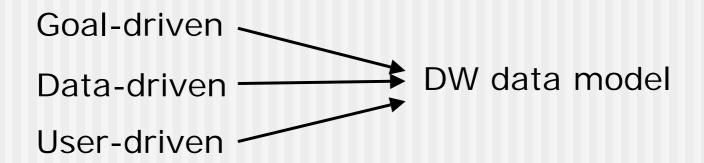
Triple-Driven Data Modeling Methodology in Data Warehousing: A Case Study

Authors: Yuhong Guo, Shiwei Tang, Yunhai Tong, and Dongqing Yang (Peking Univ., China)


Friday, Nov. 10, 2006

Triple-driven: why and how?

Motivation

- Existing methods are used in isolation
- Data models from single principle are incomplete, which cannot obtain satisfaction

Solution

Outline

- Background
 - Motivation & related work
 - Objectives
 - CLIC DW case study
- Proposed Methodology
- Discussion
- Conclusions

Motivation

Open Problems & Challenges

- DW conceptual modeling is still under user's dissatisfactions (DMDW'03)
- Lack of comprehensive documentation and dissemination of requirement engineering methods (*DaWaK'05*)
- What leads to this?

Related work

Existing Data-driven

- Emphasis: integrate, reorganize source schemas
- Lack: match data sources with information requirements

Existing Goal-driven

- Emphasis: decompose business process
- Lack: embody business goals into design elements

Existing User-driven

- Emphasis: facilitate user participations
- Lack: translate user requirements into design elements

The three methods are complementary and should be used in parallel to achieve optimal design

Our objectives

- Tackle four research questions
 - **Triple-driven**: How to integrate the three existing approaches to warehouse design
 - **Data-driven**: How to identify warehouse elements from operational data sources
 - Goal-driven: How to embody corporate strategy and business objectives
 - User-driven: How to translate user requirements into appropriate design elements

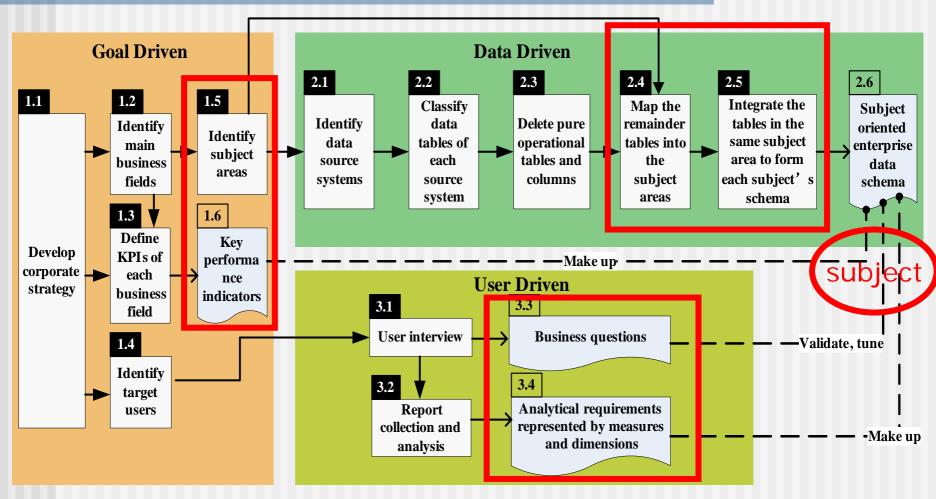
The CLIC DW Planning Project

Objective

Develop data model for a central DW

Diversity needs for the DW

- Centralize the data scattered
- User querying, reporting, analysis, decision


2 core application systems

- Cbps system: core business process system
- Callcenter system: customer consultation, complaint, inquiry...

Outline

- Background
- Proposed Methodology
 - Framework
 - Goal-Driven
 - Data-Driven
 - User-Driven
 - Combine triple-driven
- Discussion
- Conclusions

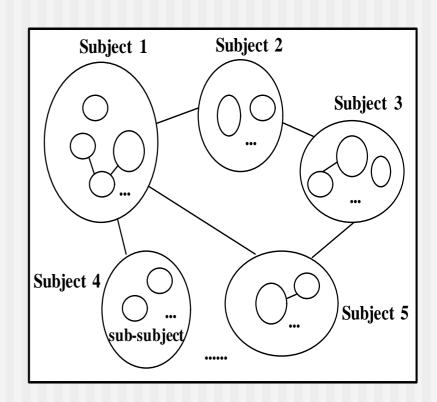
Framework

Goal-Driven

- Main tasks
 - Identify main business fields
 - CRM, RM, ALM, F&PM
 - Identify subjects
 - Define KPIs (Key Performance Indicators)
 - Identify users
 - Query users
 - report users
 - analytical users
 - data miners

Goal-Driven: Identify subjects

Subject


- Object that will be analyzed in each business field
- High information class

Subject Level

subject->sub-subject..

