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Abstract. We consider the problem of locating a black hole in a syn-
chronous, anonymous, and unoriented torus network using mobile agents.
A black hole is a harmful network node that destroys any agent visit-
ing it without leaving any trace. The objective is to locate the black hole
using as few agents as possible. We present here an almost optimal deter-
ministic algorithm for synchronous (partially) unoriented tori using five
scattered agents with constant memory and three identical tokens. We
also study the exploration problem of a safe (i.e., without black holes)
unoriented torus. While it has been previously shown that there is no
universal algorithm for one agent with constant memory and any con-
stant number of tokens which can explore all cubic planar graphs, we
give here the first algorithm which enables a finite automaton with two
tokens to explore (without termination detection) any totally unoriented
torus and we prove optimality on the number of tokens.

Keywords: Distributed Algorithms, Fault Tolerance, Black Hole Search,
Anonymous Networks, Mobile Agents, Finite State Automata

1 Introduction

The exploration of an unknown graph by one or more mobile agents is a classical
problem initially formulated in 1951 by Shannon [23] and it has been extensively
studied since then (e.g., see [2, 9, 16]). In 1967, during a talk at Berkeley, Ra-
bin [21] conjectured that no finite automaton with a constant number of pebbles
(or tokens) can explore all graphs (a pebble is a marker that can be dropped at
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and removed from nodes). The first step towards a formal proof of Rabin’s con-
jecture is generally attributed to Budach [4], for an agent without pebbles. Blum
and Kozen [3] improved Budach’s result by proving that three agents cannot co-
operatively perform exploration of all graphs. In 1979, Kozen [19] proved that
four cooperative agents cannot explore all graphs. Finally, in 1980, Rollik [22]
gave a complete proof of Rabin’s conjecture. More precisely, Rollik proved that
no finite set of finite automata can cooperatively perform exploration of all cubic
planar graphs. Since a finite automaton is more powerful than a pebble (a pebble
does not have states, or a transition function), Rabin’s conjecture is a corollary
of Rollik’s theorem.

Recently, the exploration problem has also been studied in unsafe networks
which contain malicious hosts of a highly harmful nature, called black holes. A
black hole is a node which contains a stationary process destroying all mobile
agents visiting this node, without leaving any trace. In the Black Hole Search
(BHS) problem the goal for the agents is to locate the black hole within finite
time. In particular, at least one agent has to survive knowing all edges leading to
the black hole. Without the knowledge of the size of the network, the only way of
locating a black hole is to have at least one agent visiting it. However, since any
agent visiting a black hole vanishes without leaving any trace, the location of the
black hole must be deducted by some communication mechanism employed by
the agents. Four such mechanisms have been proposed in the literature: a) the
whiteboard model in which there is a whiteboard at each node of the network on
which the agents can leave messages, b) the pure token model where the agents
carry tokens which they can leave at nodes, c) the enhanced token model in which
the agents can leave tokens at nodes or edges, and d) the time-out mechanism
(only for synchronous networks) in which at least two agents gather at a node
u, and then one agent explores a new node and returns to u to inform the other
agents who wait.

The whiteboard model provides the most powerful inter-agent communication
mechanism. Since, in this model, access to a whiteboard is provided in mutual
exclusion, this model could also provide the anonymous agents with a symmetry-
breaking mechanism: if the agents start at the same node, they can get distinct
identities and then the distinct agents can assign different labels to all nodes.
Hence in this model, if the agents are initially co-located, both the agents and
the nodes can be assumed to be non-anonymous without any loss of generality.

In asynchronous networks and given that all agents initially start at the same
safe node, the Black Hole Search problem has been studied under the whiteboard
model (e.g., [11, 12]), the enhanced token model (e.g., [10]) and the pure token
model (e.g., [1, 14]). In these models it has been proven that the problem can
be solved with a minimal number of agents performing a polynomial number of
moves. It has been also shown that in an asynchronous network the number of
the nodes in the network must be known to the agents otherwise the problem
is unsolvable ([12]). If the graph topology is unknown, at least ∆+ 1 agents are
needed, where ∆ is the maximum node degree in the graph ([11]). Furthermore
the network should be 2-connected. It is also not possible to answer the question
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of whether one black hole exists in the asynchronous network. With scattered
agents (not initially located at the same node) in asynchronous networks, the
problem has been investigated for the ring topology ([12]) and for arbitrary
topologies ([15]) in the whiteboard model while in the enhanced token model it
has been studied for rings ([13]) and for some interconnected networks ([24]).

