
Hardness and Approximation Results for Black

Hole Search in Arbitrary Networks⋆

Ralf Klasing⋆⋆, Euripides Markou⋆ ⋆ ⋆, Tomasz Radzik†, and Fabiano Sarracco‡

Abstract. A black hole is a highly harmful stationary process residing
in a node of a network and destroying all mobile agents visiting the
node without leaving any trace. The Black Hole Search is the task of
locating all black holes in a network by exploring it with mobile agents.
We consider the problem of designing the fastest Black Hole Search, given
the map of the network and the starting node. We study the version of
this problem that assumes that there is at most one black hole in the
network and there are two agents, which move in synchronized steps.
We prove that this problem is NP-hard in arbitrary graphs (even in
planar graphs), solving an open problem stated in [1]. We also give a
3 3

8
-approximation algorithm, showing the first non-trivial approximation

ratio upper bound for this problem. Our algorithm follows a natural
approach of exploring networks via spanning trees. We prove that this
approach cannot lead to an approximation ratio bound better than 3/2.

Keywords: approximation algorithm, black hole search, graph explo-
ration, mobile agent, NP-hardness

1 Introduction

1.1 The Background and the Problem

Problems related to security in a network environment have attracted many
researchers. For instance protecting a host, i.e., a node of a network, from an
agent’s attack [15, 16] as well as protecting mobile agents from “host attacks”,

⋆ Research supported in part by the European project IST FET CRESCCO (contract
no. IST-2001-33135), the Royal Society Grant ESEP 16244, EGIDE, the Ambassade
de France en Grèce/Institut Français d’Athènes, and EPEAEK 70/3/6865. Part of
this work was done while E. Markou, T. Radzik and F. Sarracco were visiting the
MASCOTTE project at INRIA Sophia Antipolis.

⋆⋆ MASCOTTE project, I3S-CNRS/INRIA/Université de Nice-Sophia Antipolis, 2004
Route des Lucioles, BP 93, F-06902 Sophia Antipolis Cedex (France), email
Ralf.Klasing@sophia.inria.fr

⋆ ⋆ ⋆ Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, email emarkou@softlab.ece.ntua.gr

† Department of Computer Science, King’s College London, London, UK, email
Tomasz.Radzik@kcl.ac.uk

‡ Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, email
Fabiano.Sarracco@dis.uniroma1.it

2 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

i.e., harmful items stored in nodes of the network, are important with respect to
security of a network environment. Various methods of protecting mobile agents
against malicious hosts have been discussed, e.g., in [9, 10, 14–17].

We consider here malicious hosts of a particularly harmful nature, called
black holes [2, 1, 3, 5, 6, 4]. A black hole is a node in a network which contains
a stationary process destroying all mobile agents visiting this node, without
leaving any trace. Since agents cannot prevent being annihilated once they visit
a black hole, the only way of protection against such processes is first identifying
the hostile nodes and then avoiding them. To identify a black hole, it must be
to visited at least once. An agent which falls into a black hole is destroyed and
will not turn up at a node where the other agents may expect it. This way the
surviving agents infer the existence and location of a black hole. We assume in
this paper that there may be at most one black hole in the network, there are
exactly two agents, they start from the same given starting node s, which is
known to be safe, and at least one agent must report back to s with information
where exactly the black hole is or that there is none. We consider the problem
of designing a black hole search scheme for a given network and a given starting
node.

The issue of efficient black hole search was extensively studied in [3, 5, 6, 4] in
many types of networks under the scenario of a totally asynchronous network,
i.e., while every edge traversal by a mobile agent requires finite time, there is no
upper bound on this time. In this setting it was observed that in order to solve
the problem the network must be 2-connected. Moreover, in an asynchronous
network it is impossible to answer the question of whether a black hole actually
exists, hence it is assumed in [3, 5, 6, 4] that there is exactly one black hole and
the task is to locate it.

In [2, 1] the problem is studied under the scenario we consider in this paper.
The network is synchronous, i.e., there is an upper bound on the time needed by
an agent for traversing any edge. The synchronous network makes a dramatic
change to the problem. The black hole can be located by two agents in any graph.
Moreover the agents can decide if there is a black hole or not. To measure the
efficiency of a black hole search, it is assumed that each agent takes exactly one
time unit (one synchronized step) to traverse one edge (and to make all necessary
computations associated with this move). Then the cost of a given black hole
search scheme in a given network G and from a given starting node s is defined
as the total time the search takes under the worst-case location of the black hole
(or when there is no black hole in the network).

The cost of a black hole search should be distinguished from the time com-
plexity of an algorithm producing the scheme for the search. Informally, the for-
mer is the time of walking, while the latter is the time of preparing (planning)
the walk. Following [2] and [1], we study the optimization problem of computing
(preparing), for a given network G and the starting node s, a minimum-cost
black hole search scheme. From now on, the Black Hole Search problem refers
to this optimization problem.

Complexity Results for Black Hole Search in Graphs 3

In [1] the Black Hole Search problem is studied in tree topologies, and the
main results given are an exact polynomial-time algorithm for some sub-class
of trees and a 5/3-approximation algorithm for arbitrary trees. The existence
of an exact polynomial-time algorithm for arbitrary trees is left open. In [2] the

following variant of the problem is studied. The input instance is a triple (G, s, Ŝ),

where G and s are, as above, a network and the starting node, and Ŝ ⊇ {s} is
a given subset of nodes known to be safe (no black hole can be located in any

node in Ŝ). The main results presented in [2] are that for arbitrary graphs this
variant of the Black Hole Search problem is NP-hard but can be approximated
within a ratio bound 9.3. Observe that the problem we consider in this paper is
the problem considered in [2] restricted to the case when Ŝ = {s}.

1.2 Our Results

We show that the problem of finding a minimum cost Black Hole Search in
an arbitrary graph when only the starting node is initially known to be safe is
NP-hard, thus solving an open problem stated in [1]. Moreover, we give a 3 3

8 -
approximation algorithm for this problem, i.e., we construct a polynomial time
algorithm which for a graph and a starting node as input, produces a Black Hole
Search whose cost is at most 3 3

8 times the best cost of a Black Hole Search for
this input. This result improves on the 4-approximation scheme observed in [1],
and it is the first non-trivial approximation ratio bound for this problem. Our
approximation algorithm explores the input graph via some spanning tree. We
show a limitation of this natural approach by presenting an infinite family of
graphs such that the cost of any Black Hole Search which explores these graphs
via spanning trees is at least 3/2 − O(1/n) times the optimal cost.

1.3 Structure of the Paper

Section 2 presents the model of the problem we study, and provides the terminol-
ogy we will use in the rest of the paper; moreover some fundamental properties
are stated. In Section 3 we prove that the minimum cost Black Hole Search
problem in arbitrary graphs is NP-hard. In Section 4 we give a 3 3

8 approxima-
tion scheme for this problem. Finally, Section 5 is intended to investigate the
limitations of the spanning tree based approach we use in this paper.

2 Model and Terminology

We represent a network as a connected undirected graph G = (V, E), without
multiple edges or self-loops, where nodes denote hosts and edges denote commu-
nication links. In the following we will use the terms graph and network, host
and node, and link and edge interchangeably, although we tend to use the term
graph to mean an abstract representation of a network. We assume that the
nodes of G can be partitioned into two subsets:

4 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

– a set of black holes B (V , i.e., of nodes destroying any agent visiting
them without leaving any trace;

– a set of safe nodes V \ B.

During a Black Hole Search (or simply BHS), agents start from a special node
s ∈ V \ B called the starting node, and explore graph G by traversing its
edges. The starting node s is known to be a safe node; and generally a subset
of nodes Ŝ with s ∈ Ŝ ⊆ V \ B, which are known to be safe, may be given. The
target of the agents is to report to s which nodes of G are black holes.

In this paper we consider the following restricted version of the problem:
|B| ≤ 1 (i.e., there can be either one black hole or no black holes at all in G),

Ŝ = {s} (only the starting node is known to be safe), there are two agents, agents
have a complete map of G, agents have distinct labels (we will call them Agent-
1 and Agent-2) and communicate only when they are in the same node (and
not, e.g., by leaving messages at nodes). Finally, the network is synchronous.
This means that there exists an upper bound on the time needed by any edge
traversal; we normalize this bound, and assume that each traversal requires one
time unit. We now formalize the problem we study in this paper, calling it the
Minimum Cost BHS Problem, or simply the BHS problem.

BHS problem

Instance : a connected undirected graph G = (V, E) and a node s ∈ V .

Solution : an exploration scheme EG,s = (X, Y) for G and s, where X =
〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 are two equal-length sequences of
nodes in G, which satisfies the feasibility constraints 1–4 given below. The
length of the exploration scheme EG,s is defined to be T .

Measure : the cost of the BHS based on EG,s.

When the BHS based on a given exploration scheme EG,s is performed in G,
Agent-1 follows the path defined by X while Agent-2 follows the path defined
by Y. In other words, at the end of the i-th step of the exploration scheme (at
time i), Agent-1 is in node xi, while Agent-2 is in node yi. As soon as an agent
deduces the existence and the exact location of the black hole, it “aborts” the
exploration and returns to the starting node s by traversing nodes in V \B. The
cost of the BHS based on a given exploration scheme EG,s is defined later in this
section.

Our definition of an exploration scheme might give the impression that we
consider only ”oblivious” exploration. However, since there are only two agents,
at most one black hole, the whole graph is known in advance, and exploration
is deterministic, there are no ”more adaptive” explorations. Intuitively, for any
exploration algorithm, if there is no black hole, then one agent follows some
sequence of moves A, while the other follows a sequence B, and these sequences
can be calculated before the exploration starts. If there is a black hole, then
anyway the agents must follow sequences A and B, until one agent realises that
the other one has died.

Complexity Results for Black Hole Search in Graphs 5

If X = 〈x0, x1, . . . , xT 〉 and Y = 〈y0, y1, . . . , yT 〉 are two equal-length se-
quences of nodes in G, then EG,s = (X, Y) is a feasible exploration scheme for G
and the starting node s (and can be effectively used as a basis for a BHS in G)
if the constraints 1–4 stated below are satisfied.

