelc. Trade-offs between the size of advice and broadcasting
time in trees. Algorithmica, 60(4):719–734, 2011.

14. G. Gutin and A. P. Punnen. The Traveling Salesman Problem and Its Variations.
Springer, Heidelberg, 2002.

15. J. Hromkovic, R. Královič, and R. Královič. Information complexity of online
problems. In P. Hlinený and A. Kucera, editors, MFCS, volume 6281 of LNCS,
pages 24–36. Springer, 2010.

16. C. A. Hurkens and G. J. Woeginger. On the nearest neighbor rule for the traveling
salesman problem. Operations Research Letters, 32(1):1 – 4, 2004.

17. D. Ilcinkas, D. R. Kowalski, and A. Pelc. Fast radio broadcasting with advice.
Theor. Comput. Sci., 411(14-15):1544–1557, 2010.

18. B. Kalyanasundaram and K. R. Pruhs. Constructing competitive tours from local
information. Theoretical Computer Science, 130(1):125 – 138, 1994.

19. N. Megow, K. Mehlhorn, and P. Schweitzer. Online graph exploration: New results
on old and new algorithms. In L. Aceto, M. Henzinger, and J. Sgall, editors, ICALP
(2), volume 6756 of LNCS, pages 478–489. Springer, 2011.

20. S. Miyazaki, N. Morimoto, and Y. Okabe. The online graph exploration problem on
restricted graphs. IEICE Transactions on Information and Systems, 92(9):1620–
1627, 2009.

21. D. J. Rosenkrantz, R. E. Stearns, and P. M. L. II. An analysis of several heuristics
for the traveling salesman problem. SIAM J. Comput., 6(3):563–581, 1977.

