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Abstract—A method for modeling and removing outliers from
2-D sets of scattered points is presented. The method relies on a
principle due to Helmholtz stating that every large deviation from
uniform noise should be perceptible, provided that the deviation is
generated by an a contrario model of geometric structures. By as-
suming local linearity, we first employ a robust algorithm to model
the local manifold of the corrupted data by local line segments.
Our rationale is that long line segments should not be expected in
a noisy set of points. This assumption leads to the modeling of the
lengths of the line segments by a Pareto distribution, which is the
adopted a contrario model for the observations. The model is suc-
cessfully evaluated on two problems in computer vision: shape re-
covery and linear regression.

Index Terms—Linear regression, outlier modeling, point cloud,
shape detection.

I. INTRODUCTION

T HE modeling and removal of outliers from a set of points
has been an active research topic for many decades in

image processing and computer vision and a variety of algo-
rithms have been proposed [2]. They may be as simple as the
median filter to be more elaborated which are based on random
sampling, like RANSAC [10] or probabilistic models [15].
The Gaussian assumption for data generation has been widely

adopted but it is appropriate only for sparse outlier distributions.
In general, it involves the comparison of Euclidean distances
between points with the mean of the distribution expanded by
a number of standard deviation [13]. Kernel density estimators-
based methods provide a probabilistic approach to determine if
a point belongs to the uncorrupted set and are inherently related
to clustering or classification techniques that separate pure data
from outliers [14], [7].
The number of neighbors of a point is a key issue in char-

acterizing it as outlier [8]. The main hypothesis is that pure
data are more densely populated than outlying points and many
algorithms have been designed based on this idea. The adopted
strategy consists in defining a neighborhood for each point,
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determining a feature that characterizes the neighborhood and
rejecting points with features having a value smaller than a
threshold. In [18], the number of common neighbors is defined
as a similarity index between points and points with neighbor-
hood size smaller than a threshold are rejected as outliers. An
octree is used in [19] to cluster points and an implicit quadric is
fit to them to smooth out outliers.
Inspired by the geometric Gestalt theory, which addresses the

answer to the fundamental problem in computer vision: “How
to arrive at global percepts from the local, atomic information
contained in an image?” [5], Desolneux et al. proposed methods
for detecting geometric structures [3] and edges [4] in images
by a parameter free method based on the Helmholtz principle
[6]. The principle states that an observed geometric structure
is perceptually meaningful if its number of occurrences is very
small in a random situation. In this context, geometric struc-
tures are characterized as large deviations from randomness.
The principle is accompanied by an a contrario assumption
against which structures are detected.
In this paper, we propose an algorithm for outlier elimina-

tion and structure extraction from 2-D point clouds based on the
Helmholtz principle. The main difference with the methods in
[3], [4] is that the input to the algorithm is not an image whose
pixels lay on a regular grid but a set of scattered points irregu-
larly distributed in space. To overcome this limitation, at first,
the point set is approximated by a locally linear manifold con-
sisting of a set of line segments [11]. We show that the lengths
of the line segments follow a Pareto distribution which is our a
contrario model.
In the remainder of the paper, the Helmholtz principle is pre-

sented in Section II, the extraction of meaningful line segments
and the outlier modeling are described in Section III and numer-
ical experiments are discussed in Section IV.

II. THE HELMHOLTZ PRINCIPLE

The Helmholtz principle is a general hypothesis of the Gestalt
theory [5] interpreting how the human perception works. Intu-
itively, it states that if we take into consideration randomness as
the normal case for our observations then meaningful features
and interesting events should not be expected. Consequently, if
they are observed they should appear with a small probability.
Moreover, the small probability of observing an event is not a
factor to consider it as meaningful (or true observation not gen-
erated by noise). Take as an example the toss of an unbiased
coin. The probability of getting either a head ( ) or a tail ( )
is 1/2. If we toss the coin successively times then the prob-
ability of observing any of the possible sequences of and
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Fig. 1. (a) A a set of points (in red color) degraded by equal in number outliers (in blue color). (b) A line fitting example of the points in (a). (c) The distribution
of the lengths of the line segments approximating the point set of (a) using a line segment detection algorithm [11]. The horizontal axis represents the lengths and
the vertical axis represents the corresponding frequencies. (d) The Pareto distribution for various values of the parameter with .

