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Introduction

LBS  functionality (e.g., route finding) requires complex 
data analysis involving aggregation of probability 
distributions:

E.g.,  “Given probability distributions of COUNT of cars per city 
road in 5 minutes from now, what will the probability 
distribution of COUNT of cars be, per city district?”

OLAP and DW enable complex analysis:
Multidimensional data model – high expressive power
Pre-computation of aggregate values (pre-aggregation) - fast 
aggregation

We extend OLAP/DW to support aggregation and pre-
aggregation of probability distributions:

Generalized measure - probability distribution
Approximate aggregation and pre-aggregation for probability 
distributions
Processing of queries over approximate probability distributions
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Probability Distributions as Measures

New type of aggregate values: 
Aggregate value as probability distribution
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Aggregation 
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Aggregation is based on summation of probability distributions:
Add each interval from A to each interval from B
Based on interval arithmetics: 
([a;b], p) + ([x;y], q) = ([a+x, b+y], p * q)
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Approximate Aggregation

Accurate summation:
Sum M aggregate values, each with N intervals:

Need N2 + N3 + … + NM = O(NM) interval 
summations 
Result contains  NM intervals

Accurate summation:
Exponential time and space complexity
Precision of the result is too high

Need to perform approximate summation!



Approximate Aggregation: Coalescion

Idea of approximate summation:
Control number of intervals by coalescing intervals in each intermediate 
result

Coalescion that preserves “shape” of the summation result:
Find “good” intervals, i.e., intervals with highest unit probability
Group intervals into groups of  approx. equal total probabilities
Coalesce intervals in each group except good intervals

Coalescion has linear time complexity
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[37;55] 0.20
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Approximate Aggregation: Coalescion
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Idea of approximate summation:
Control number of intervals by coalescing intervals in each intermediate 
result

Coalescion that preserves “shape” of the summation result:
Find “good” intervals, i.e., intervals with highest unit probability
Group intervals into groups of  approx. equal total probabilities
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Approximate Aggregation: 
Efficiency and Precision Control

Maximum length of intermediate results
Maximum number of “good” intervals 
“Good interval” threshold:

The threshold depends on average unit probability
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Pre-Aggregation

Definition of Pre-Aggregation
Creating probability distributions out of fact data

Adaptation of aggregation algorithm:
Each fact-dimension relationship is transformed into a probability 
distribution
The obtained distributions are summed
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Definition of Pre-Aggregation
Creating probability distributions out of fact data

Adaptation of aggregation algorithm:
Each fact-dimension relationship is transformed into a probability 
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Pre-Aggregation 

Definition of Pre-Aggregation
Creating probability distributions out of fact data

Adaptation of aggregation algorithm:
Each fact-dimension relationship is transformed into a probability 
distribution
The obtained distributions are summed

[1;1] 0.2
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Transform
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[2;2] 0.12

[1;1] 0.56

[0;0] 0.32

[1;1] 0.4

[0;0] 0.6



Pre-Aggregation: Summarizability

Problem: 
Vehicle attachments in pre-aggregated probability distributions are 
overcounted

Solution: 
If wrong values have small probabilities, filter them out 
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Pre-Aggregation: Summarizability
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[1;1] 0.4

[0;0] 0.6

Pre-aggr.
D

[3;3] 0.048

[2;2] 0.288

[1;1] 0.472

[0;0] 0.192

Road

District

0.6

Vehicle1

0.2

Vehicle2

R1 R2

D

0.4

Aggregate

Problem: 
Vehicle attachments in pre-aggregated probability distributions are 
overcounted

Solution: 
If wrong values have small probabilities, filter them out 



Pre-Aggregation: Summarizability
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[2;2] 0.12
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D
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[2;2] 0.303

[1;1] 0.496

[0;0] 0.201

Filter

Problem: 
Vehicle attachments in pre-aggregated probability distributions are 
overcounted

Solution: 
If wrong values have small probabilities, filter them out 
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Query Processing: Probability Query

Queries over an aggregate value (COUNT) 
for a dimension value, s
Probability query: 

E.g., “What is the probability that COUNT for s exceeds 41?”

10 40

42 46
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0.30
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41
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Queries over an aggregate value (COUNT) 
for a dimension value, s
Probability query: 

E.g., “What is the probability that COUNT for s exceeds 41?”

10 40

26 47

31 55

32 45

42 46

0.38

0.15

0.15

0.12

0.20

41

41



Query Processing: Probability Query

10 40

26 47

31 55

32 45

42 46

0.38

0.15

0.15

0.12

0.20

41

41

Pessimistic
Optimistic
Weighted

Queries over an aggregate value (COUNT) 
for a dimension value, s
Probability query: 

E.g., “What is the probability that COUNT for s exceeds 41?”



Conclusions

OLAP/DW technology may enable complex analysis of LBS 
data that involve aggregation of probability distributions
We are extending the current technology to support LBS 
data and queries
Our contributions:

Generalized measure - probability distribution
Approximate aggregation and pre-aggregation for probability
distributions
Processing of queries over approximate probability distributions



Future Work

Integration of our methods and techniques into 
existing OLAP/DW systems
Coalescion policies:

optimality (highest precision at lowest cost)
precision guarantees

Support for dynamic content/future time queries:
Prediction of future aggregate values
Continuous evolution of aggregate values



Related Work

OLAP Aggregation:
Approximate aggregation on certain data, but no uncertain data (e.g., Poosala and 
Ganti[SSDBM99])
Accurate aggregation of uncertain data, but no probability distributions (e.g., 
Moole[SoutheastCon03])
Approximate aggregation of probability distributions, but no concrete 
representation of aggregate values and algorithms and no pre-aggregation 
(Burdick et al.[VLDB05])

Probabilistic Databases:
Uncertain data (e.g., Barbara et al.[TKDE92], Cavallo and Pitarelli[VLDB87], Dalvi and 
Suciu[VLDB04])
No approximate aggregation 

Spatio-temporal Databases:
Approximate aggregation of certain data (e.g., Tao et al.[ICDE2004])
No approximate aggregation of uncertain data

Summation theory:
Accurate summation of uniformly sampled distributions (e.g., Regan et al.) 
Approximate summation of infinitely many variables (e.g., Puckette)
Unrealistic assumptions

Histograms:
Construction of optimal histograms (e.g., Jagadish et al.[VLDB98])
No summation of distributions



Questions? 
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