The situation in synchronous networks is dramatically different. Under this
assumption, two co-located distinct agents can discover one black hole in any
graph (provided that the graph can be explored) by using the time-out mecha-
nism, without the need of whiteboards or tokens. Moreover the network does not
have to be 2-connected anymore, as in asynchronous networks, and furthermore
it is now possible to answer the question of whether a black hole actually ex-
ists or not in the network. No knowledge about the number of nodes is needed.
Hence, with co-located distinct agents, the issue is not the feasibility but the
time efficiency of black hole search. The issue of efficient black hole search has
been studied in synchronous networks without whiteboards or tokens, only using
the time-out mechanism (e.g., [7, 8, 17, 18]) under the condition that all distinct
agents start at the same node. However when the agents are scattered in the
network, the time-out mechanism is not sufficient anymore: the agents have to
gather at the same node in order to use the time-out mechanism.

While the whiteboard model is commonly used in unsafe networks, the token
model has been mostly used in the exploration of safe networks. The pure token
model can be implemented with O(1)-bit whiteboards for a constant number
of agents and a constant number of tokens (since the only information which is
stored at a node’s whiteboard is the number of tokens placed at that node), while
the enhanced token model can be implemented having a O(log∆)-bit whiteboard
on a node with degree ∆ (since in that case the information stored at a node’s
whiteboard is the number of tokens placed at each port of that node). In the
whiteboard model, the capacity of each whiteboard is assumed to be of at least
Ω(log n) bits, where n is the number of nodes of the network (since in that case
the information stored at a whiteboard includes labels of nodes).

In all previous papers studying the Black Hole Search problem under a token
model apart from [1, 6, 5, 14], the authors have used the enhanced token model
with agents having non-constant memory. The weakest pure token model has
been used in [1, 14] for co-located agents with non-constant memory in asyn-
chronous networks. The first results for scattered agents with constant memory
and pure tokens appeared in [6] for synchronous unoriented rings and [5] for
synchronous oriented tori. In [5] it has been proven that three scattered agents
with constant memory and with two tokens each can locate the black hole in
any synchronous oriented torus.

2 Our Results

We study the Black Hole Search problem (BHS) for scattered identical anony-
mous agents with constant memory in synchronous anonymous unoriented torus
networks under the pure token model. We use the same model as in [6, 5] but
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we focus on unoriented torus topologies. Throughout the paper we discuss four
cases of unoriented tori:

– type 0: the agents do not agree on anything regarding the orientation;

– type 1: the agents perceive orthogonal axes but they do not agree on which
axis is horizontal and which is vertical;

– type 2: the agents agree on which axis is horizontal and which is vertical, but
there is no consensus on the orientation of each axis;

– type 3: the agents agree on which axis is horizontal and which is vertical and
they also agree on the orientation in one of the axes.

For the BHS problem we show the results presented in Table 1:

Torus orientation # agents # tokens Black Hole Search

Type 0
any constant 1

Impossible
4 any constant

Type 1 or 2
4 any constant

Impossible
5 1
5 3 Algorithm UBHS5,3

Type 3
3 any constant

Impossible
4 1
5 3 Algorithm UBHS5,3

Table 1. Summary of results for BHS in synchronous unoriented tori

We also show the following results for the exploration problem of a safe unori-
ented torus:

– There is no universal algorithm for any constant number of agents with one
movable token solving the exploration problem (even without termination
detection) in all unoriented tori.

– There is a universal algorithm for the exploration (without termination de-
tection) of any unoriented torus (type 0) by one agent with constant memory
and two movable tokens.

This last result is optimal on the number of tokens and it is somewhat surprising
since it had been proven, in [22], that an agent with any constant number of
tokens cannot explore all cubic planar graphs. Although it has been proved in
[3] that exploration can be done with a constant number of tokens in partial
grids (grids with missing nodes and edges) with sense of direction, our result
shows that the impossibility result of [22] is not robust enough to resist in highly
structured graphs, like tori, without sense of direction.