is , which is a decreasing function of and approaches
zero as . More specifically, the following sequences:

have equal probabilities of appearance. However, is not ex-
pected to appear for an unbiased coin. Therefore, the low prob-
ability of an event may not characterize it as a deviation from
randomness, as its probability may not truly model the random-
ness of an event.
Using the same sequences and , we may define another

pair of random variables and modeling the number of
and present in a sequence. Since the coin is unbiased, the ex-
pectations of both variables is . Although this is confirmed
in , in sequence the observed values for and is
and 0 largely deviating from the expected values.
The above observations lead to the conclusion that the small

probability of an event may not be an accurate indication that
this event is meaningful and we need to take into considera-
tion that the model we use to validate an event describes the
randomness of all possible observations. Turning back to the
last example of the coin toss, randomness was modeled only by
counting the number of and in a sequence and not by the
probability of a sequence to appear. Taking both issues into ac-
count yields the complete model used to describe randomness
which is called a contrario model.

III. MEANINGFUL LINE SEGMENTS AND OUTLIERS

Let be a set of observed 2-D points in-
cluding both data points and outliers (Fig. 1(a)).
In order to eliminate the outliers, we compute at first an ap-

proximation of the point set by line segments (e.g. [11], [12]).
In the example of Fig. 1(a), the large number of outliers will
provide a large number of line segments with relatively small
lengths (due to noise) and a smaller number of line segments
with larger lengths (due to both the uncorrupted data and the
noise around them), as shown in Fig. 1(b). This distribution of
the lengths of the line segments, shown in Fig. 1(c) leads to con-
sider an a contrario probabilistic model of the lengths described
by a Pareto distribution [1]:

(1)

where and is a parameter controlling the slope of the
curve (Fig. 1(c)). Herein, the length of the segment is considered

in terms of the number of the points contributed to its compu-
tation. The line segment detection algorithm provides line seg-
ments with uniformly distributed points, e.g. [11], [12]. There-
fore, the length of a segment is equivalent to the number of
points belonging to it.
The purpose of the a contrario model is to describe the ran-

domness of the data. However, it might be possible that out-
liers are organized in such a way that they generate short line
segments that are not part of the desired structure. The Pareto
distribution computes the probability that a segment of a given
length appears in the observations. In an analogy to the coin toss
example, this event may be expressed by the probability of get-
ting or (withmore possible outcomes, which are the lengths
of line segments). By expanding our initial intuition regarding
the rareness of the observation, it is possible that segments due
to outliers would be isolated, as the intrinsic feature of noise is
to be structureless. Therefore, in order to set up the a contrario
model, the neighborhood of a line segment should be defined to
account for isolated structures.
Each line segment has a starting and an ending point. The

neighborhood of a segment is defined as the set of all
those segments whose starting/ending points are located at a
distance less than a threshold to the starting/ending points of :

(2)

where the superscripts indicate the starting or the ending
point of a segment. The neighborhood can be iteratively ex-
panded to take into account the neighbors of neighbors up to
a fixed depth.
Therefore, the a contrario model is based on the assumption

that a line segment is more probable to be a true observation if
its neighboring segments have large lengths. This may be ex-
pressed by the likelihood:

(3)

Consequently, if we consider the line segments
to be a true observation. The threshold is automatically deter-
mined as , where is the maximum depth of the
neighborhood expansion. It may be observed that the value of
is independent from the data.
The procedure is presented in Algorithm 1.

Algorithm 1 Outlier elimination based on the Helmholtz
principle.
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Fig. 2. Outlier elimination from the data set of Fig. 1(a) by (a) the first and (b) the last iterations of the proposed method, (c) Xianchao et al. [18], (d) DBScan
[9]. The red boxes highlight representative false points provided by the methods.