Constraint 1: x0 = y0 = s, xT = yT .

Constraint 2: for each i = 0, . . . , T − 1, either xi+1 = xi, or (xi, xi+1) ∈ E;
and similarly either yi+1 = yi or (yi, yi+1) ∈ E.

Constraint 3:
⋃T

i=0 {xi} ∪
⋃T

i=0 {yi} = V .

Constraint 1 corresponds to the fact that both agents start from the given
starting node s. The requirement that the sequences X and Y end at the same
node provides a convenient simplification of the reasoning without loss of gener-
ality. Constraint 2 models the fact that during each step, each agent can either
wait in the node v where it was at the end of the previous step, or traverse an
edge of the network to move to a node adjacent to v. Constraint 3 assures that
each node in V is visited by at least one agent during the exploration. We need
additional definitions to state Constraint 4.

Given an exploration scheme EG,s = (X, Y), for each i = 0, 1, . . . , T , we call
the explored territory at step i the set Si defined in the following way:

Si =

{⋃i
j=0 {xj} ∪

⋃i
j=0 {yj} , if xi = yi;

Si−1, otherwise.

Thus S0 = {s} by Constraint 1, ST = V by Constraint 1 and Constraint 3,
and Sj−1 ⊆ Sj for each step 1 ≤ j ≤ T . A node v is explored at a step i
if v ∈ Si, or unexplored otherwise. These definitions reflect the assumption
that the agents communicate with each other, exchanging their full knowledge,
when and only when they meet at a node. An unexplored node v may have been
already visited by one of the agents, but it will become explored only when the
agents meet (and communicate) next time. If both agents are alive at the end of
step i, then the explored nodes at this step are all nodes which are known to both
agents to be safe. Note that the explored territory is defined for an exploration
scheme EG,s, not for the BHS based on EG,s, so it does not take into account the
possible existence of the black hole. This is taken into account in the definition
of the cost of the BHS based on EG,s.

A meeting step (or simply meeting) is the step 0 and every step 1 ≤ j ≤ T
such that Sj 6= Sj−1. Observe that, for each meeting step j, we must have
xj = yj , but not necessarily the opposite, and we call this node a meeting

point. The meeting steps are the steps when the agents meet and add at least
one new node to the explored territory. A sequence of steps 〈j + 1, j + 2, . . . , k〉
where j and k are two consecutive meetings is called a phase of length k − j.
We give now the last constraint on a feasible exploration scheme.

Constraint 4: for each phase with a sequence of steps 〈j + 1, . . . , k〉,
(a) | {xj+1, . . . , xk} \ Sj | ≤ 1 and | {yj+1, . . . , yk} \ Sj | ≤ 1; and

6 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

(b) {xj+1, . . . , xk} \ Sj 6= {yj+1, . . . , yk} \ Sj .

Constraint 4(a) means that during each phase, one agent can visit at most
one unexplored node. If it visited two unexplored nodes and one of them was a
black hole, then the other agent would not know where exactly the black hole
was. Constraint 4(b) says that the same unexplored node cannot be visited by
both agents during the same phase, or otherwise they both may end up in a black
hole (see [1]). From now on an exploration scheme means a feasible exploration
scheme. The next two observations will be frequently used in our arguments.

Lemma 1. If k ≥ 1 is a meeting step for an exploration scheme EG,s, then
xk = yk ∈ Sk−1.

Proof. Let j be the last meeting step before step k, and hence Sj = Sj+1 =
. . . = Sk−1. By definition xk = yk ∈ Sk. If xk = yk is not in Sk−1, then it is in
both {xj+1, . . . , xk} \Sj and {yj+1, . . . , yk} \Sj . In this case, at least one of the
conditions of Constraint 4 is violated. ⊓⊔

Lemma 2. Each phase of an exploration scheme EG,s has length at least two.

Proof. Let us suppose, by contradiction, that there exists in EG,s a phase of
length 1, and hence two adjacent meeting steps j and j + 1. The step j + 1 is
a meeting if and only if Sj+1) Sj , but, by Lemma 1, xj+1 = yj+1 ∈ Sj , and
hence Sj+1 = Sj . Therefore there cannot exist in EG,s a phase of length 1. ⊓⊔

We now present a notation for describing each phase of length 2, at the end
of which the explored territory increases by 2 nodes. Any phase 〈j + 1, j + 2〉
of this kind has to have the following structure. Let m be the meeting point at
step j. During step j + 1, Agent-1 visits an unexplored node v1 adjacent to m,
while Agent-2 visits an unexplored node v2 adjacent to m as well, and v1 6= v2.
In step j + 2, the agents meet in a node which has been already explored and
is adjacent to both v1 and v2. This node can be either m, and in this case we
denote the phase as b-split(m, v1, v2), or a different node m′ 6= m, and in this
case we denote the phase as a-split(m, v1, v2, m

′).
For an exploration scheme EG,s = (X, Y) and a location of a black hole B,

where either B = ∅ or B = {b} for b ∈ (V \ {s}), the execution time is
defined as follows. If B = ∅, then the execution time is equal to the length T of
the exploration scheme, plus the shortest path distance from xT (= yT) to s. In
this case the agents must perform the full exploration (spending one time unit
per step) and then get back to the starting node to report that there is no black
hole in the network. If B = {b}, then let j be the first step in EG,s such that
b ∈ Sj . Observe that j must be a meeting step and 1 ≤ j ≤ T since S0 = {s}
and ST = V . One agent knows at step j that the other agent has died in b.
The execution time in this case is equal to j plus the shortest length of a path
from xj(= yj) to s not including b. In this case one agent, say Agent-1, vanishes
into the black hole during the phase ending at step j, so it does not show up to
meet Agent-2 at node xj = yj . Since, by Constraint 4, Agent-1 has visited only

Complexity Results for Black Hole Search in Graphs 7

one unexplored node during the phase, the surviving Agent-2 learns the exact
location of the black hole and returns to s.

The cost of the BHS based on an exploration scheme EG,s = (X, Y) is the
worst (maximum) execution time of EG,s over all possible values of B. In other
words, in computing the cost of a BHS, we allow a malicious adversary, which
exactly knows EG,s, to place the black hole (or not to place it at all) in such a
way that the BHS requires as many time units as possible. It is not difficult to
see that if G is a tree, then the case B = ∅ gives always the maximum execution
time among all possible locations of the black hole (a detailed argument for
this fact is included in the proof of Lemma 9). However, if G is an arbitrary
graph, then this property does not always hold, that is, the case B = ∅ may
not give the maximum execution time. For example, consider the n-node ring
graph 〈s, v1, v2, . . . , vn−1〉 and the following exploration. Agent-1 goes to v1 and
back to s, and then, provided that Agent-1 returns, both agents go to v1. The
agents continue in this way exploring next v2, then v3, and so on, until they go
all the way around the ring. If there is no black hole, then the execution time is
3n + O(1). If node vn−1 is the black hole, then the execution time is 4n + O(1)
because the surviving agent returns to s by tracing back the whole ring.

To summarize, the objective of the BHS problem is to find, for a given graph
G and a starting node s, an exploration scheme EG,s which minimizes the cost
of the BHS based on it. In Section 3 we prove that this problem is NP-hard, and
in Section 4 we describe a 3 3

8 -approximation algorithm.

3 NP-Hardness of Black Hole Search

In this section we prove the NP-hardness of the BHS problem in planar graphs
by providing a reduction from a specific version of the Hamiltonian Cycle prob-
lem to the decision version of the BHS problem.

Hamiltonian Cycle problem for cubic planar graphs (cpHC problem)

Instance : a cubic planar 2-edge-connected graph G = (V, E), and an edge
(x, y) ∈ E;

Question : does G contain a Hamiltonian cycle that includes edge (x, y)?

Decision Black Hole Search problem for planar graphs (dBHS problem)

Instance : a planar graph G′ = (V ′, E′), with a starting node s ∈ V ′, and a
positive integer X ;

Question : does there exist an exploration scheme EG′,s for G′ starting from s,
such that the BHS based on EG′,s has cost at most X?

The NP-completeness of the cpHC problem without the extra requirement
that the Hamiltonian cycle passes through a given edge was proven in [8]. The
version with that extra requirement is also NP-complete because of the following
simple reduction. For a given cubic planar graph G, let D be any node in G and
let A, B and C be its neighbors. Add to G six new nodes and replace the edges

8 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

adjacent to D with the edges as in Figure 1(a) to obtain graph G̃. It should be
clear that if graph G̃ has a Hamiltonian cycle containing edge (x, y), then graph
G has a Hamiltonian cycle as well. Figure 1(b) shows that the implication in the
other direction is also true: if graph G has a Hamiltonian cycle, then graph G̃
has a Hamiltonian cycle containing edge (x, y).A

C D B A
C Bx y

a)
b)

A
C Bx yA

C Bx y A
C Bx y

Fig. 1. a) Reduction from the cpHC problem with no fixed edge to the cpHC problem
with a fixed edge (x, y). b) Extensions of Hamiltonian cycles in graph G to Hamiltonian
cycles in graph G̃ passing through edge (x, y).

We describe now a polynomial time reduction from the cpHC problem to
the dBHS problem. Let G = (V, E) and (x, y) ∈ E be an instance of the
cpHC problem. We construct the corresponding instance of the dBHS problem,
i.e., a graph G′, a starting node s, and an integer X , by modifying graph G in
the following steps.

1. Replace in G the edge (x, y) with the edges (x, s) and (s, y), where s /∈ V is
a new node, obtaining graph Ḡ.

2. Let F be the set of the faces of an arbitrary planar embedding of graph
Ḡ. We identify each face f ∈ F with the sequence of the consecutive edges
adjacent to this face (starting with any edge adjacent to f and traversing
the boundary of f in either of the two directions).

3. For each face f ∈ F and each edge (v, w) adjacent to f , add one new node

z
(v,w)
f and two edges (v, z

(v,w)
f) and (w, z

(v,w)
f).