Due to space limitations some proofs have been omitted and will appear in
the full version of the paper.
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3 Our Model

Our model consists of k ≥ 2 anonymous and identical mobile agents that are
initially placed at distinct nodes of an anonymous, synchronous torus network.
Each agent consistently evaluates direction across the torus (except in type 0
tori); agents do not necessarily evaluate the same directions for West, East, North
or South. In type 0 tori, we make no assumption on the way each direction is
interpreted. For type 1, 2, and 3 tori, however, we assume that each such function
evaluates West and East to be opposites on the same axis and orthogonal to
North and South (also opposites on the same axis). Each mobile agent has a
constant number t of identical pure tokens which can be placed at any node
visited by the agent. We call a token movable if it can be moved by any mobile
agent to any node of the network, otherwise we call the token unmovable in
the sense that, once released, it can occupy only the node in which it has been
released. A token at a given node is visible to all agents on the same node, but
is not visible to agents at other locations. While our negative results hold even
when the agents have the capability to communicate when they are at the same
node (which is the usual assumption in previous works), our protocol works even
when the agents cannot directly communicate at all, regardless of their location.
The agents follow the same deterministic algorithm and begin execution at the
same time, at the same initial state. At any single time unit, a mobile agent
occupies a node of the network and may 1) stay there or move to an adjacent
node, 2) detect the presence of one or more tokens at the node it is occupying and
3) release/take one or more tokens to/from the node it is occupying. When two
or more agents located at the same node attempt to see and/or change the node
configuration (release or take tokens) at the same time, they do it by mutual
exclusion. We give more details on the mutual exclusion mechanism, later in this
section.

Formally we consider a mobile agent as a finite Moore automaton A =
(S, S0, Σ, Λ, δ, φ), where S is a set of σ ≥ 2 states; S0 is the initial state; Σ
is the set of possible configurations an agent can see when it enters a node;
δ : S ×Σ → S is the transition function; and φ : S → Λ is the output function.
Elements of Σ are triplets (D,x, y) where D ∈ {North, South, East, West} is the
direction through which the agent has arrived at the node, x is the number of
tokens at that node, and y is the number of tokens carried by the agent. Ele-
ments of Λ are triplets (A, s,M) where A ∈ {Put, Take} is the action performed
by the agent on the tokens, s is the number of tokens concerned by the action A,
and M ∈ {North, South, East, West, wait} is the move performed by the agent.

When two or more agents are on the same node and wish to operate at the
same time then the mutual exclusion mechanism guarantees that the agents one
by one evaluate functions δ, φ. The sequence δ, φ is atomic. The order by which
the agents evaluate their functions is handled by an adversary.

We assume that the memory of an agent is proportional to the number of bits
required to encode its states which we take to be Θ(log(|S|)) bits. Note that in
our algorithms all computations by the agents are independent of the size n×m
of the torus network. The agents have no knowledge of n,m. There is exactly
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one black hole in the network. An agent can start from any node other than
the black hole and no two agents are initially co-located (we say that they are
scattered). The agents’ initial locations and the black hole location are decided
by an adversary. Once an agent detects a link to the black hole, it marks the link
permanently as dangerous (i.e., disables this link). Since the agents do not have
enough memory to remember the location of the black hole, we require that at
the end of a black hole search scheme, all links incident to the black hole (and
only those links) are marked dangerous and that there is at least one surviving
agent. Each agent has the following primitives:

1. Walk(x): move to an adjacent node in direction x or through port x and
return the incoming port label.

2. Opposite(dir): return the direction opposite to dir.
3. Put(t): leave t tokens at the current node.
4. Read(): return the number of tokens at the current node.
5. Take(t): remove t tokens from the current node.

The mutual exclusion mechanism guarantees that two or more co-located agents
execute one by one a sequence containing Read, Put, Take actions.

4 Negative Results

In any correct algorithm for solving the Black Hole Search problem each node
apart from at most one of the network must be visited by at least one agent in
the worst case, since if there are two or more unvisited nodes, the agents cannot
decide which one is the black hole.

In [5] it has been proven that no finite team of agents can solve the BHS
problem in all oriented torus networks using any constant number of unmovable
tokens:

Theorem 1. [5] For any constant numbers k, t, there exists no algorithm that
solves BHS in all oriented tori containing one black hole and k scattered agents,
where each agent has a constant memory and t unmovable tokens.

Hence, as in the case of an oriented torus, a correct algorithm for the BHS
problem in an unoriented torus should use movable tokens.

4.1 Black Hole Search in a Torus of Type 3

Lemma 1. There is no universal algorithm solving the BHS problem in all syn-
chronous semi-oriented tori of type 3, using less than 4 scattered agents carrying
any constant number of tokens even when the agents have unlimited memory.