TABLE I
STATISTICS ON THE HAUSDORFF DISTANCE (4) ON THE 38 SHAPES

OF THE GATORBAIT100 DATA SET [16]

input: A set of points , the depth of expansion .

output: A set of points .

while convergence is not reached do

Summarize by line segments. Let be the points

contributing to segment , for .

.

for do

if then

.

end if

end for

end while

IV. EXPERIMENTAL RESULTS

To investigate the efficiency of the proposed method for out-
lier elimination, we used the Gatorbait database [16]. Degrada-
tion of the data set was artificially performed in the following
way. For each point of the original data set, an outlier was gen-
erated by multiplying the coordinates of that point with a uni-
formly distributed random number in the interval (0,1]. The
number of outliers added was set equal to the number of pure
data points. Moreover, the pure data were degraded by zero-
mean additive Gaussian noise with an appropriate standard de-
viation in order to obtain a signal to noise ratio (SNR) of 55 dB
(e.g. Fig. 1(a)). The algorithm was applied to 50 different real-
izations of outliers, in order to obtain more accurate results that
are not biased to a specific configuration.
We conducted comparisons with a density-based method

(DBScan [9]) and the algorithm of Xianchao et al. [18]. Let us

also note that other established methods, such as the algorithm
in [15], were also considered but they failed to provide an
acceptable result in our framework of highly corrupted point
sets. Finally, we also show the results of the simple, but in many
cases powerful, median filter for image denoising to highlight
the order of magnitude of the obtained accuracy with respect
to a well known baseline.
To evaluate the results provided by the different algorithms

we employed the Hausdorff distance between two sets of points
and :

(4)

where is the original set of points (the ground truth) and is
the computed set of points after outliers removal.
Table I summarizes the performance of the compared

methods, with the results of the proposed being marked in
bold. As it may be seen, our method may successfully recover
the initial shape. Its maximum distance 10.3 pixels, although
smaller than the other algorithms, is due to the fact that, in
a few cases, parts of the pure data were pruned because the
outliers were close to them. Moreover, we examined the sensi-
tivity of our method to parameter of the Pareto distribution
by applying the algorithm using a variety of values for this
parameter, namely . As it may be observed,
the method is consistent and its performance does not depend
on this parameter. Larger values of may not be employed as
the numerator in the Pareto distribution (1) increases beyond
computer accuracy. As is the mode of the distribution, we
have set in all of the experiments relying on the fact
that we search line segments and any two points define a line
segment. Larger values of , favor larger longer segments, and
may account for the elimination of some details of the initial
data that are modeled by shorter line segments. This relatively
low value for is not in favor of our algorithm, as the model
accounts for less populated line segments which generally are
due to noise. However, the results showed the robustness of
the proposed approach. Furthermore, it is worth noting that
DBScan [9] needs tedious parameter tuning (performed here
by trial and error) and the method in [18] did not detect many
outliers laying near the shape contour. Representative results
are shown in Fig. 2. Xianchao et al. [18] preserves much of
the initial information, but fails to remove outliers near the
contour. The discontinuities provided by our method are due to
the fact that the line segment fitting algorithm used many short
segments to approximate the local manifold. Thus, the proposed
framework rejected the corresponding points as outliers.
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Fig. 3. Boxplots of the line fitting errors for the compared methods. Notice the different scales at the abscissas. (a) Proposed method (first iteration). (b) Proposed
method (last iteration). (c) Xianchao et al. [18]. (d) DBScan [9]. (e) RANSAC [10]. (f) Dumouchel et al. [7].