4. For each face f = 〈e1, e2, . . . , eq〉 ∈ F add the shortcut edges (ze1

f , ze2

f),

(ze2

f , ze3

f), . . . , (z
eq

f , ze1

f).

5. For each node v ∈ V ∪ {s} \ {x}, add a new node vF , called the flag node of
node v, and an edge (v, vF).

Complexity Results for Black Hole Search in Graphs 9

v wz (v , w)
z (v , w) v wz (v , w)

z (v , w)u z (u , v)
z (u , v)

a) b)
f "
f ' f "

f ' f ' f '
f ' ' ' f "

f '
f ' ' ' f "

Fig. 2. In a), the two twin nodes for the edge (v, w); in b), the twin nodes for the edges
(u, v) and (v, w) and their neighborhood.

6. Let G′ be the obtained graph. Set X to n′ − 1 = 5n + 2, where n′ = n + 1 +
2(e+1)+n = 5n+3 is the number of nodes in G′ and n and e are, respectively,
the number of nodes and edges in G (in a cubic graph, e = (3/2)n).

Since graph G is planar and 2-edge connected, each edge e in graph Ḡ is
adjacent to exactly two different faces f ′ and f ′′ in F . The two nodes ze

f ′ and
ze

f ′′ in G′ added for edge e are called the twin nodes for edge e. The construction
of graph G′ is illustrated in Figure 2. Graph G′ is planar and can be constructed
in linear time. The nodes in G′ inherited from graph Ḡ are called the original
nodes.

The following lemma states one of the properties of graph G′ which we use
in further arguments.

Lemma 3. Let 〈u, v, w〉 be a path in graph Ḡ. Then there is a path 〈u, z′, z′′, w〉
in G′ bypassing node v (that is v 6∈ {z′, z′′}).

Proof. Since the degree of each node in Ḡ is at most 3, there must be a face
f ∈ F to which both edges (u, v) and (v, w) are adjacent. By construction, the

sequence of nodes
〈
u, z

(u,v)
f , z

(v,w)
f , w

〉
is a path in G′. ⊓⊔

Lemmas 4 and 5 prove that graph G has a Hamiltonian cycle passing through
edge (x, y) if and only if there is an exploration scheme for graph G′ and the
starting node s with cost at most X = 5n + 2.

Lemma 4. If graph G has a Hamiltonian cycle that includes edge (x, y), then
there exists an exploration scheme E∗

G′,s on graph G′ from the starting node s,
such that the BHS based on it has cost at most 5n + 2.

Proof. Let {v1 = y, e1, v2, . . . , en−1, vn = x, en, v1 = y} be such Hamiltonian cy-
cle in G. Consider the exploration scheme E∗

G′,s defined by the following sequence
of phases:

10 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

1. b-split(s, sF , y), where sF is the flag node of s;
2. a-split(s, z1, z2, y), where z1 and z2 are the twin nodes of the edge (s, y);
3. for each node vi of the Hamiltonian cycle, with (i = 1, . . . , n − 1):

(a) let vj be the third neighbor of vi, other than vi−1 and vi+1; if j > i then
b-split(vi, z1, z2), where z1 and z2 are the twin nodes of (vi, vj);

(b) b-split(vi, v
F
i , vi+1), where vF

i is the flag node of vi;
(c) a-split(vi, z1, z2, vi+1), where z1 and z2 are the twin nodes of the edge

(vi, vi+1);
4. a-split(x, z1, z2, s), where z1 and z2 are the twin nodes of the edge (x, s).

Let us compute the length of E∗
G′,s. Since a-split and b-split phases have

length 2 and increase the explored territory by 2 nodes (see Section 2), the
overall number of phases is (5n+2)/2 and hence E∗

G′,s has length 5n+2. Notice
that this is also the exploration time for E∗

G′,s, in the case B = ∅, since E∗
G′,s

ends in s.
Now we prove that this is also the cost of the BHS based on E∗

G′,s, i.e. there
is no allocation of the black hole that yields a larger exploration time. We first
observe that the set of meeting points in E∗

G′,s is {vi : 1 ≤ i ≤ n} ∪ {s}.

Claim. Consider the meeting step when the agents are to meet at a node vi (1 ≤
i ≤ n). If a black hole has been just discovered, then the remaining exploration
time for this case is not greater than the remaining exploration time for the case
B = ∅.

Proof. If the black hole is the flag node vF
i (phase 3.b) or one of the twin nodes

for the edge (vi−1, vi) or for the edge (vi, vj) (phase 3.c or 3.a), then the surviving
agent can reach s by following the remaining part of the Hamiltonian Cycle, and
hence the remaining cost is at most: n + 1 − i. If the black hole is at node vi+1

(phase 3.b), then, by Lemma 3, there is a path of length 4 in G′ from vi to
vi+2 bypassing node vi+1 (where vi+2 is node s, if i + 1 = n). Therefore the
surviving agent can reach node vi+2 (or s) by using this safe path and then, as
before, he can follow the remaining part of the Hamiltonian Cycle to reach s.
The remaining cost is at most n + 2 − i. If B = ∅, then the remaining cost is at
least: 2(n + 1 − i) ≥ n + 2 − i. This concludes the proof of the claim.

Observe that the BHS defined above is optimal since, by Lemma 2, the
exploration of 5n + 2 nodes requires at least 5n + 2 time units. ⊓⊔

Lemma 5. If there exists an exploration scheme EG′,s on G′ starting from s
such that the cost of the BHS based on EG′,s has cost at most 5n + 2, then the
graph G has a Hamiltonian cycle that includes edge (x, y).

Proof. By Lemma 2, each phase of EG′,s has length at least two and cannot
explore more than two unexplored nodes. Since G′ has 5n+2 unexplored nodes,
EG′,s must end in s, and each of its phases must be either an a-split or a b-split .

Consider now the sequence ME of the meeting points established for EG′,s at
the end of each a-split , excluding the last one which is s. Each meeting point vi

in ME other than s must have at least degree 5 since one neighbor is needed for

Complexity Results for Black Hole Search in Graphs 11

the initial exploration of vi, two unexplored neighbors are needed for the a-split
that ends in vi and two further unexplored neighbors are needed for the a-split
that leaves vi. For this reason only the original nodes of G′ can be in ME (flag
nodes have degree 1 and twin nodes have degree 4).

Claim. The nodes x and y must be the two endpoints of ME , node s cannot be
in ME , and each node v in G must be in ME .

Proof. Since s is the only initially safe node, the very first phase has to be
a b-split from s. The first a-split in EG′,s is from s to x or y, while the last
a-split (ending in s) starts from the other of these two nodes x, y. If s is also
an intermediate meeting point, then we need another a-split to s. Since each
of these four phases requires two unexplored neighbors, s has to have degree at
least 8, but, by construction, its degree is only 7. Contradiction.

Finally, for each node v in G, its flag node vF has to be explored with a
b-split having as meeting point node v. Hence v must be in ME .

Now we prove that the sequence ME defines a Hamiltonian cycle on G by
showing that it has also the following two properties:

a) each node of G appears at most once in ME ;

b) if nodes vi and vj are consecutive in ME , then the edge (vi, vj) must be
in G.

To prove a), it suffices to count the number of neighbors needed by a node vi

in ME . At least one neighbor is needed for the initial exploration of vi (two
neighbors, if it is done through an a-split). Then, for each occurrence of vi in
ME , two unexplored neighbors are needed for the a-split that ends in vi, and
two additional unexplored neighbors are needed for the a-split that leaves vi.
Moreover the flag node vF

i has to be explored with a b-split from vi, hence
another unexplored neighbor of vi is needed. If the node vi occurs k times in
ME , then the total number of neighbors needed by vi is at least 1+4k+2 = 3+4k.
Since each original node in G′ has only 10 neighbors (as G is a cubic graph), it
must be k ≤ 1, thus each node appears at most once in ME .

Now we prove property b) of ME . According to the structure of G′, a-split
operations having original nodes as meeting points, can either explore two twin
nodes of an original edge (in this case property b) is satisfied since the meeting
point is adjacent in G to the previous one), or explore two original nodes of G′

and meet in another original node which may not be adjacent to the previous
meeting point, thus violating property b).

Suppose that this latter kind of split (a big a-split) happens from a node A to
a node B; see Figure 3. In order to do this, A must have two unexplored original
neighbors (C and D in the figure) both having B as a neighbor. B must be
already explored, therefore the last original neighbor of B (E in the figure) must
have already been a meeting point (we can suppose without loss of generality
that the one from A to B is the first big a-split in ME). At this point no other big
a-splits can be performed from B (all its original neighbors are now explored)
and, by property a), E cannot be again a meeting point, thus the sequence ME

12 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

A

B

E

FDC

Fig. 3. A big a-split from A to B. Flag nodes are not shown, the shaded nodes are
already explored.

can have either C or D as the next meeting point. Supposing that C is that
one, consider the instant when D becomes a meeting point. We cannot get to D
with a big a-split, since D does not have two neighbors in G that are unexplored,
hence also F has been already a meeting point. Now all the original neighbors
of D have already been a meeting point in ME , and none of them can be s, thus
there is no way to leave D without violating property a). Therefore there cannot
be any big a-split in EG′,s, and thus property b) is verified.

We have proved that, if there exists an exploration scheme EG′,s for G′, such
that the BHS based on EG′,s has cost 5n + 2, then G has a Hamiltonian cycle
that includes edge (x, y). ⊓⊔

Lemma 4, Lemma 5 and the fact that the cpHC problem is NP-hard imply
the following theorem.

Theorem 1. The dBHS problem for planar graphs is NP-hard.

4 An Approximation Algorithm for the BHS Problem in

Arbitrary Graphs

We consider the following natural approach to the BHS problem in an arbitrary
graph G. First select a spanning tree in G and then explore the graph by travers-
ing the tree edges. As observed in [1], this approach guarantees an approximation
ratio of 4 since any exploration of an n-node graph requires at least n− 1 steps
while the following scheme explores an n-node tree within 4(n − 1) − 2l steps,
where l is the number of leaves in the tree. Both agents traverse the tree together

Complexity Results for Black Hole Search in Graphs 13

in, say, the depth-first order and explore each new node v with a two-step probe
phase: one agent waits in the parent p of v while the other goes to v and back
to p.