Proof. To locate a black hole, any BHS algorithm functioning with scattered
agents must move all agents by at least one node and must also force agents to
traverse multiple rings of the torus. Consider such a BHS algorithm. Suppose
(without loss of generality) that the agents agree on the horizontal orientation
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of the torus. Then an adversary can choose agents’ orientation on the vertical
direction and initial locations so that one agent will vanish into the black hole
while traveling horizontally and two more agents will fall into the black hole
while traveling vertically (without having met any tokens other than their own
tokens). Hence, a fourth agent is needed to compute where the black hole is
located.

In [5] it has been proven that three scattered agents carrying one token each can-
not solve the BHS problem in a synchronous oriented torus. The basic argument
in that proof is the following: either the agents stay ‘close’ to their tokens and
in that case they fail to explore the whole torus, or they go far from their tokens
(more than a constant number of steps), they manage to explore the torus and
meet the black hole but fail to leave a clear indication at nearby nodes for the
remaining agents. We argue similarly here and prove the following lemma.

Lemma 2. There is no universal algorithm which solves the BHS problem in
all synchronous semi-oriented tori of type 3, using less than 5 scattered agents
with one movable token each if the agents have constant memory.

Proof.(Sketch) Since in view of Theorem 1, solving the BHS problem with un-
movable tokens is impossible, a correct BHS algorithm should eventually instruct
the agents to leave their tokens down. This decision should be taken after a con-
stant number of steps (independent of the size of the torus) due to the constant
number of agents’ states. Moreover this decision has to be taken at the same
time for all agents since the agents are anonymous and start at the same state.

If agents always move a constant number of steps away from their tokens,
then an adversary can always select the size of the torus, the initial locations
of the agents and the black hole location, so that any agent will never meet a
token of another agent, another agent, or the black hole. Moreover the agents
will be eventually trapped visiting the same nodes and there will be nodes in
the torus which remain unvisited by any agent. Therefore in a correct algorithm
the agents should move more than a constant number of steps away from their
tokens. Suppose without loss of generality that the agents disagree on the hori-
zontal orientation. First consider the case in which the agents move more than
a constant number of nodes away from their own tokens in the horizontal axis.
Due to disagreement in the horizontal orientation, the adversary can force two
agents to vanish at the black hole at the same time leaving their tokens more
than a constant number of steps away from the black hole. The adversary may
also arrange that a third agent enters the black hole without having met the
others’ tokens and leaving its token somewhere more than a constant distance
away from the black hole. The remaining case in which the agents move more
than a constant number of nodes away from their own tokens in the vertical axis
can be argued analogously. Hence in both cases a fourth agent may now find a
token other than its own token but cannot decide the black hole location.

The above negative results also hold for tori of type 2, 1 or 0.
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4.2 Black Hole Search in a Torus of Type 2

When the agents agree only on which axis of the torus is horizontal and which
is vertical but they do not agree on their orientations (torus of type 2), then
analogously as in Lemma 1 we can show that:

Lemma 3. There is no universal algorithm solving the BHS problem in all syn-
chronous semi-oriented tori of type 2, using less than 5 scattered agents carrying
any constant number of tokens even when the agents have unlimited memory.

Proof. An adversary can choose agents’ orientation and initial locations such
that two agents will enter the black hole while traveling horizontally and another
two agents will vanish into the black hole while traveling vertically (without
having met tokens other than their own tokens). Then, a fifth agent is needed
to compute where the black hole is located.

With a similar reasoning as in the proof of Lemma 2 the following lemma
holds:

Lemma 4. There is no universal algorithm which solves the BHS problem in
all synchronous semi-oriented tori of type 2, using less than 6 scattered agents
with one movable token each if the agents have constant memory.

The above negative results also hold for tori of type 1 or 0.

4.3 Black Hole Search and Exploration in a Torus of Type 0

In a type 0 torus the agents do not agree on anything related to the orientation
of the torus. We however assume a local port labeling (i.e., port labels of incident
edges of a node are different), otherwise an agent is not capable even to visit all
neighbors of its current node. This port labeling is fixed by an adversary and is
not globally consistent (i.e., an agent which always exit nodes by port East does
not necessarily traverses a complete ring of the torus). We note that once a port
label is fixed by the adversary, it cannot be changed (i.e., the adversary cannot
change previously fixed port labels).