A second set of experiments addresses the problem of out-
lier elimination for line fitting. Following the same principles as
in the previous experiments, a set of 500 colinear points were
corrupted by outliers and Gaussian noise. Various experiments
were conducted with an increasing number of outliers at each
configuration. In the more challenging setup, the number of out-
liers was equal to the number of points. Each experiment was re-
peated 50 times and statistics on the fitting error, in terms of Eu-
clidean distance between the estimated and the true parameters
of the lines were computed. The performances of the compared
methods are shown in Fig. 3. For a more meaningful evaluation,
we have also compared our method with two robust algorithms,
namely RANSAC [10] and the robust regression method pro-
posed in [7]. As it may be seen, our algorithm outperforms both
of these methods which are established in the computer vision
literature. Please notice the different scales in the abscissas in
the graphs in Fig. 3 which clearly show the accuracy of the pro-
posed algorithm as its maximum error, even in the more chal-
lenging scenario is less than one coordinate unit. On the other
hand, only RANSAC is relatively competitive but its fitting er-
rors are larger.
A final experimental configuration investigated the depen-

dence of the proposed framework to the selected line segment
detection algorithm. To that end, the test image of Fig. 4(a) was
used, where the circle is considered as an outlying shape and the
other shapes consisting of line segments are the inliers. The as-
sumption is that the circular shape needs a large number of short
line segments to be approximated. We have employed two line
detection algorithms for the corresponding step of Algorithm 1:
DSaM [11] and polygon approximation (PA) [12]. The param-
eters for the Helmholtz principle were and . Also,

, where , with

Fig. 4. (a) A test image and the outlier removal result based on (b) DSaM [11],
(c) polygon approximation PA [12] and (d) the method in [18].

being the number of points contributing to the computation
of the -th line segment and is the total number of line seg-
ments. Figs. 4(b)–(c) represent the output of the outlier elimi-
nation method based on DSaM [11] and PA [12] respectively.
It may be observed that both methods provide similar results,
which confirms that the proposed framework is consistent in-
dependently of the line segment detection algorithm selected.
Moreover, the Helmholtz principle enables the determination of
amore elaborated criterion that can trim outliers at a higher level
(e.g. remove circles in a set with linear structures). This cannot
be achieved with a standard density method, e.g. Xianchao et.
al [18], as can be seen in Fig. 4(d), where a significant part of
the linear structures was also removed.

V. CONCLUSIONS

A method for removing outliers from unordered point clouds
has been presented. The method relies on the Helmholtz prin-
ciple, which states that in a random model meaningful observa-
tions should not be expected.We showed that approximating the
local manifold of the scattered points yields an efficient mod-
eling of the outliers. Comparisons with established algorithms
for outlier elimination and robust regression highlighted that the
proposed method consists an efficient framework.
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Abstract—A method for modeling and removing outliers from
2-D sets of scattered points is presented. The method relies on a
principle due to Helmholtz stating that every large deviation from
uniform noise should be perceptible, provided that the deviation is
generated by an a contrario model of geometric structures. By as-
suming local linearity, we first employ a robust algorithm to model
the local manifold of the corrupted data by local line segments.
Our rationale is that long line segments should not be expected in
a noisy set of points. This assumption leads to the modeling of the
lengths of the line segments by a Pareto distribution, which is the
adopted a contrario model for the observations. The model is suc-
cessfully evaluated on two problems in computer vision: shape re-
covery and linear regression.

Index Terms—Linear regression, outlier modeling, point cloud,
shape detection.

I. INTRODUCTION

T HE modeling and removal of outliers from a set of points
has been an active research topic for many decades in

image processing and computer vision and a variety of algo-
rithms have been proposed [2]. They may be as simple as the
median filter to be more elaborated which are based on random
sampling, like RANSAC [10] or probabilistic models [15].
The Gaussian assumption for data generation has been widely

adopted but it is appropriate only for sparse outlier distributions.
In general, it involves the comparison of Euclidean distances
between points with the mean of the distribution expanded by
a number of standard deviation [13]. Kernel density estimators-
based methods provide a probabilistic approach to determine if
a point belongs to the uncorrupted set and are inherently related
to clustering or classification techniques that separate pure data
from outliers [14], [7].
The number of neighbors of a point is a key issue in char-