To follow this spanning-tree approach effectively we need an algorithm for
constructing “good” exploration schemes for trees and an algorithm for com-
puting spanning trees which are “good” for those schemes. Czyzowicz et. al. [1]
showed a linear-time algorithm for constructing optimal exploration schemes for
trees where each internal node has at least 2 children (called bushy trees in [1]).
In Section 4.1 we describe a linear-time algorithm Search-Tree(T, s) which ex-
tends the construction from [1] to the general rooted trees. This algorithm does
not guarantee optimality of computed exploration schemes for trees other than
bushy trees: the question of computing in polynomial time optimal exploration
schemes for general trees remains open. We give a formula for the cost of the
exploration scheme computed by our algorithm Search-Tree(T, s) as a function
of the number of nodes of different types in tree T (Lemma 10). In Section 4.2 we
present a heuristic algorithm Generate-Tree(G, s) for the problem of computing
a rooted spanning tree T of graph G which gives a relatively small value of that
formula.

Our Spanning-Tree Exploration (STE) algorithm returns, for a given graph G
and a starting node s, the exploration scheme computed by Search-Tree(TG, s),
where TG is the spanning tree computed by Generate-Tree(G, s). In Section 4.3
we show that the STE algorithm guarantees an approximation ratio of at most
3 3

8 . In Section 4.4 we remark on other possible variants of exploring graphs via
spanning trees.

4.1 Exploration Schemes for Trees

Let T be an n-node tree rooted at node s. We assume that n ≥ 2. The exploration
scheme for T constructed by our algorithm Search-Tree(T, s) may be viewed in
the following way. For each internal node p in T , if p has x children, then they
are partitioned into two groups of size ⌈x/2⌉ and ⌊x/2⌋. Both agents follow the
depth-first traversal of the internal nodes of T , and whenever Agent-1 (Agent-2)
comes during this traversal to an internal node p for the first time, it visits all
children of p in group 1 (group 2) before continuing the traversal. Obtaining an
efficient exploration scheme based on this approach and proving its correctness
and cost turns out to be quite technical.

We use the following order LT of the nodes of T other than the root (that is,
all unexplored nodes in T). We first order the children of each node according to
the number of descendants: a child with more descendants comes before a child
with fewer descendants and the ties are resolved arbitrarily. Thus from now on
T is an ordered rooted tree. Let IT = 〈w1, w2, . . . , wb〉 be the sequence of the
internal nodes of T in the depth-first order. The order LT is this sequence with
each node wi replaced with the (ordered) list of its children. Observe that LT

contains indeed all nodes of tree T other than the root, and each of these nodes
occurs in LT exactly once. We denote the i-th node in the order LT by vi and
call it the i-th node of the tree. The odd (even) nodes of T are the nodes at the

14 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

8

s

1 2

3 4

5 6 7

8 9 10

11 12

13 14

15

16

w1

w2 w9

w3 w6 w10

w4 w7w5 w

Fig. 4. An ordered rooted tree T . The value inside each node is the position of the
node in the LT order. The internal nodes are also marked to show their depth-first
order IT = 〈w1, w2, . . . , w10〉.

odd (even) positions in LT . We denote the parent of node vi by pi. An example
tree T and the LT order of its nodes is given in Figure 4.

The two lemmas below, which follow from the construction of the sequence
LT , will be used to prove that algorithm Search-Tree returns feasible exploration
schemes for trees.

Lemma 6. In the sequence LT , let the j-th node vj be the parent of the i-th
node vi. Then j < i, and i = j + 1 if and only if node vj does not have a sibling
and node vi is its first child.

Proof. The parent pj of node vj precedes node vj in the depth-first order IT of
the internal nodes. Thus all children of pj , including node vj , precede all children
of vj , including node vi, in the sequence LT , so j < i.

If node vj does not have a sibling, then vj must be immediately after pj

in the sequence IT . In this case, when the sequence LT is created from IT =
〈. . . , pj , vj , . . .〉, the occurrence of node pj in IT is replaced with (its only child)
vj , while the occurrence of node vj in IT is replaced with the ordered list of its
children. Thus if node vi is the first child of node vj , then vi is immediately after
vj in the sequence LT , that is, i = j + 1.

If node vj has a right sibling r, then node r is after node vj and before node
vi in LT , so i > j+1. If node vj has a left sibling l, then node l must have at least
one child since the siblings are ordered according to the number of descendants
and node vj has at least one descendant. The children of node l are after node
vj and before node vi in LT , so i > j + 1. If node vi is not the first child of node
vj , then all left siblings of vi are after node vj and before node vi in LT , so also
in this case i > j + 1. ⊓⊔

Complexity Results for Black Hole Search in Graphs 15

Lemma 7. Let vi and vi+1 be two consecutive nodes in the sequence LT , and
let pi and pi+1 be their parents. Then either nodes vi and vi+1 are siblings, so
pi = pi+1, or node pi+1 is the next node after node pi in the depth-first order IT

of the internal nodes of T .

Proof. Assume that nodes vi and vi+1 are not siblings. Node pi must occur in
IT before node pi+1. If there was another (internal) node between pi and pi+1 in
IT , then the children of this node would be between nodes vi and vi+1 in LT . ⊓⊔

We classify all nodes of tree T other than the root s into the following three
disjoint types:

– type-1 nodes: the leaves;
– type-3 nodes: the internal nodes with at least one sibling;
– type-4 nodes: the internal nodes (other than the root) without siblings.

Informally speaking, in the exploration scheme which we construct for tree T a
type-t node can be viewed as contributing t steps to the total cost. Note that
there are no type-2 nodes. We denote by xt the number of type-t nodes.

We consider first the case when T does not have any type-4 node and has
an odd number n = 2q + 1 ≥ 3 of nodes (that is, tree T has an even number of
unexplored nodes v1, v2, . . . , v2q). Agent-1 (Agent-2) will be following the depth-
first traversal of the internal nodes of T , and whenever it comes to an internal
node p for the first time, it will visit all children of p which are odd (even) nodes
in T before continuing the traversal. We now formally specify this exploration
scheme.

For nodes u and r in tree T , let P (u, r〉 be the sequence of the nodes on the
tree path from u to r excluding the first node u. If u = r, then P (u, r〉 is the
empty sequence. The exploration sequences XT and YT for Agent-1 and Agent-2,
respectively, are

XT = 〈s〉 ◦ φ1
1 ◦ φ1

2 ◦ · · · ◦ φ1
q,

YT = 〈s〉 ◦ φ2
1 ◦ φ2

2 ◦ · · · ◦ φ2
q;

where

φ1
j = P (p2j−2, p2j−1〉 ◦ 〈v2j−1, p2j−1〉 ◦ P (p2j−1, p2j〉,

φ2
j = P (p2j−2, p2j−1〉 ◦ P (p2j−1, p2j〉 ◦ 〈v2j , p2j〉.

In the above formulas operation “◦” is the concatenation of sequences, and we
define p0 = s. Note that the corresponding sub-sequences φ1

j and φ2
j in XT and

YT have the same length and end at the same node p2j . In fact, we will show
that φ1

j and φ2
j form the j-th phase of the exploration scheme ET = (XT , YT)

(Lemma 8). Figure 5 shows different types of relative locations of nodes v2j−2,
v2j−1, v2j , p2j−2, p2j−1 and p2j , which lead to different types of sequences φ1

j

and φ2
j .

16 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarraccop 2 j � 2 p 2 j � 1 p 2 jv 2 j � 2 v 2 j � 1 v 2 j p 2 j � 2 p 2 j � 1 p 2 j≡ ≡v 2 j � 2 v 2 j � 1 v 2 j
v 2 j � 2 v 2 j � 1 v 2 jp 2 j � 2 p 2 j � 1≡ p 2 jv 2 j � 2 v 2 j � 1 v 2 jp 2 j � 2 p 2 j � 1 p 2 j≡

Fig. 5. Different relative positions of nodes v2j−2, v2j−1 and v2j consecutive in the LT

order and their parents p2j−2, p2j−1 and p2j . The tree does not have type-4 nodes.
The dashed lines represent paths. For examples of the two cases in the lower row, take
2j = 12 and 2j = 10 in Figure 4, respectively.

Observe that if we remove from sequences XT and YT all segments 〈v2j−1, p2j−1〉
and 〈v2j , p2j〉, then both XT and YT become the following sequence

〈s〉 ◦ P (p0, p1〉 ◦ P (p1, p2〉 ◦ · · · ◦ P (p2q−1, p2q〉.

Lemma 7 implies that this sequence is the depth-first traversal of the internal
nodes of tree T ending when the last internal node is visited.

We prove now that ET = (XT , YT) is a feasible exploration scheme for tree T .
It is straightforward to check that ET satisfies the feasibility Constraints 1–3.
The lemma below identifies the phases of scheme ET and states that each phase
satisfies the conditions given in Constraint 4.

Lemma 8. For each j = 1, 2, . . . , q, the sub-sequences φ1
j and φ2

j within XT and
YT form the j-th phase of the feasible exploration scheme ET = (XT , YT), and
this phase satisfies the conditions stated in the feasibility Constraint 4.

Proof. Let m(0) = 0, and for j = 1, 2, . . . , q, let m(j) denote the step in ET

where the sub-sequences φ1
j and φ2

j end. That is, the sub-sequences φ1
j and φ2

j

occur within XT and YT , respectively, at the steps 〈m(j − 1)+1, . . . , m(j)〉. We
prove by induction that for each j = 1, . . . , q, the following statements are true.

1. The explored territory at step m(j) is Sm(j) = {s, v1, . . . , v2j}.
2. The sequence of steps 〈m(j − 1) + 1, . . . , m(j)〉 in scheme ET (where the

sub-sequences φ1
j and φ2

j occur) is a phase and satisfies Constraint 4.