We show below (Theorem 2) that any constant number of scattered agents
with constant memory and one token cannot solve the BHS problem in all tori
of type 0. The idea of the proof is that the agents with only one token are
not able even to explore a safe torus (Lemma 6), leaving many nodes unvisited
(in contrast with semi-oriented safe tori, where only one agent with constant
memory and one token can visit all nodes of the torus). Hence an adversary can
place the black hole in one of the unvisited nodes and the agents are not able to
decide its location. We first prove the following lemma:

Lemma 5. There is no universal algorithm which solves the exploration problem
in all synchronous unoriented (safe) tori of type 0 using one agent with constant
memory and one movable token.
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Proof.(Sketch) Consider such an exploration algorithm for the sake of contra-
diction and let σ ≥ 2 be the number of states of the agent. An adversary assigns
port labels so that the agent can complete its first 2σ − 1 moves (i.e., in which
encounters 2σ states). The labels are assigned to ports so that for each edge the
pair of the two port labels is either (East, West) or (North, South).

Suppose the algorithm instructs the agent not to release its token during
this sequence p of 2σ states. Due to the σ number of different states, there is
at least one state which has been repeated in p. Consider the first state S∗

which is repeated and also has the following property: assuming u1, u2 to be
the nodes where the agent is located when it encounters state S∗ at times t1, t2
respectively (where t1 < t2), the entry port label to u2 is different than the exit
port label from u1. If there is no such state in p, this means that there is a
subsequence of p starting and ending at a state S′ with the agent locating at
the same node (basically in this subsequence the agent moves back and forth
traversing the same edge). Suppose that such a state S∗ exists. If u1 ≡ u2, then,
since the whole sequence of states and moves will be repeated, the agent visits
again and again the same nodes. Suppose that u1 6= u2. Then the adversary can
arrange the port labels so that nodes u1, u2 are on the same horizontal ring. The
sequence of moves and states is repeated and if we call ui the node at which
the agent encounters state S∗ for the i−th time, then the adversary can arrange
the port labels so that nodes u2, u3 are on the same vertical ring (notice that
the distance d(u2, u3) will be equal to d(u1, u2)), nodes u3, u4 are on the same
horizontal ring, u4 is at the same vertical ring with u1 (since d(u3, u4) will be
equal to d(u1, u2)), and finally nodes u4, u5 are on the same vertical ring and
u5 ≡ u1 (since d(u4, u5) will be equal to d(u2, u3)). The agent has visited a total
number of at most 8σ − 1 different nodes and then it keeps visiting the same
nodes.

Suppose that the algorithm instructs the agent to release its token within
the first 2σ − 1 first moves. In fact this has to be done within the first σ moves
otherwise it will never be done. The agent continues moving without a token. If
the adversary can assign the port labels so that after another at most 8σ moves
the agent does not meet its token, then similarly as above, the agent passes twice
from the same node being at the same state and then keeps visiting the same
nodes. If the agent meets its token within 8σ moves then after at most σ+1 times
meeting its token will again meet its token being at the same state St. Between
those two repetitions of state St the agent has visited at most cσ2 nodes, where
c is a constant. After that the agent repeats this orbit but maybe on a different
area of the torus. However in an e.g., n× n torus, after at most n repetitions of
this orbit the agent will be at the same state and at the same node (meeting its
token) and therefore after that the agent will repeat everything visiting exactly
the same nodes. The agent has been visited at most O(n) nodes out of the n2

nodes of a n× n torus.

Generalizing the previous lemma, it can be shown that:
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Lemma 6. There is no universal algorithm which solves the exploration problem
in all synchronous (safe) unoriented tori of type 0 using any constant number k
of scattered agents with constant memory and one movable token each.

Hence, when there is a black hole in the torus network the adversary can
place it in one of the unvisited nodes and therefore the following theorem holds:

Theorem 2. There is no universal algorithm which solves the BHS problem in
all synchronous unoriented tori of type 0 using any constant number of scattered
agents with one movable token each if the agents have constant memory.

As we will discuss in the next section, an agent with constant memory and
only two tokens can explore (without stop) any unoriented torus of type 0.

In view of Lemma 3 and Theorem 2, any BHS algorithm for any type 0
unoriented torus would need at least five agents with two tokens each.