acterizing it as outlier [8]. The main hypothesis is that pure
data are more densely populated than outlying points and many
algorithms have been designed based on this idea. The adopted
strategy consists in defining a neighborhood for each point,
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determining a feature that characterizes the neighborhood and
rejecting points with features having a value smaller than a
threshold. In [18], the number of common neighbors is defined
as a similarity index between points and points with neighbor-
hood size smaller than a threshold are rejected as outliers. An
octree is used in [19] to cluster points and an implicit quadric is
fit to them to smooth out outliers.
Inspired by the geometric Gestalt theory, which addresses the

answer to the fundamental problem in computer vision: “How
to arrive at global percepts from the local, atomic information
contained in an image?” [5], Desolneux et al. proposed methods
for detecting geometric structures [3] and edges [4] in images
by a parameter free method based on the Helmholtz principle
[6]. The principle states that an observed geometric structure
is perceptually meaningful if its number of occurrences is very
small in a random situation. In this context, geometric struc-
tures are characterized as large deviations from randomness.
The principle is accompanied by an a contrario assumption
against which structures are detected.
In this paper, we propose an algorithm for outlier elimina-

tion and structure extraction from 2-D point clouds based on the
Helmholtz principle. The main difference with the methods in
[3], [4] is that the input to the algorithm is not an image whose
pixels lay on a regular grid but a set of scattered points irregu-
larly distributed in space. To overcome this limitation, at first,
the point set is approximated by a locally linear manifold con-
sisting of a set of line segments [11]. We show that the lengths
of the line segments follow a Pareto distribution which is our a
contrario model.
In the remainder of the paper, the Helmholtz principle is pre-

sented in Section II, the extraction of meaningful line segments
and the outlier modeling are described in Section III and numer-
ical experiments are discussed in Section IV.

II. THE HELMHOLTZ PRINCIPLE

The Helmholtz principle is a general hypothesis of the Gestalt
theory [5] interpreting how the human perception works. Intu-
itively, it states that if we take into consideration randomness as
the normal case for our observations then meaningful features
and interesting events should not be expected. Consequently, if
they are observed they should appear with a small probability.
Moreover, the small probability of observing an event is not a
factor to consider it as meaningful (or true observation not gen-
erated by noise). Take as an example the toss of an unbiased
coin. The probability of getting either a head ( ) or a tail ( )
is 1/2. If we toss the coin successively times then the prob-
ability of observing any of the possible sequences of and
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Fig. 1. (a) A a set of points (in red color) degraded by equal in number outliers (in blue color). (b) A line fitting example of the points in (a). (c) The distribution
of the lengths of the line segments approximating the point set of (a) using a line segment detection algorithm [11]. The horizontal axis represents the lengths and
the vertical axis represents the corresponding frequencies. (d) The Pareto distribution for various values of the parameter with .

is , which is a decreasing function of and approaches
zero as . More specifically, the following sequences:

have equal probabilities of appearance. However, is not ex-
pected to appear for an unbiased coin. Therefore, the low prob-
ability of an event may not characterize it as a deviation from
randomness, as its probability may not truly model the random-
ness of an event.
Using the same sequences and , we may define another

pair of random variables and modeling the number of
and present in a sequence. Since the coin is unbiased, the ex-
pectations of both variables is . Although this is confirmed
in , in sequence the observed values for and is
and 0 largely deviating from the expected values.
The above observations lead to the conclusion that the small

probability of an event may not be an accurate indication that
this event is meaningful and we need to take into considera-
tion that the model we use to validate an event describes the
randomness of all possible observations. Turning back to the
last example of the coin toss, randomness was modeled only by
counting the number of and in a sequence and not by the
probability of a sequence to appear. Taking both issues into ac-
count yields the complete model used to describe randomness
which is called a contrario model.