Note that, Sm(0) = S0 = {s}. For the base step (j = 1), observe that

φ1
1 = P (p0, p1〉 ◦ 〈v1, p1〉 ◦ P (p1, p2〉 = 〈v1, s〉,

φ2
1 = P (p0, p1〉 ◦ P (p1, p2〉 ◦ 〈v2, p2〉 = 〈v2, s〉,

Complexity Results for Black Hole Search in Graphs 17

because p0 = p1 = p2 = s. Thus m(1) = 2, Sm(1) = {s, v1, v2}, and the steps
〈1, 2〉 form a phase satisfying Constraint 4 (this phase is b-split(s, v1, v2)) so both
Statements 1 and 2 hold.

Consider now any index j, 1 ≤ j ≤ q and assume that both Statements 1 and
2 are true for j−1. This assumption implies that Sm(j−1) = {s, v1, v2, . . . , v2j−2}
and that step m(j − 1) is a meeting step. (If j ≥ 2, then m(j − 1) is a meeting
step as the last step of the phase 〈m(j − 2) + 1, . . . , m(j − 1)〉. If j = 1, then
step m(j−1) = 0 is by definition a meeting step.) By the definition of sequences
XT and YT , the agents are at step m(j − 1) at the node p2j−2 (the parent of
the node v2j−2, or s if j = 1). Now Agent-1 and Agent-2 follow the sequences of
nodes φ1

j and φ2
j , respectively. Lemma 6 implies that the nodes p2j−2 and p2j−1

are in Sm(j−1). Lemma 6 also implies that p2j ∈ Sm(j−1): if p2j 6= s, then p2j

has a sibling, so p2j is a node vk for some k ≤ 2j − 2. Applying again Lemma 6,
we conclude that all nodes in the sequences P (p2j−2, p2j−1〉 and P (p2j−1, p2j〉
must be in Sm(j−1) as well, since each node in any of these two sequences is an
ancestor of at least one of the nodes p2j−2, p2j−1 and p2j . Thus the only nodes
in φ1

j and φ2
j which are not in Sm(j−1) are node v2j−1 in φ1

j and node v2j 6= v2j−1

in φ2
j . Therefore Sm(j) = Sm(j−1) ∪{v2j−1, v2j} (so Statement 1 holds for j) and

the sequence of steps 〈m(j − 1) + 1, . . . , m(j)〉 satisfies Constraint 4. It remains
to show that step m(j) is the first meeting step after the meeting step m(j − 1),
that is, to show that step m(j) is the first step after step m(j − 1) when the
explored territory increases.

Follow the agents’ routes at steps m(j−1)+1, . . . , m(j) (see the diagrams in
Figure 5). At the end of step m(j − 1) both agents are at the node p2j−2, then
they traverse together the (possibly empty) sequence of nodes P (p2j−2, p2j−1〉,
not increasing the explored territory, and then they separate and meet again for
the first time at step m(j) at the node p2j . At that step the explored territory in-
creases from Sm(j−1) to Sm(j). Thus the sequence of steps 〈m(j−1)+1, . . . , m(j)〉
is a phase in ET , so Statement 2 holds for j. This concludes the proof of the
inductive step.

The lemma follows immediately from Statements 1 and 2. ⊓⊔

Lemma 9. Let T be a tree rooted at s which has an odd number n = 2q +1 ≥ 3
of nodes and does not have any type-4 nodes. The exploration scheme ET =
(XT , YT) is feasible, can be constructed in linear time, and the cost of the BHS
based on ET is equal to x1 + 3x3, where xt denotes the number of type-t nodes
in T .

Proof. The feasibility of the exploration scheme ET follows from Lemma 8. The
execution time of this scheme in the case when there is no black hole is equal
to the length of ET plus the distance from p2p to s, that is, the length of the
sequence YT ◦ P (p2q, s〉 minus 1. This is also the cost of the BHS based on ET ,
since generally for any feasible exploration scheme for a tree, the case when there
is no black hole gives the worst execution time of the BHS. In fact, if there is a
black hole, say at node v, then the surviving agent can keep following its part of
the exploration scheme, replacing all occurrences of v and its descendants with
the parent of v, and reaching s within the same number of steps.

18 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

To obtain the length of the sequence YT ◦ P (p2q, s〉, we separate it into two
sub-sequences:

〈s〉 ◦ P (p0, p1〉 ◦ P (p1, p2〉 ◦ · · · ◦ P (p2q−1, p2q〉 ◦ P (p2q, s〉, and

〈v2, p2〉 ◦ 〈v4, p4〉 ◦ · · · ◦ 〈v2q, p2q〉.

Lemma 7 implies that the first sub-sequence is the depth-first traversal of the b
internal nodes of T , so its length is 2b− 1. The length of the second sequence is
2q = n−1. Thus the cost of the exploration scheme ET is (2b−1)+(n−1)−1 =
(n − 1) + 2(b − 1) = (x1 + x3) + 2x3 = x1 + 3x3.

Sequences XT and YT can be constructed in time linear in the length of these
sequences, so linear in the size of tree T . ⊓⊔

Now we consider a general tree T , which may have type-4 nodes. For each
type-4 node v in T , we add a new leaf l as a sibling of v. If the total number
of nodes, including the added nodes, is even, then we add one more leaf to an
arbitrary internal node. The obtained tree T ′ is rooted at s, has an odd number
of nodes and does not have any type-4 nodes, so it satisfies the requirements
of Lemma 9. We obtain an exploration scheme ET = (XT , YT) for tree T from
the exploration scheme ET ′ = (XT ′ , YT ′) for tree T ′ by replacing the traversals
of the added edges with waiting. More precisely, if a node l is an added leaf,
its parent is a node p, and l is an odd (even) node in tree T ′, then replace the
unique occurrence of l in XT ′ (in YT ′) with p.

Lemma 10. Let T be a tree rooted in s with n ≥ 2 nodes. The exploration
scheme ET = (XT , YT) for T is feasible, can be constructed in linear time and
its cost is at most

x1 + 3x3 + 4x4 + 1. (1)

Proof. The feasibility of the exploration scheme ET and its construction in linear
time follow from Lemma 9. Let β be equal to 1 if the extra node was added to
the tree to have an odd number of nodes, and 0 otherwise. The cost of scheme
ET is equal to the cost of scheme ET ′ . Lemma 9 implies that the cost of scheme
ET ′ is equal to x′

1 + 3x′
3, where x′

1 = x1 + x4 + β is the number of leaves in tree
T ′ and x′

3 = x3 + x4 is the number of type-3 nodes in tree T ′ (each type-4 node
in tree T becomes a type-3 node in tree T ′). Thus the cost of scheme ET is equal
to x′

1 + 3x′
3 = x1 + 3x3 + 4x4 + β. ⊓⊔

It can be shown that the cost of our exploration scheme ET is at most 4/3+
O(1/n) times the optimal cost of an exploration scheme for T (see [11]). This
improves the 5/3 approximation ratio bound of the exploration scheme for a tree
presented in [1]. Our exploration scheme ET could be further improved in some
cases. For example, for the first diagram in Figure 5, Agent-2 obviously does
not have to go to node p2j−1 on its way to explore node v2j . If it omitted node
p2j−1, then the phase would have one step less (the agents would meet at the
end of this phase in the predecessor of p2j in the path P (p2j−1, p2j〉) and this
local gain could reduce in some cases the overall cost of the search. However,

Complexity Results for Black Hole Search in Graphs 19

this and similar improvements do not seem to lead to a tighter worst-case bound
than the bound (1), which we use to bound the worst-case approximation ratio
of algorithm STE. We also do not know how such improvements could decrease
the 4/3 + O(1/n) approximation bound of ET .

4.2 Generating a Good Spanning Tree of a Graph

We describe now our heuristic algorithm Generate-Tree(G, s) for computing a
spanning tree TG of a graph G = (V, E) rooted at a node s ∈ V which tries to
achieve a relatively small value for the formula (1). We believe that computing a
rooted spanning tree which minimizes this formula is NP-hard, since the related
problem of computing a spanning tree which maximizes the number of leaves is
NP-hard [7]. In Section 4.3 we show that the exploration scheme constructed by
algorithm Search-Tree(TG, s) for the spanning tree TG computed by algorithm
Generate-Tree(G, s) yields a BHS with cost at most 3 3

8 times worse than the
cost of an optimal BHS for graph G. If G is a path with s as an end node, then
the optimal exploration scheme is obvious. Therefore we assume throughout this
section that graph G is not of this form.

Algorithm Generate-Tree(G, s) tries to obtain a spanning tree with a small
value of the formula (1) by trying to avoid creation of type-4 nodes. More pre-
cisely, the algorithm grows in a greedy manner a spanning tree T , starting from
node s, avoiding creation of internal nodes with only one child. A single child
is a type-4 node, unless it is a leaf. For the computation of the algorithm, let
VT denote always the set of nodes in the current tree T and let V T = V \ VT ;
initially VT = {s}. With respect to tree T , each node in V is either an internal
node, or a leaf ; it is an external node if it belongs to the set V T . An external
neighbor of a node u ∈ V is a neighbor of u in graph G which belongs to V T .

The pseudocode of algorithm Generate-Tree is given below. The algorithm
consists of two parts. During part 1, the algorithm iteratively extends the current
tree T rooted at s for as long as there is an expandable leaf in T or there is an
expandable external node in V T . An expandable leaf in tree T is a leaf which
has at least two external neighbors. An expandable external node (w.r.t. T) is
a node in V T which has at least one neighbor in T and at least two external
neighbors, or has at least three external neighbors. The loop in part 1 of the
algorithm maintains the following invariant: for the current tree T , there is no
edge in G between an internal node and an external node. That is, each edge in
G between the sets VT and V T is adjacent to a leaf of T .