5 Positive Results

5.1 Exploration of an unoriented torus by a finite automaton

In the previous section we proved that any constant number of finite automata
with one token each cannot solve the black hole search problem in all unoriented
tori. The proof relies on Lemma 6 stating that there is no universal algorithm for
any team of a constant number of finite automata with one token each that can
explore all (safe) unoriented tori (type 0). This result is in agreement with the
well known result of Rollik which says that an agent with any constant number of
tokens cannot explore all cubic planar graphs ([22]). Hence a natural question is
whether an agent with two tokens would be able to explore all unoriented tori.
The answer is surprisingly positive. As we present in this section (Algorithm
Explore2Tokens), one agent with constant memory having only two movable
tokens can explore (perpetual exploration without stop) any type 0 unoriented
torus. This result shows that although a torus is already a non-planar graph
with degree 4, its special properties can be exploited by a not very complicated
algorithm which solves the exploration problem in such a weak model. The
basic idea of the algorithm is hidden in Function ExploreRing which enables
the agent to explore a whole ring of the torus, when the torus consists of rings of
at least 4 nodes3. The idea4 can be described as follows: The agent located at a
node u leaves a token down and selects a port leaving u and entering an adjacent
node v. Now in order to discover which node adjacent to v and different than u
lies in the same (horizontal or vertical) ring of the torus with v and u the agent
tests all adjacent nodes of v (apart from u) to find a node w for which all paths

3 Small tori containing rings of 2 or 3 nodes can be easily explored by traversing all
paths of length 2 or 3 as shown in Procedure SmallRing.

4 As it has been brought to our attention by the anonymous referees, the techniques
for local orientation of tori we use in the algorithm have some similarities with the
techniques presented in [20] for solving the Leader Election problem in unlabeled
tori using messages.
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Procedure SmallRing

1: //Take care the case of a torus with a ring of less than 4 nodes
2: Put(2)
3: for i← 2 to 3 do
4: Explore all paths of length i and return
5: if a token is found in more than 2 different paths then
6: Stop //the torus is i× i and has been already explored
7: if a token is found in exactly 2 paths starting at ports p1, p2 then
8: //the torus is i× n
9: loop

10: Move the tokens taking a port p 6= p1, p2
11: Explore all paths of length i and return
12: Let p1, p2 be the starting ports of paths with tokens
13: Take(2)

of length 2 starting at w and not passing from v do not end up at a node with a
token (i.e., node u). Then node u, v, w belong in the same ring of the torus. By
repeating this procedure, the agent can explore a ring. The exploration of a ring
finishes when the agent finds its (homebase) token which had been left at the
starting node. Then it can move tokens in the next ring and continue. In that
way the agent will eventually explore (without stop) the whole torus.

Theorem 3. Algorithm Explore2Tokens enables one agent with constant mem-
ory and two movable tokens to explore (without stop) any unoriented torus.

In view of Lemma 6, Algorithm Explore2Tokens is optimal with respect to the
number of agents and tokens it uses. The algorithm can be extended for solving
exploration with stop using three movable tokens.

5.2 BHS in semi-oriented tori of type 1

In this section, we state Algorithm UBHS5,3 which enables 5 scattered agents
with constant memory and 3 tokens each to locate the black hole in any torus
of type 1 (i.e., a torus in which the agents agree only on the orthogonal axes).
Intuitively the algorithm works as follows: Each agent leaves 2 of its tokens at
its starting node and explores its starting horizontal (perceived) ring using the
Procedure CautiousTest with its last remaining token (leaves a token, walks to
a neighbor at a given direction and returns to pick up its token). Then moves the
2 (homebase) tokens onto the next horizontal ring and repeats the procedure.
Eventually, there will be at least one and at most four agents entering the black
hole and leaving at an adjacent node 1 or 3 tokens. At least one of the remaining
agents will find such a configuration of 1 or 3 tokens (which we call a bad token
configuration) and will locate the (near by) black hole by calling Procedure
LocalSearch.
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Algorithm Explore2Tokens

1: SmallRing //Take care the case of a torus with a ring of less than 4 nodes
2: //Any ring has at least 4 nodes
3: Vt ← ∅
4: C ← ∅
5: Choose a port Hs