III. MEANINGFUL LINE SEGMENTS AND OUTLIERS

Let be a set of observed 2-D points in-
cluding both data points and outliers (Fig. 1(a)).
In order to eliminate the outliers, we compute at first an ap-

proximation of the point set by line segments (e.g. [11], [12]).
In the example of Fig. 1(a), the large number of outliers will
provide a large number of line segments with relatively small
lengths (due to noise) and a smaller number of line segments
with larger lengths (due to both the uncorrupted data and the
noise around them), as shown in Fig. 1(b). This distribution of
the lengths of the line segments, shown in Fig. 1(c) leads to con-
sider an a contrario probabilistic model of the lengths described
by a Pareto distribution [1]:

(1)

where and is a parameter controlling the slope of the
curve (Fig. 1(c)). Herein, the length of the segment is considered

in terms of the number of the points contributed to its compu-
tation. The line segment detection algorithm provides line seg-
ments with uniformly distributed points, e.g. [11], [12]. There-
fore, the length of a segment is equivalent to the number of
points belonging to it.
The purpose of the a contrario model is to describe the ran-

domness of the data. However, it might be possible that out-
liers are organized in such a way that they generate short line
segments that are not part of the desired structure. The Pareto
distribution computes the probability that a segment of a given
length appears in the observations. In an analogy to the coin toss
example, this event may be expressed by the probability of get-
ting or (withmore possible outcomes, which are the lengths
of line segments). By expanding our initial intuition regarding
the rareness of the observation, it is possible that segments due
to outliers would be isolated, as the intrinsic feature of noise is
to be structureless. Therefore, in order to set up the a contrario
model, the neighborhood of a line segment should be defined to
account for isolated structures.
Each line segment has a starting and an ending point. The

neighborhood of a segment is defined as the set of all
those segments whose starting/ending points are located at a
distance less than a threshold to the starting/ending points of :

(2)

where the superscripts indicate the starting or the ending
point of a segment. The neighborhood can be iteratively ex-
panded to take into account the neighbors of neighbors up to
a fixed depth.
Therefore, the a contrario model is based on the assumption

that a line segment is more probable to be a true observation if
its neighboring segments have large lengths. This may be ex-
pressed by the likelihood:

(3)

Consequently, if we consider the line segments
to be a true observation. The threshold is automatically deter-
mined as , where is the maximum depth of the
neighborhood expansion. It may be observed that the value of
is independent from the data.
The procedure is presented in Algorithm 1.

Algorithm 1 Outlier elimination based on the Helmholtz
principle.



IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

GEROGIANNIS et al.: ELIMINATION OF OUTLIERS FROM 2-D POINT SETS 3

Fig. 2. Outlier elimination from the data set of Fig. 1(a) by (a) the first and (b) the last iterations of the proposed method, (c) Xianchao et al. [18], (d) DBScan
[9]. The red boxes highlight representative false points provided by the methods.

TABLE I
STATISTICS ON THE HAUSDORFF DISTANCE (4) ON THE 38 SHAPES

OF THE GATORBAIT100 DATA SET [16]

input: A set of points , the depth of expansion .

output: A set of points .

while convergence is not reached do

Summarize by line segments. Let be the points

contributing to segment , for .

.

for do

if then

.

end if

end for

end while

IV. EXPERIMENTAL RESULTS

To investigate the efficiency of the proposed method for out-
lier elimination, we used the Gatorbait database [16]. Degrada-
tion of the data set was artificially performed in the following
way. For each point of the original data set, an outlier was gen-
erated by multiplying the coordinates of that point with a uni-
formly distributed random number in the interval (0,1]. The
number of outliers added was set equal to the number of pure
data points. Moreover, the pure data were degraded by zero-
mean additive Gaussian noise with an appropriate standard de-
viation in order to obtain a signal to noise ratio (SNR) of 55 dB
(e.g. Fig. 1(a)). The algorithm was applied to 50 different real-
izations of outliers, in order to obtain more accurate results that
are not biased to a specific configuration.
We conducted comparisons with a density-based method

(DBScan [9]) and the algorithm of Xianchao et al. [18]. Let us

also note that other established methods, such as the algorithm
in [15], were also considered but they failed to provide an
acceptable result in our framework of highly corrupted point
sets. Finally, we also show the results of the simple, but in many
cases powerful, median filter for image denoising to highlight
the order of magnitude of the obtained accuracy with respect
to a well known baseline.
To evaluate the results provided by the different algorithms

we employed the Hausdorff distance between two sets of points
and :