If there is an expandable leaf in tree T , then extend T by selecting an arbi-
trary expandable leaf u and attaching to it all its external neighbors (see the left
diagram in Figure 6). If there is no expandable leaf in T but there is an expand-
able external node, then extend T in the following way. Let P = (u1, u2, . . . , uk)
be a path in G consisting of external nodes such that node u1 is the only node
on P adjacent to T and node uk is the only expandable external node on P . Let
u0 be a node in T adjacent to u1 and let w1, w2, . . . , wk be the neighbors of uk

which are neither in T nor on P . According to the invariant of the loop, node
u0 must be a leaf in tree T . Extend tree T by attaching path P to node u0 and

20 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

degree 2
in the graph

in the graph
degree 1 or 2

u

v

r

s s

mid−tree paths

s

leaf paths

Fig. 6. Expansion of the tree during the computation of algorithm Generate-Tree: in
part 1 of the algorithm using an expandable leaf u (the left diagram) and using mid-
tree paths to expandable external nodes v and r (the middle diagram); and in part 2
of the algorithm (the right diagram).

nodes w1, w2, . . . , wk as children of uk. Path P , as a part of the new extended
tree and a part of the final tree TG, is called a mid-tree path. The middle diagram
in Figure 6 illustrates the expansion of the tree using mid-tree paths.

Let T1 denote the tree T at the end of part 1 of the algorithm. Since no
expandable external node is left, each connected component of the subgraph of
graph G induced by the set of external nodes must be now a path. Moreover,
for each such path P , no node of P other than an end node is adjacent to T1 (or
otherwise such a node would be an expandable external node) but at least one
end node of P is adjacent to tree T1 (since G is connected). Let P denote the
collection of these paths. If a path P ∈ P has at least two nodes and both end
nodes are adjacent to T1, then we replace P in P with paths P ′ and P ′′ obtained
from P by removing the middle edge (or any of the two middle edges, if P has
an odd number of nodes). Now for each path P = (w1, w2, . . . , wk) ∈ P where
w1 is adjacent to T1 (exactly one end node of P is adjacent to T1), we extend T
by attaching P to a neighbor of w1 in T1, which must be a leaf in T1 (see the
last diagram in Figure 6). If path P has at least two nodes, then we call this
path without the last node wk a leaf path. When all paths from P are attached
to tree T , tree T becomes a spanning tree TG of G, and this tree is returned by
the algorithm.

The whole algorithm Generate-Tree can be easily implemented to run in
polynomial time, and it actually can be implemented to run in linear time. An
example of a spanning tree produced by the algorithm is given in Figure 7. The
next two lemmas summarize the properties of the algorithm which are important
in our analysis.

Complexity Results for Black Hole Search in Graphs 21

Algorithm 1 Algorithm Generate-Tree (G, s)

1: V ← set of nodes in G; E ← set of edges in G;
2: T ← ∅; {the edges of the current tree}
3: let VT denote the set of nodes in T (initially VT = {s}), and let V T = V \ VT ;

4: {Part 1: grow T until there is no expandable leaf or expandable external node.}
5: loop

6: if there exists an expandable leaf in T then

7: u ← an expandable leaf in T ;
8: W ← the set of neighbors of u in V T ;
9: T ← T ∪ {(u, w) : w ∈ W};

10: else if there exists an expandable external node in V T then

11: P = (u1, . . . , uk) ← a path in G such that each ui ∈ V T , u1 is the only node
on P adjacent to T and uk is the only expandable external node on P ;

12: u0 ← a leaf in T adjacent to u1;
13: W ← the set of neighbors of uk which are neither in T nor on P ;
14: T ← T ∪ {(u0, u1)} ∪ P ∪ {(uk, w) : w ∈W};
15: { P is a mid-tree path in T }
16: else

17: exit the loop;
18: end if

19: end loop

20: {Part 2: attach to T the remaining paths.}
21: T1 ← T ;
22: P ← the set of connected components (paths) in the subgraph induced by V T ;
23: for all P = (u1, u2, . . . , uj) ∈ P , where j ≥ 2 and u1 and uj adjacent to T1 do

24: let P ′ = (u1, . . . , uk) and P ′′ = (uk+1, . . . , uj), where k = ⌊j/2⌋;
25: P ← P \ {P} ∪ {P ′, P ′′};
26: end for

27: for all P = (w) ∈ P do

28: u ← a leaf in T1 adjacent to w; T ← T ∪ {(u, w)};
29: end for

30: for all P = (u1, u2, . . . , uk) ∈ P , where k ≥ 2 and u1 adjacent to T1 do

31: u0 ← a leaf in T1 adjacent to u1; T ← T ∪ {(u0, u1)} ∪ P ;
32: { path (u1, u2, . . . , uk−1) is a leaf path in T }
33: end for

34: return T .

22 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

Lemma 11. Consider any iteration of the loop in part 1 of algorithm Generate-
Tree(G, s), and the current tree T at the beginning of this iteration. The following
two properties hold.

1. No internal node of T is adjacent in G to any external node.
2. Each leaf in T has a sibling, unless this is the first iteration of the loop (when

T contains only the root s).

Proof. At the beginning of the first iteration of the loop, tree T does not have
any internal nodes, so both Statements 1 and 2 are obviously true. Let T ′ be the
tree T at the beginning of one iteration of the loop other than the last one, and
let T ′′ be the tree T at the beginning of the next iteration. Assume inductively
that Statements 1 and 2 are true for tree T ′. Tree T ′′ is obtained from tree T ′

by adding children to an expandable leaf (lines 7–9 in the pseudocode) or, if T ′

does not have an expandable leaf, by adding a mid-tree path and children of the
last node on this path (lines 11–14).

Consider the first case: tree T ′′ is obtained from T ′ by adding children to an
expandable leaf u. Node u is the only new internal node in T ′′ and its children
are the only new leaves. All neighbors of node u are now in T ′′, so Statement 1
is true for T ′′. Node u gets at least two children since u is an expandable leaf in
tree T ′, so also Statement 2 is true for T ′′.

Consider now the second case: tree T ′ does not have an expandable leaf and
tree T ′′ is obtained from tree T ′ by attaching a mid-tree path P = (u1, . . . , uk)
to a leaf u0 and attaching all remaining neighbors of uk (the neighbors neither
in tree T ′ nor on path P) as children of uk. We check first that the new internal
nodes u0, u1, . . . , uk in tree T ′′ have all their neighbors in T ′′. Clearly node uk

has all its neighbors in tree T ′′. Node u0 cannot have neighbors outside of T ′

other than node u1 since node u0 is not an expandable leaf in T ′. If k ≥ 2,
then node u1 cannot have neighbors outside T ′ other than u2 since u1 is not an
expandable external node. If k ≥ 3, then for each i = 2, . . . , k− 1, node ui is not
adjacent to T ′ and is not an expandable external node, so nodes ui−1 and ui+1

can be its only neighbors in graph G. Thus each new internal node in T ′′ has all
its neighbors in T ′′, so Statement 1 holds for T ′′.

The new leaves in T ′′ are the children of uk. Since uk is an expandable
external node (w.r.t. T ′), it gets at least two children in T ′′. Indeed, if k = 1,
then, by definition of expandable external node, node u1 must have at least two
external neighbors, which become its children in T ′′. If k ≥ 2, then node uk is
not adjacent to tree T ′, so it must have at least 3 external neighbors. One of
them is node uk−1 while the remaining ones are the children of uk in T ′′. Thus
Statement 2 holds for T ′′. ⊓⊔

Lemma 12. Let T1 denote the tree T at the end of part 1 of Algorithm Generate-
Tree(G, s) and let P denote the set of connected components of the subgraph G′

of graph G induced by the external nodes (w.r.t. T1).

1. For each connected component of subgraph G′, the edges of this component
form a (simple) path.

Complexity Results for Black Hole Search in Graphs 23

2. For each path P ∈ P,

(a) the internal nodes of P are not adjacent to tree T1;
(b) at least one end node of P is adjacent to tree T1.

Proof. There is no expandable external node w.r.t. T1. Thus each node in sub-
graph G′ has degree at most 2 in G′, since otherwise such a node would be an
expandable external node. Therefore each connected component of G′ is either
a path (possibly a single node) or a cycle. However, if a connected component
of G′ were a cycle, then there would be a node on this cycle adjacent to tree
T1, since graph G is connected, and this node would be an expandable external
node.

For a path P which is a connected component of subgraph G′, if a node on
P other than an end node were adjacent to tree T1, then this node would be an
expandable external node. Since graph G is connected, at least one end node of
P must be adjacent to tree T1. ⊓⊔

We look now at the type-4 nodes in TG to see how they were created and
what their properties in graph G are. We view the mid-tree paths and the leaf
paths in TG in the direction from the root towards the leaves. That is, the first
node on such a path is the node closest to the root.

Lemma 13. A node in tree TG is a type-4 node if and only if it belongs to a
mid-tree path or a leaf path.

Proof. Examine all possible extensions of the current tree T to a new tree T ′

during the computation of algorithm Generate-Tree.
In line 9 of the algorithm, node u changes its status from type-1 in tree T to

type-3 in tree T ′ (Property 2 in Lemma 11 implies that u has a sibling in tree
T) and all new nodes in tree T ′ are type-1 nodes. In line 14, node u0 changes its
status from type-1 in tree T to type-3 in tree T ′, the new nodes u1, u2, . . . , uk,
which form a mid-tree path, are type-4 nodes in tree T ′, and the leaves attached
to uk are type-1 nodes in tree T ′. In line 28, node u changes its status from
type-1 in tree T to type-3 in tree T ′ (Property 2 of Lemma 11 implies that u has
a sibling in the tree T1 constructed during the first part of the algorithm) and
the new node w is a type-1 node in tree T ′. In line 31, node u0 changes its status
from type-1 in tree T to type-3 in tree T ′, the new nodes u1, u2, . . . , uk−1, which
form a leaf path, are type-4 nodes in tree T ′, and the leaf uk attached to uk−1

is a type-1 node in tree T ′.
Thus a node in the final tree TG is a type-4 node if and only if this node has

been added to the growing tree as a part of a mid-tree path or a leaf path. ⊓⊔

Lemma 14. Each node on a mid-tree path in tree TG other than the first node
and the last node has degree 2 in G.