6: loop
7: Hf ← ExploreRing(Hs)
8: if Hf = 0 then
9: Insert Hs in set C

10: if there is a new port not in C then
11: Choose a new port Hs /∈ C
12: Take(2)
13: else
14: Stop
15: else
16: Choose a port Vs 6= Hs, Hf , Vt
17: Vt ←Walk(Vs)
18: repeat
19: Move one step on the direction towards port m 6= Vt
20: Let m′ be the incoming port
21: Explore all paths of length 2 not starting with port m′ and return
22: until you found a token at a path ending at port Hs

23: Hs ← m
24: Traverse ports m′, Vt, Take(1) and traverse port Vs

Procedure LocalSearch: Suppose the agent arrives from a direction dir at a
node u where it finds a bad token configuration. This means that the black-hole
is at a node v which is adjacent to u. The agent takes the following actions:
If dir = East (dir = South) then the agent searches (using CautiousTest)
the adjacent nodes South and North (West and East) of u in this order; either
the agent vanishes leaving behind another bad token configuration or otherwise
decides that the black hole is East (South) of u respectively.

Theorem 4. Algorithm UBHS5,3 identifies a black hole in any type 1 torus
using 5 scattered agents with constant memory and 3 movable tokens each.

Algorithm UBHS5,3 can also solve the BHS problem in tori of type 2 or 3.
For tori of type 1 this algorithm is almost optimal since in view of Lemma 4, in
such tori the problem cannot be solved using 5 agents with 1 token.

6 Conclusion

We showed that any constant number of scattered agents with constant memory
and one movable token each cannot locate the black hole in all unoriented tori
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Function ExploreRing(Hs)

1: RingCompleted← FALSE
2: Put(2) //Ring start
3: p←Walk(Hs)
4: repeat
5: CorrectDir ← 0
6: while (There is an untraversed port p′ 6= p) AND (CorrectDir = 0) do
7: p′′ ←Walk(p′)
8: Explore all paths of length 2 not starting with port p′′ and return
9: if no token is found during this exploration then

10: CorrectDir ← p′

11: Walk(p′′) //Go back taking port p′′

12: RingCompleted← (CorrectDir = 0)
13: Walk(p)
14: if (RingCompleted) AND (you see two tokens) then
15: //The ring under exploration has 4 nodes
16: Return 0
17: else
18: Take(1) (the second token) and return
19: if ¬RingCompleted then
20: Put(1) //Leave the second token
21: p←Walk(CorrectDir) //Advance the exploration
22: until RingCompleted
23: repeat
24: Explore all paths of length 3 starting at ports different than p
25: until until you find a node with a token
26: Return the incoming port label

(type 0) mainly due to the fact that it is impossible for the agents with just one
token to explore all such tori. However we also proved that one agent with con-
stant memory and just two movable tokens can explore all unoriented tori. This
result is optimal on the number of agents and tokens and has its own importance
since it has been shown ([22]) that an agent with any constant number of tokens
cannot explore all cubic planar graphs. It remains unclear whether a small team
of agents (at least 5 are needed) with constant memory and two movable tokens
each could solve the BHS problem in all unoriented tori. Since one agent with
two tokens can explore all tori of type 0, a negative answer to the above question
would need a different reasoning than in the one token scenario. We also showed
that four (five) scattered agents with constant memory and one token are not
able to locate a black hole in all semi-oriented tori of type 3 (2 or 1). We gave
an almost optimal algorithm which enables five scattered agents with constant
memory and three tokens each to locate the black hole in all semi-oriented tori
of type 1, 2 or 3. This algorithm can be transformed to work with five agents and
two tokens in all semi-oriented tori of type 3 (it will appear in the full version of
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Algorithm UBHS5,3 (each agent, in parallel)

1: repeat
2: Put(2) //Start of ”ring scan”
3: count← 0
4: dir ← East
5: repeat
6: count← count+ 1
7: repeat
8: CautiousTest(1, dir)
9: Walk(dir)

10: t← Read()
11: until t > 0
12: Danger ← BHConfig(t)
13: until ((count ≥ 5)OR(Danger))
14: if ¬Danger then
15: dir ← South
16: CautiousTest(1, dir) //try the next ring
17: Take(2) //remove the home base
18: Walk(dir)
19: Danger ← BHConfig(Read())
20: until (Danger)
21: LocalSearch(dir)

the paper). While we conjecture that a small team of scattered agents (at least
five) with constant memory equipped with a few tokens (at least two) would be
able to locate a black hole in all totally unoriented tori, a tight solution remains
an open question.
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