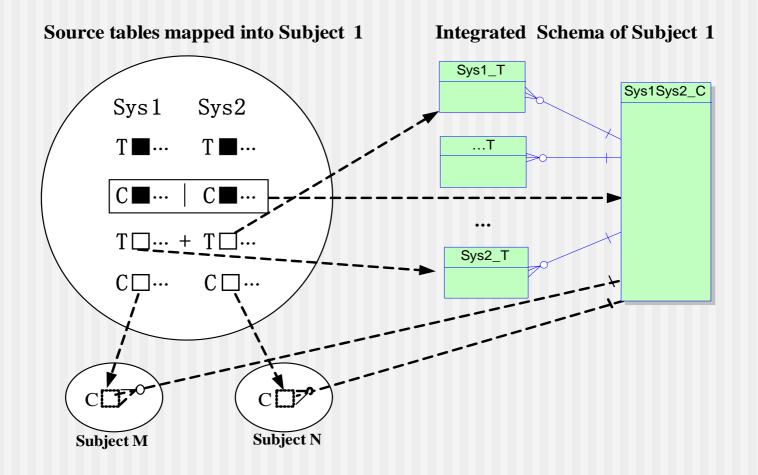
Guideline

 number of the subjects in each level is about 10, not more than 20 (manageable for human) Subjects, sub-subjects & relations

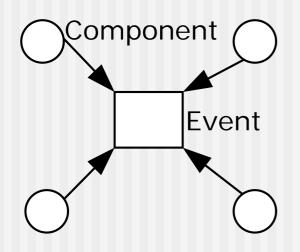
Goal-Driven: Define KPIs

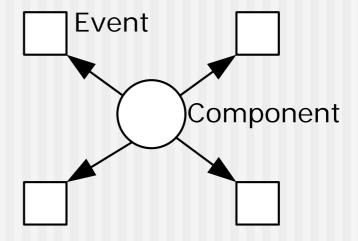
KPIs of Customer Relationship Management

KPIs	Definition
Customer Satisfaction Index	The quality of the services given by a department from the view of customers in the targeted segments.
Customer Retention Rate	The ability of a company's department to retain customers in the targeted measurement segments.
Revenue Per Customer	The profitability on target customer segments.
Customer Acquisition Rate	The ability of a company's center/department to acquire customers in the target segments.


Data-Driven

- Main tasks
 - Identify candidate data sources
 - Classify data source tables
 - Transaction tables
 - Component tables
 - Report tables
 - Classification tables
 - Control tables
 - Delete pure operational tables & columns
 - Map the remainder tables into the subjects
 - Integrate the tables in the same subject


Data-Driven: Map tables into subjects


Candidate Systems	Remainder Tables	Subject 1	Subject 2	•••	Subject N
System1	Transaction Table1				
	Component Table1				
	•••				
System2	Transaction Table1				
	Component Table1				
	•••				

Data-Driven: Integrate tables in the same subject

Star schema VS. anti-star schema

star schema

anti-star schema

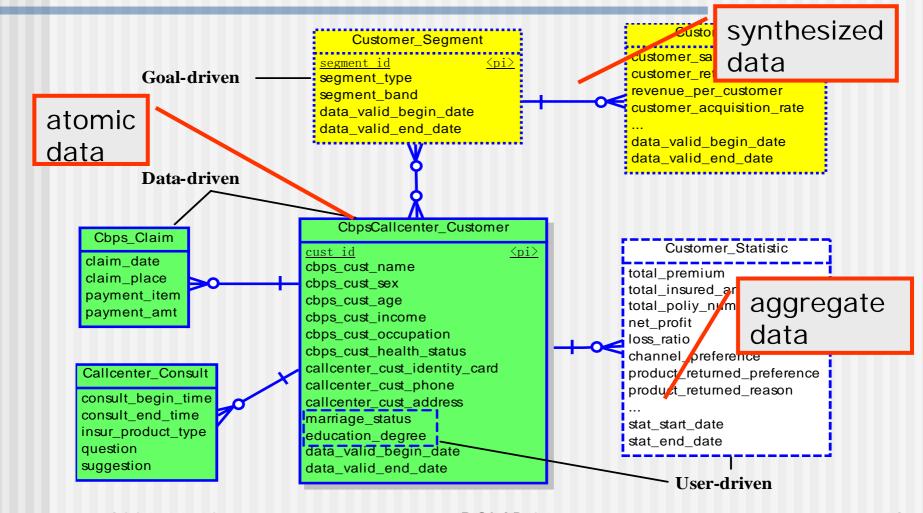
Anti-star schema shifts attention to a component object, not an event, which leads to delicate analysis of an object according to its behaviors

User-Driven

Main tasks

- User interview -> Business questions
 - Which customers are most profitable based upon premium revenue?
 - Which channels customers like most?
 - What are the top five reasons that customers return products?
- Reports collection and analysis
 - Analytical requirements represented by measures and dimensions

User-Driven: Analytical requirements


Measures:

 count, premium, insured amount, policy numbers, net profit, loss ratio...

Dimensions:

- sex (male, female, unknown)
- income (<1000, 1000-5000, 5000-10000, 10000-20000, >20000)
- marriage status (married, unmarried, divorced)
- education degree (<primary school, high school,
 >undergraduate)
- age (< 20, 21-25, 26-30, 30-35, 36-40, 40-50, 50-65, >65)

Combine the triple-driven results

Outline

- Background
- Proposed Methodology
- Discussion
- Conclusions

Discussion

- Advantages
 - It ensures actual business value of the DW and stability of the data model
 - It raises acceptance of users towards the DW
 - It ensures the DW is flexible to support the widest range of analysis
 - It leads to a design capturing all specifications
- Impact & Experience: encouraging

Scattered operational databases

Ambiguous business and user needs

effective & comprehensive design

Conclusions

- Main contributions
 - Integrate three existing single-driven by "subject"
 - Identify valuable elements from data sources by mapping tables into "subjects"
 - Embody corporate strategy and business objectives into data model by KPIs
 - Translate user needs into design elements by report analysis & business questions

Thanks for your attention

If you have any question, please contact the first author:

yhguo@pku.edu.cn

