Heuristic Design of Property Maps

Ravi Darira Karen C. Davis Jennifer Litton Electrical & Computer Engineering Dept. University of Cincinnati Cincinnati, OH USA

Overview

- introduce Property Map
- size of solution space
- background results
 - initial design algorithms
 - performance study
- selection of heuristics to implement
- design algorithms
 - implementation, demonstration, evaluation
- next steps

Property Map

- A property map is composed of property strings
- a property string is a bit string that encodes
 - Boolean predicates
 - ranges
 - enumerated values

Boolean property destination == "New York"

			_	_	•	
flightno	airfare	destination	P1	P2	P3	Pstring
101	220	New York	00	01	1	00011
257	140	Cincinnati	10	00	0	10000
424	400	Troy	10	11	0	10110

Enumerating the Possible PMaps

If we have 3 predicates over the same attribute:

D1 D2 2

boolean over predicate 2

D 1

BI	R1-3	B1,R2-3
B2	B1,B2	R1-2,B3
B3	B2,B3	R1-3,B2
R1-2	B1,B3	R1-2-3
R2-3	B1,B2,B3	E1-2-3

D 1 0

15 possible combinations

only one enumerated property over all predicates

range over

and 2 and

predicates 1

boolean over

predicate 3

How Big Is the Solution Space?

- *n* = number of predicates over the same attribute
 - number of Boolean properties for n

$$B=2^n-1$$

– number of range properties for *n*

$$R = \sum_{i=2}^{n} \binom{n}{i}$$

 number of combinations of Boolean, range, and enumerated for predicates for n

T = B + R + (B * R) + 1

• for *k* predicate groups (*k* different attributes)

$$\prod_{i=1}^k T_i$$

Allowing Multiple Ranges within a Group

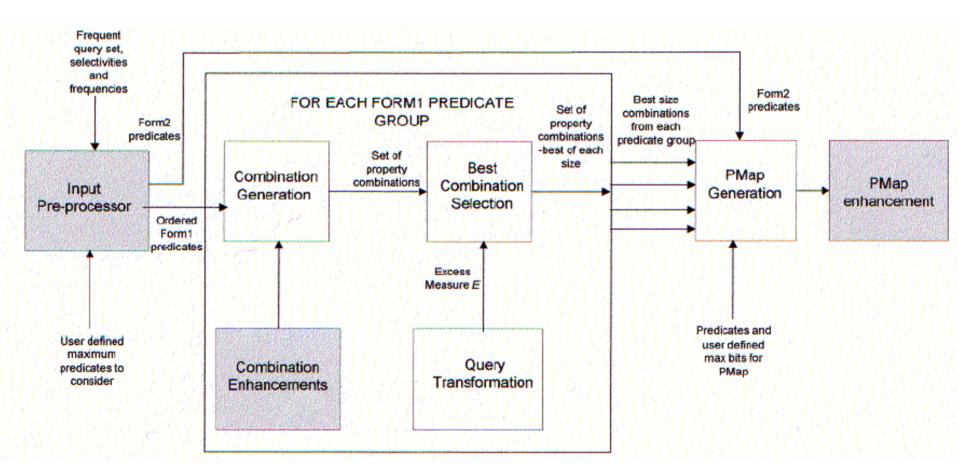
Instead of just one range property over a set of predicates for the same attribute, allow different ranges:

R1-2,R3-4,R5-6 ... this is not the same as R1-2-3-4-5-6!

Turns out to be a Bell number: the number of distinct partitions of *n* items

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k.$$

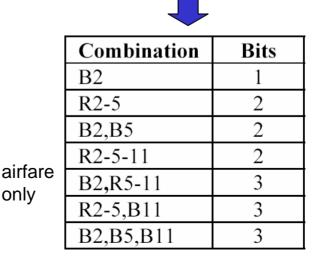
substitutes for R on previous slide


http://wikipedia.org/wiki/Bell_numbers

Challenges for a PMap Design Algorithm

- selecting the predicates to cover
- selecting the types of properties for those predicates
- generating property combinations
- selecting the best combinations to form a PMap
- determining a measure for best

Design Algorithms: Implementation



Design Algorithms: Combination Generation

No.	Predicate	Group
2	airfare < 300	airfare
5	airfare < 501	airfare
11	airfare < 600	airfare
7	airfare < 700	airfare
1	alcode < 100	alcode
4	alcode < 150	alcode
6	alcode < 120	alcode
10	alcode < 130	alcode
8	stopovers < 3	stopovers
9	stopovers < 4	stopovers
3	stopovers < 2	stopovers

preprocessing separates predicates, estimates selectivity, transforms to "<" Generate a combination on each iteration that provides better coverage