Proof. Let T be the tree during the computation of algorithm Generate-Tree
when a mid-tree path P = (u1, u2, . . . , uk) is selected in line 11. For each i =
2, 3, . . . , k − 1, node ui is a non-expandable external node with two external

24 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

neighbors ui−1 and ui+1, so the definition of the expandable external nodes
implies that ui is not adjacent to any node in T and nodes ui−1 and ui+1 must
be its only external neighbors. ⊓⊔

Lemma 15. Let (u1, . . . , uk−1) be a leaf path in tree TG, and let uk be the leaf
in TG attached to uk−1. Then the following properties hold.

1. Each node u2, u3, . . . , uk−1 has degree 2 in G.
2. Node uk has degree at most 2 in G.
3. If node uk has degree 2 in G and the length of the leaf path is at least 2

(k ≥ 3), then both neighbors of uk in G have degree 2.

Proof. Let T1 be the tree constructed in the first part of the algorithm, and let
P = (u1, . . . , uk−1, uk), k ≥ 2, be one of the paths considered in lines 30–31.
Path (u1, u2, . . . , uk−1) is a leaf path in the final tree TG. There is no expand-
able external node w.r.t. tree T1, so for each i = 2, 3, . . . , k − 1, node ui is a
non-expandable external node with two external neighbors ui−1 and ui+1. The
definition of the expandable external nodes implies that node ui is not adjacent
to any node in T1 and nodes ui−1 and ui+1 must be its only external neighbors.
Thus the degree of nodes ui in G is 2.

Node uk is a non-expandable external node, so it may be adjacent to at
most one external node other than uk−1. However, node uk cannot be adjacent
to T1 because if it were, then path P would have been split into two paths in
lines 24–25. Thus the degree of node uk in G is at most 2.

If node uk has degree 2 in G, then path P has been obtained by splitting
a path (u1, . . . , uk, uk+1, . . . , uj) of external nodes in lines 24–25, where 2k ≤
j ≤ 2k + 1. If k ≥ 3, and hence j ≥ k + 2, neither of nodes uk−1 and uk+1 is
adjacent to tree T1 and, as non-expandable external nodes, they may have only
two external neighbors each. Thus both uk−1 and uk+1 have degree 2 in G. ⊓⊔

4.3 Approximation Ratio of the STE Algorithm

Lemma 10 implies that the cost of the exploration scheme computed by the STE
algorithm for a graph G and a starting node s is

tALG ≤ x1 + 3x3 + 4x4 + 1, (2)

where xt is the number of the type-t nodes in the tree TG computed by algorithm
Generate-Tree(G, s). The cost of the optimal exploration scheme is at least n −
1 = x1 + x3 + x4, so any upper bound on x4 in a form of a linear function of x1

and x3 would give immediately an upper bound on the approximation ratio of
algorithm STE as a constant less than 4. However this simple approach cannot
work by itself since the ratio x4/(x1 + x3) can be arbitrarily large not only for
tree TG, but for the best possible spanning tree as well. For example, if graph
G is a path, then in its unique spanning tree all nodes except node s, its two
neighbors and the end points of the path are type-4 nodes.

Complexity Results for Black Hole Search in Graphs 25

31 1

13 3

3 3

13 3 3

13 3

3

1

1 1

3

13

111

3 33

4m

4m

4m

4m

4e

4e

4me

4e

4e

4me

4e

4e

4e

4e

4e

4e

4e

4e

4e

4e 4e

1

s

1 13

4e

4e

1

4e

4e

1
1

1m
1m

Fig. 7. An example of spanning tree produced by Algorithm Generate-Tree. Each node
of the tree (excluding the root) is labeled with the corresponding type. The part of the
tree produced during Part 1 of the algorithm is enclosed in the dotted curve. Arrows
denote mid-tree paths and leaf paths.

Our analysis, which examines closer the type-4 nodes in tree TG, can be
viewed as consisting of the following three steps. We first identify some nodes in
graph G which “slow down” the optimal BHS in graph G so that its cost must
be greater than the ideal n − 1 (Lemma 16). We then show which type-4 nodes
in TG must be among those “slowing down” nodes (Lemma 17). Finally we give
a bound on the number of the other type-4 nodes as a linear function of x1 and
x3 (Lemma 18).

A node in graph G is a type-d node if its degree is at most 2 and the degrees
of its neighbors are also at most 2.

Lemma 16. The minimum cost of a BHS in graph G is

tOPT ≥ n − 1 +
1

2
xd (3)

Proof. Informally, no BHS can explore type-d nodes at the average rate of one
node per one step, requiring at least one additional step per two type-d nodes.
Formally, consider any BHS and the case when there is no black hole. Each phase
of the search when a type-d node v and another node u (which may be also a
type-d node) are explored must consist of at least 3 steps. To see this, check that

26 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

the distance from either v or u (or both) to the meeting point at the end of this
phase must be at least 2. Thus

1. there are at least (n−1)/2+α phases in total, where α ≥ 0 is the number of
phases when only one node is explored, and each phase consists of at least
2 steps;

2. there are at least (xd −α)/2 phases when a type-d node is explored together
with another node, and each of these phases consists of at least 3 steps.

Hence the total number of steps is at least n−1+2α+(xd−α)/2 ≥ n−1+xd/2.
⊓⊔

Lemma 13 says that the type-4 nodes in tree TG are the nodes on the mid-tree
paths and the leaf paths. We further categorize these nodes in the following way.
A type-4e node is a node which is one of the first two or the last two nodes of
a mid-tree path or the first node of a leaf path. A type-4me node is the second
node of a leaf path. All other nodes on the mid-tree paths and the leaf paths
are type-4m nodes. We also introduce type-1m for the leaves attached to the leaf
paths having length at least 2 (see the example in Figure 7). These definitions
and Lemmas 14 and 15 immediately imply the following lemma.

Lemma 17. Each type-4m or type-1m node in tree TG is a type-d node in G.

The next lemma gives bounds on the number of type-4e and type-4me nodes
in tree TG.

Lemma 18. The number of type-4e nodes and the number of type-4me nodes
in tree TG satisfy the following relations.

x4e ≤ 3x1 + x3 − 2, (4)

x4me = x1m. (5)

Proof. The fact that there are exactly as many type-4me nodes as type-1m nodes
follows immediately from the definitions of these types. To show that Inequal-
ity (4) holds, denote by z′ and z′′ the number of the mid-tree paths and the
number of the leaf paths in TG, respectively. The definition of type-4e nodes
imply that

x4e ≤ 4z′ + z′′. (6)

The last node of a mid-tree path is a branching node in tree TG (a node with at
least two children) so z′ ≤ x1 − 1 since TG has at most x1 − 1 branching nodes.
We also have z′ + z′′ ≤ x3 + 1 since the parents of the first nodes of mid-tree
paths and leaf paths must be distinct and each of them is either a type-3 node
or the root. Thus

4z′ ≤ 3(x1 − 1) + x3 + 1 − z′′, (7)

and Inequalities (6) and (7) give Inequality (4). ⊓⊔

We can now state our final theorem.

Complexity Results for Black Hole Search in Graphs 27

Theorem 2. For any graph G and any starting node s, the ratio of the cost of
a BHS based on the exploration scheme computed for G by the STE algorithm
to the cost of an optimal BHS for G is at most 3 3

8 .

Proof. Starting from the bounds (2) and (3), we have

27

8
tOPT − tALG ≥

≥
27

8
(n − 1 +

1

2
xd) − (x1 + 3x3 + 4x4 + 1) (8)

≥
27

8
(x1 + x3 + x4e + x4me +

3

2
x4m +

1

2
x1m) (9)

−(x1 + 3x3 + 4x4e + 4x4me + 4x4m + 1)

=
19

8
x1 +

3

8
x3 −

5

8
(x4e + x4me) +

17

16
x4m +

27

16
x1m − 1

≥
19

8
x1 +

3

8
x3 −

5

8
(3x1 + x3 − 2 + x1m) +

17

16
x4m +

27

16
x1m − 1 (10)

=
1

4
(2x1 − x3) +

17

16
(x4m + x1m) +

1

4
≥ 0. (11)

Inequality (8) follows from (2) and (3), Inequality (9) follows from Lemma 17,
and Inequality (10) follows from (4) and (5). Finally the inequality in line (11)
holds because x3 ≤ 2x1 − 1. To see that this is a valid bound on x3, bound
separately the number of type-3 nodes which have only one descendant leaf and
the number of the other type-3 nodes. The number of type-3 nodes which have
only one descendant leaf is at most x1, the number of leaves. Each type-3 node
which has at least 2 descendant leaves is either a branching node in TG, or is
the parent of the first node of a mid-tree path and the last node of this path
is a branching node. Thus the number of type-3 nodes which have at least 2
descendant leaves is at most the number of branching nodes in TG, which is at
most x1 − 1. ⊓⊔

4.4 Additional Comments on Exploring a Graph via a Spanning

Tree

One can also obtain a c-approximation algorithm for the BHS problem in graphs
for a constant c < 4 using other ways of selecting a spanning tree than our algo-
rithm Generate-Tree(G, s). In a preliminary version of this paper [12] we actually
gave a different way, which was based on greedily selecting a maximal forest of
bushy trees and then connecting the trees into one spanning tree. However, we
could only show that that method led to an approximation ratio of 3 1

2 .
Another possible good spanning tree of graph G is a spanning tree T which

“locally” maximizes the number of leaves: no exchange of at most k tree edges
for non-tree edges, for some constant k, can give a new spanning tree with more
leaves than in T . Such a “locally maximized” spanning tree can be computed
in polynomial time starting from any spanning tree. One can show that locally
maximized spanning trees for k = 2, together with our Search-Tree algorithm,

28 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

give an approximation algorithm for the BHS problem with an approximation
ratio of 3 7

12 .
We would like to mention that the straightforward algorithm for searching a

tree outlined in the first paragraph of Section 4, together with good spanning-
tree selection algorithms, can also give approximation algorithms with ratios
less than 4, but greater than the approximation ratios which can be obtained
using the Search-Tree algorithm. For example, the straightforward tree-searching
algorithm gives approximation ratios of 3 5

8 and 3 5
6 for the BHS problem, if used

together with the spanning trees computed by our Generate-Tree algorithm, and
the locally maximized spanning trees, respectively.

