

Matteo Golfarelli, Stefano Rizzi, Andrea Proli DEIS – University of Bologna

Agenda:

1. Introduction

- 2. What-if enabled tools
 - 3. Some lessons learnt
 - 4. Methodological sketch
 - 5. The case study

6. Conclusions and open issues

DOLAP 06

What-if analysis

- Decision makers need to evaluate beforehand the impact of a strategic or tactical move
 - "How would my profits change if I ran a 3×2 promotion for one week on some product on sale?"
 - Modeling the behavior of the customers
 - Modeling the side effects on similar product sales in the same week
 - Modeling the side effects on the product sales in the next weeks

What-if analysis can be described as a data-intensive simulation whose goal is to inspect the behavior of a complex system under some given hypotheses (called scenarios)

N.B. What-if analysis ≠ Forecasting

What-if enabled tools

- A tool for what-if analysis should at least have the following features:
 - Allow interactive update of data.
 - Allow decision makers to hierarchically aggregate and disaggregate predictions and see the impact of modifications at every level.
 - Natively support a core set of techniques for expressing and building simulation models, plus a language for further extending the modeling capabilities.
 - Support decision makers in formulating hypothetical scenarios on the model.
 - Support statistical techniques for evaluating how reliable and accurate the predictions are.

What-if enabled tools

	Applix TM1	Powersim	QlikView	SAP BPS	SAS Forecast S.
Expression of simulation models	Limited to disaggregation rules	System dynamic	Scripting	√	Based on function library and language
Support formulating hypothetical scenarios				~	~
Interactive update of data	1	1	v /	1	1
Multidimensional analysis of the results	1	only if integrated with a DW	1	1	1
Support analysis of the accuracy of the predictions		1			/
Data model	MOLAP (in-memory)	System dynamic	MOLAP (in-memory)	relational	relational

Some lessons learnt l

- In the context of BI, <u>the multidimensional model</u> <u>should be taken as the reference</u>
 - it is widely recognized to be the most suitable model for supporting information analysis;
 - it is inherently capable of representing historical trends;
 - it natively supports fruition of information at different abstraction levels;
 - what-if analysis is typically made on top of a DW system, where data are multidimensional.
- We will call *target cube* the multidimensional schema that will host the *prediction*

Some lessons learnt II

 A what-if application is centered on a *simulation model*, that describes one or more alternative ways to populate the target cube with a prediction.

• Each alternative corresponds to a *class of scenarios* required by the users.

Some lessons learnt III

- Reliability of the simulation model strictly depends on the trade-off between precision and complexity.
 - Too precise model
 - Rough simulation model

high simulation costs unreliable results

Iterative approach to reach the correct trade-off

A case study: Orogel S.p.A.

- Orogel S.p.A. is a large Italian company in the area of deep-frozen food.
 - It sells and distributes its products in a set of branches scattered on the national territory
 - It is equipped with a DW covering most of its business area

Goal analysis

- Analyze the *profitability* of branches
- Class of scenarios: analyze profitability during next *n* months if:
 - one or more new products were taken/dropped by a branch
 - one or more new customers were taken/dropped by a branch.

Business Modelling

Business Modelling

Cannibalization: the process by which a new product gains sales by diverting sales from existing products

Multidimensional Modelling

Simulation Modelling

- Functional view of the simulation model
 - statistical techniques have been adopted for both forecasting and stirring
 - Simplifications have been adopted in computing discounts and cannibalization
 - Events related to new product/customer have been simulated by reproducing the sales of a representative product/customer

Validation

Test carried out on 2003-2004 data and compared with 2005 ones

- Average error of 18% on the total profitability of the single branches
- Global error on profitability was about 7% due to a compensation

Conclusions and ...

- The spread of what-if analysis projects is surprisingly low
- Several factors contribute to this situation:
 - Immature technology:
 - The new generation of analytic tools are now compensating the technological gap
 - Complexity of design
 - Complexity can be overcome by relying on pre-configured models (e.g., SAP-BPS is based on the business models captured by its ERP)
 - Lack of a design methodology:
 - Development of a well-structured design methodology

Conclusions and (some) open issues

- Extend OLAP with new operators specifically devised for what-if analysis
 - E.g. *apportion*: disaggregates a quantitative information down a hierarchy according to some given criterion (*driver*);
- Find an adequate formalism to express the simulation model, so that it can be discussed and agreed upon with the users.
- Enforce consistency of multiple previsions of the same phenomenon taken at more than one abstraction level
 - E.g. Sales prevision for Europe for next year +10%
 - Sales prevision for Italy + 20%
 - Sales prevision for Greece + 15%
 - Sales prevision for Germany ???

Conclusions and (some) open issues

- Extend OLAP with new operators specifically devised for what-if analysis
 - E.g. *apportion*: disaggregates a quantitative information down a hierarchy according to some given criterion (*driver*);
- Find an adequate formalism to express the simulation model, so that it can be discussed and agreed upon with the users.
- Enforce consistency of multiple previsions of the same phenomenon taken at more than one abstraction level
 - E.g. Sales prevision for Europe for next year +10%
 - Sales prevision for Italy + 20%
 - Sales prevision for Greece + 15%
 - Sales prevision for Germany ???

Questions?