- modify range end points
- combinations should not exceed size of enumerated property

Cincin

Queries	Selectivity	Frequency
alcode < 100 AND airfare < 300	0.0056	1000
AND destination == "Cincinnati"		
AND stopovers < 2		
alcode < 150 AND airfare > 500	0.0075	2000
AND destination == "New York"		
alcode < 120 AND airfare < 700	0.0040	2500
OR destination == "Boston"		
AND stopovers < 3		
alcode == 110 OR airfare == 400	0.0030	1500
AND destination == "Cincinnati"		
AND stopovers < 4		
alcode < 130 OR airfare < 600	0.0025	800
AND destination == "Tampa"		
AND stopovers $== 3$		

Combination	Bits	Ε	
B2	1	17452	
R2-5	2	11107	
B2,B5	2	11152	
R2-5-11	2	10947	
B2,R5-11	3	10992	
R2-5,B11	3	17371	
B2,B5,B11	3	17371	

Select best coverage at each size

	Group	Bits	Combination
	airfare	1	B2
		2	R2-5-11
		3	B2,R5-11
V	alcode	1	B1
		2	R1-6-10
		3	B1,R6-10
	stopovers	2	E3-8-9

airfare

Design Algorithms: Property Map Generation

No.	Predicate
2	airfare < 300
5	airfare < 501
11	airfare < 600
7	airfare < 700
1	alcode < 100
6	alcode < 120
14	destination == Boston
3	stopovers < 2
10	alcode < 130
13	destination == New York
4	alcode < 150
16	airfare == 400
15	alcode == 110
12	destination == Cincinnati
8	stopovers < 3
17	destination == Tampa
18	stopovers == 3
9	stopovers < 4

ordered by a function of selectivity and frequency

Group	Bits	Combination
airfare	1	B2
	2	R2-5-11
	3	B2,R5-11
alcode	1	B1
	2	R1-6-10
	3	B1,R6-10
stopovers	2	E3-8-9

For each predicate, add a combination that covers it with least number of bits

Property	Predicate	Bits	Property	Value set	
			type		
R2-5-11	airfare < 300	2	range	00 = (0-300),	
	airfare < 501		_	01 = (301 - 501),	
	airfare < 600			10 = (502, 600),	
				11 = (601 - 5000)	
B7	airfare < 700	1	Boolean	0,1	
B1	alcode < 100	1	Boolean	0,1	U

 order properties within a PMap in ascending order of *E* values

Screen Shot: Input

Form2		
	PMap Processing Details	
SELECT	alcode<100 AND airfare<300 AND destination==cincinnati AND stopovers<2 Selectivity: 0.0056 Frequency: 1000	
Query Details	alcode<150 AND airfare>500 AND destination==newyork Selectivity: 0.0075 Frequency: 2000	
Predicates	alcode<120 AND airfare<700 OR destination==boston AND stopovers<3 Selectivity: 0.004 Frequency: 2500	
Combinations Ordered Predicates	alcode==110 OR airfare==400 AND destination==cincinnati AND stopovers<4 Selectivity: 0.0075 Frequency: 1500	
Excess Measure	alcode<130 OR airfare<600 AND destination==tampa AND stopovers==3 Selectivity: 0.0025 Frequency: 800	
	queries and statistics are input	

Screen Shot: Output

		<u>- 🗆 ×</u>
PMap Generati	ion Tool	
PMap Generation Input Select Attribute Statistics File C:\temp\Table4.1.txt Browse Select Frequent Query Statistics File C:\temp\Table4.2.txt Browse Enter the number of maximum PMap bits (pmax)	Combination: R2-5-11 No. of Predicates Covered by Combination: 3 No. Predicate 2. airfare<300 5. airfare<501 11. airfare<600 Combination: B7 No. of Predicates Covered by Combination: 1 No. Predicate	
Enter the number of maximum group predicates (umax) Select Ordering Criteria Frequency UR Property map Generated PMap R2-5-11,B7 Excess Measure 2044.82[7. airfare<700 and details	
Generate PMap	PMap Details Advanced Details	

Design Algorithms: Evaluation

- compared initial algorithms to enhanced algorithms
- 4 types of queries chosen from BENCH:
 - high selectivity
 - low selectivity
 - high cardinality
 - low cardinality
- workloads formed as 55% of main group, 15% of each of the others: HS, LS, HC, LC

Work- load	High selectivity query group	Low selectivity query group	High cardinality query group	Low cardinality query group	Total
HS	99%	77%	74%	62%	86%
LS	99%	95%	75%	65%	85%
HC	99%	78%	87%	59%	84%
LC	99%	94%	76%	80%	82%

Next Steps

- join queries
- integration into a data warehouse system
- realistic evaluation