Better approximation ratios can be obtained for some restricted graphs. For
example, it is shown in [13] that any n-node graph with the minimum node degree
at least 3 has a spanning tree with at least n/4 + 2 leaves, and a polynomial-
time algorithm for computing such a spanning tree is given. This gives a c-
approximation algorithm for the BHS problem for such graphs, where c is 3 1

2 , if
the straightforward tree-searching algorithm is used, or 3 1

4 , if algorithm Search-
Tree is used. It is also shown in [13] that for graphs with the minimum degree
at least k one can compute in polynomial time spanning trees with at least (1−
O((log k)/k))n leaves. This gives a (1 + O((log k)/k))-approximation algorithm
for the BHS problem for this class of graphs.

5 Limitations of Exploration Schemes Based on Spanning

Trees

The approximation algorithm for the BHS problem in arbitrary graphs which we
presented in the previous section is based on the following two-part approach.

1. Find a suitable spanning tree TG of the input graph G.
2. Using an algorithm for constructing exploration schemes for trees, construct

an exploration scheme for TG, and take it as an exploration scheme for G.

Even though this approach seems very natural (and it seems indeed difficult to
analyze more general approaches), we show now that no graph exploration using
this technique can guarantee a better approximation ratio than 3/2.

Let Gc = (V, E) be an odd-length cycle with nodes v1, v2, . . . , vc and edges
(v1, v2), . . . , (vc−1, vc), (vc, v1). A new graph G′

c is obtained from Gc using the
construction for the NP-hardness proof given in Section 3, taking edge (vc, v1)
as edge (x, y), with the following modification. Since the embedding of Gc has
exactly two faces, the construction from Section 3 would add two shortcut edges
bypassing each node v ∈ V ∪ {s}, but we add only one. If we trace the cycle
〈s, v1, v2, . . . , vc〉 in a planar embedding of G′

c, then the shortcut edges alternate
between both faces of the embedding of Gc. An example of graph G′

c, for c = 7,
is shown in Figure 8. Graph G′

c has 4c+3 nodes and by modifying appropriately
the exploration scheme given in the proof of Lemma 4, one can show that the
cost of an optimal exploration scheme for G′

c is 4c + 2.

Complexity Results for Black Hole Search in Graphs 29

Consider the spanning tree of G′
c as shown in Figure 8. In the terminology

and notation from Section 4.1, this tree has x3 = c − 1 type-3 nodes (the nodes
v1, v2, . . . , vc−1) and x1 = 3c + 3 type-1 nodes. Lemma 9 implies that the cost of
the exploration scheme computed for this tree by algorithm Search-Tree given
in Section 4.1 is exactly x1 + 3x3 = 6c. We show below that the cost of any
exploration scheme for any spanning tree of G′

c is at least 6c − 2, so at least
3/2 − O(1/c) times higher than the optimal cost.

We use the following result from [1]. For a rooted tree T , the internal nodes
of T other than the root are classified into two types: type-β nodes are the
nodes with exactly one descendant, and type-γ nodes are the nodes with at least
two descendants. The following lemma is Lemma 5.2 in [1] re-worded to fit our
terminology.

Lemma 19. [1] Let T be a rooted tree with n + 1 nodes, and let xt denote the
number of type-t nodes in T . The cost of any exploration scheme for T is at
least n + xβ + 2xγ.

7v

v6

5v

v4

3v

v2

1v

s

Fig. 8. Graph G′
7 and its “good” spanning tree (solid edges).

Lemma 20. For any spanning tree T of G′
c rooted at s, xβ + 2xγ ≥ 2c − 4.

Proof. All nodes in V \ {vc} = {v1, v2, . . . , vc−1} must be internal nodes in T
since they have to be parents of their flag nodes. Let z be the number of type-β
nodes in V \ {vc}. The other c − 1 − z nodes in V \ {vc} are of type γ. If two

30 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

nodes vi and vj in the cycle Gc are such that i + 2 ≤ j ≤ c− 1 and the shortcut
edges bypassing them are not in T , then at most one of them can be a type-β
node. To see this observe that a path from s to a node vk, i < k < j, must
pass through one of the nodes vi and vj or through one of their shortcut edges.
This means that if neither of the shortcut edges bypassing nodes vi and vj is in
T , then either vi or vj is an ancestor of vk and therefore cannot be of type β.
Thus at least z − 2 shortcut edges belong to T . Each type-β node in V \ {vc}
contributes 1 to xβ + 2xγ , each type-γ node in V \ {vc} contributes 2, and each
shortcut edge belonging to T contributes at least 1 (at least one node of such an
edge is an internal node in T). Therefore we have

xβ + 2xγ ≥ z + 2(c − 1 − z) + z − 2 = 2c − 4. ⊓⊔

Lemmas 19 and 20 imply that the cost of any exploration scheme for any
spanning tree of G′

c is at least 6c − 2.

6 Conclusion

We proved that designing an optimal BHS for an arbitrary planar graph is NP-
hard, thus solving an open problem stated in [1]. We also gave a polynomial time
3 3

8 -approximation algorithm for the BHS problem, showing the first non-trivial
upper bound on the approximation ratio for this problem. Finally, we showed
that any exploration scheme that visits the given input graph via some spanning
tree, as our algorithm does, cannot have an approximation ratio better than 3/2.

We believe that one could show a better upper bound for the approximation
ratio of our algorithm than 3 3

8 by further refining the analysis, but we do not
expect a bound anywhere near the currently best lower bound 3/2. Similarly, one
could probably somewhat improve the bounds on the approximation ratios of the
methods mentioned in Section 4.4, but we believe that these bounds will remain
higher than the bound for our main algorithm. It seems that to obtain a more
substantial improvement of the approximation ratio one would need to abandon
the spanning-tree approach, or at least to augment it with some considerably
new ideas.

For other complexity issues regarding the black hole search with two agents,
we particularly would like to see answers to the following two questions. Is there
a constant c > 1 such that the approximate BHS problem with ratio c is NP-
hard? Is the BHS problem for arbitrary trees NP-hard? We expect the positive
answer to the first question and the negative answer to the second one.

It would be also interesting to see non-trivial results regarding the complexity
of computing fast black hole search schemes for many agents and possibly many
black holes. If there are k+1 agents, where k is a parameter (not a constant) and
at most k black holes, then it is not even clear how one should formalize the prob-
lem. If there are more than two agents and possibly more than one black hole,
then the “oblivious” approach of giving each agent one predetermined sequence
of nodes to visit is no longer sufficient to cover all exploration algorithms.

Complexity Results for Black Hole Search in Graphs 31

Acknowledgements

We would like to thank the two anonymous referees for their very helpful com-
ments and suggestions.

References

1. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole
in tree networks. In Proc. 8th Int. Conf. on Principles of Distributed Systems
(OPODIS 2004), pages 34–35, 2004. Also: Springer LNCS vol. 3544, pages 67-80.

2. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Complexity of searching for
a black hole. Fundamenta Informaticae, 72:1–14, 2006.

3. S. Dobrev, P. Flocchini, R. Kralovic, G. Prencipe, P. Ruzicka, and N. Santoro.
Black hole search in common interconnection networks. Networks, to appear. Pre-
liminary version under the title “Black hole search by mobile agents in hypercubes
and related networks” in Proc. 6th Int. Conf. on Principles of Distributed Systems
(OPODIS 2002), pages 169-180, 2002.

4. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Multiple agents rendezvous
in a ring in spite of a black hole. In Proc. 7th Int. Conf. on Principles of Distributed
Systems (OPODIS 2003), Springer LNCS vol. 3144, pages 34–46, 2003.

5. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black hole
in an anonymous ring. Algorithmica, to appear. Preliminary version in Proc. 15th
Int. Symposium on Distributed Computing (DISC 2001), Springer LNCS vol. 2180,
pages 166-179, 2001.

6. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole
in arbitrary networks: Optimal mobile agents protocols. Distributed Computing,
to appear. Preliminary version in Proc. 21st ACM Symposium on Principles of
Distributed Computing (PODC 2002), pages 153-161, 2002.

7. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman & Co., 1979.

8. M.R. Garey, D.S. Johnson, and R.E. Tarjan. The planar hamiltonian circuit prob-
lem is NP-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

9. F. Hohl. Time limited black box security: Protecting mobile agents from malicious
hosts. In Proc. Conf. on Mobile Agent Security, Springer LNCS vol. 1419, pages
92–113, 1998.

10. F. Hohl. A framework to protect mobile agents by using reference states. In
Proc. 20th Int. Conf. on Distributed Computing Systems (ICDCS 2000), pages
410–417, 2000.

11. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation
results for black hole search in arbitrary graphs. Technical Report 5659, INRIA,
August 2005.

12. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation
results for black hole search in arbitrary graphs. In Proc. 12th Int. Colloquium
on Structural Information and Communication Complexity (SIROCCO 2005),
Springer LNCS vol. 3499, pages 200–215, 2005.

13. D.J. Kleitman and D.B. West. Spanning trees with many leaves. SIAM Journal
on Discrete Mathematics, 4(1):99–106, 1991.

14. S. Ng and K. Cheung. Protecting mobile agents against malicious hosts by intention
of spreading. In H. Arabnia, editor, Proc. Int. Conf. on Parallel and Distributed
Processing and Applications (PDPTA’99) Vol. II, pages 725–729, 1999.

32 Ralf Klasing, Euripides Markou, Tomasz Radzik, and Fabiano Sarracco

15. T. Sander and C.F. Tschudin. Protecting mobile agents against malicious hosts.
In Proc. Conf. on Mobile Agent Security, Springer LNCS vol. 1419, pages 44–60,
1998.

16. K. Schelderup and J. Ines. Mobile agent security – issues and directions. In
Proc. 6th Int. Conf. on Intelligence and Services in Networks, Springer LNCS
vol. 1597, pages 155–167, 1999.

17. J. Vitek and G. Castagna. Mobile computations and hostile hosts. In D. Tsichritzis,
editor, Mobile Objects, pages 241–261. University of Geneva, 1999.

