Sections
Y-12 Topics on Parallel Architectures: Interconnection Networks
Previous terms
Y-12 Topics on Parallel Architectures: Interconnection Networks
Spring 2006
Project presentation schedule (approximate):
- 13:30 Hypercube variants (Margaritis-Kosmas)
- 13:50 Rearrangeable networks (Konsta-Xristodoulidou)
- 14:10 Router architectures (Nikolaidou-Fotiadou)
- 14:30 Booksim simulator (Agathos-Kallilmanis)
- 14:50 Deadlocks in routing (Evgenidou-Stamoulis)
- 15:10 Fault tolerant routing (Litsios-Aggelidis)
- 15:30 Multiprocessors-in-a-chip (Georga-Filos)
- 15:50 Networks-on-chip (Georgoulas-Kastikos)
- 16:10 Optical MINs (Kosta-Tsami)
-- ΑΝΑΚΟΙΝΩΣΗ --
Αν την Τρίτη 23/5/2006 συνεχίζεται η κατάληψη του κτιρίου,
την ώρα του μαθήματος (12:00), θα συναντηθούμε στην καφετέρια
του Σπύρου (κτίριο νέων εστιών, απέναντι από το Μεταβατικό)
όπου και θα οριστικοποιηθούν τα projects.
>> Οι καφέδες κερασμένοι!
Assignment 6 (due 23/5/2006):
- ("teaching" assignment): three 45min lectures on deadlocks in routing
Assignment 5 (due 9/5/2006):
- Find which destination bit is used for routing in every stage of the following 8 multistage networks: omega, baseline, multistage n-cube, butterfly and their inverse networks.
- Summary of the two papers we talked about in the class
Assignment 4 (due 18/4/2006):
- Prove that if b(i) (corr. g(i)) is the i-th bit in the n-bit binary (corr. Gray-code) representation of a nuumber, then g(i) = b(i) XOR b(i+1), with g(n-1) = b(n-1).
- Write (in C) a program that maps arbitrary meshes / tori to a hypercube using Gray codes and partial Gray codes
Assignment 3 (due 11/4/2006):
- Summary of the paper we talked about in the class
Assignment 2 (due 4/4/2006):
- Line graphs:
- Prove the formula for the number of edges in a line graph/digraph
- Give the number of vertices, number of edges, degree and diameter for deBruijn and Kautz graphs
- Cartesian product:
- Prove that G1*G2 = G2*G1
- Give a formula for the number of edges in the cartesian product of k graphs
- Give a formula for the mean distance in a 2D product (assume you know the average distance in each dimension). Then, give a formula for the mean distance in an MxM mesh and in an MxM torus.
- Can you find a general formula for k dimensions?
Assignment 1 (due 21/3/2006):
- Create your own home page for this course
- Calculate the mean distance in linear arrays and rings
- Find all proposed interconnection networks (in journals and conferences) during 2000-2005 (due 28/3/20006).
Lecture slides (pdf):
Some books:
- J. Duato, S. Yalamanchili, L. Ni, Interconnection networks: an engineering approach, Morgan Kaufmann, 2003
- W. Dally, B. Towles, Principles and practices of interconnection networks, Morgan Kaufmann, 2005
- J. Xu, Topological structure and analysis of interconnection networks, Kluwer, 2001
Some journals (UoI has online access):
Notice that IEEE journals/conferences should preferably be accessed through http://ieeexplore.ieee.org, NOT through http://www.computer.org/portal/site/csdl (Computer Society's Digital library) due to access problems.
- IEEE Transactions on Parallel and Distributed Systems
- Journal of Parallel and Distributed Computing
- Journal of Interconnection Networks (JOIN)
- IEEE Transactions on Computers
- Parallel Processing Letters
- Parallel Computing
Some conferences:
- IPDPS
- ICPP
- EuroPar
- SPAA
- PDCS
- HiPC
- ...
Student pages:
- 90, Κων/νος Γεωργούλας
- 94, Μαρία Χριστοδουλίδου
- 98, Σπύρος-Δημήτρης Αγάθος
- 99, Θεοδόσης Αγγελίδης
- 103, Ελένη Γεωργά
- 106, Δέσποινα Ευγενίδου
- 108, Νίκος Καλλιμάνης
- 111, Κώστα Αναστασία
- 112, Κώστας Λίλλης
- 113, Γιώργος Λίτσιος
- 114, Γιώργος Μαργαρίτης
- 116, Δήμητρα Τσάμη
- 117, Γιώργος Φίλος
- 118, Κατερίνα Φωτιάδου
- Γιώργος Σταμούλης
- 123, Ιωάννης Ζιαγλιαβός
- Ε. Κοσμάς
- Παναγιώτα Νικολαΐδου
- Νότης Κάτσικος
- , Λαμπρινή Κώνστα