(4)

where is the original set of points (the ground truth) and is
the computed set of points after outliers removal.
Table I summarizes the performance of the compared

methods, with the results of the proposed being marked in
bold. As it may be seen, our method may successfully recover
the initial shape. Its maximum distance 10.3 pixels, although
smaller than the other algorithms, is due to the fact that, in
a few cases, parts of the pure data were pruned because the
outliers were close to them. Moreover, we examined the sensi-
tivity of our method to parameter of the Pareto distribution
by applying the algorithm using a variety of values for this
parameter, namely . As it may be observed,
the method is consistent and its performance does not depend
on this parameter. Larger values of may not be employed as
the numerator in the Pareto distribution (1) increases beyond
computer accuracy. As is the mode of the distribution, we
have set in all of the experiments relying on the fact
that we search line segments and any two points define a line
segment. Larger values of , favor larger longer segments, and
may account for the elimination of some details of the initial
data that are modeled by shorter line segments. This relatively
low value for is not in favor of our algorithm, as the model
accounts for less populated line segments which generally are
due to noise. However, the results showed the robustness of
the proposed approach. Furthermore, it is worth noting that
DBScan [9] needs tedious parameter tuning (performed here
by trial and error) and the method in [18] did not detect many
outliers laying near the shape contour. Representative results
are shown in Fig. 2. Xianchao et al. [18] preserves much of
the initial information, but fails to remove outliers near the
contour. The discontinuities provided by our method are due to
the fact that the line segment fitting algorithm used many short
segments to approximate the local manifold. Thus, the proposed
framework rejected the corresponding points as outliers.
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Fig. 3. Boxplots of the line fitting errors for the compared methods. Notice the different scales at the abscissas. (a) Proposed method (first iteration). (b) Proposed
method (last iteration). (c) Xianchao et al. [18]. (d) DBScan [9]. (e) RANSAC [10]. (f) Dumouchel et al. [7].

A second set of experiments addresses the problem of out-
lier elimination for line fitting. Following the same principles as
in the previous experiments, a set of 500 colinear points were
corrupted by outliers and Gaussian noise. Various experiments
were conducted with an increasing number of outliers at each
configuration. In the more challenging setup, the number of out-
liers was equal to the number of points. Each experiment was re-
peated 50 times and statistics on the fitting error, in terms of Eu-
clidean distance between the estimated and the true parameters
of the lines were computed. The performances of the compared
methods are shown in Fig. 3. For a more meaningful evaluation,
we have also compared our method with two robust algorithms,
namely RANSAC [10] and the robust regression method pro-
posed in [7]. As it may be seen, our algorithm outperforms both
of these methods which are established in the computer vision
literature. Please notice the different scales in the abscissas in
the graphs in Fig. 3 which clearly show the accuracy of the pro-
posed algorithm as its maximum error, even in the more chal-
lenging scenario is less than one coordinate unit. On the other
hand, only RANSAC is relatively competitive but its fitting er-
rors are larger.
A final experimental configuration investigated the depen-

dence of the proposed framework to the selected line segment
detection algorithm. To that end, the test image of Fig. 4(a) was
used, where the circle is considered as an outlying shape and the
other shapes consisting of line segments are the inliers. The as-
sumption is that the circular shape needs a large number of short
line segments to be approximated. We have employed two line
detection algorithms for the corresponding step of Algorithm 1:
DSaM [11] and polygon approximation (PA) [12]. The param-
eters for the Helmholtz principle were and . Also,

, where , with

Fig. 4. (a) A test image and the outlier removal result based on (b) DSaM [11],
(c) polygon approximation PA [12] and (d) the method in [18].

being the number of points contributing to the computation
of the -th line segment and is the total number of line seg-
ments. Figs. 4(b)–(c) represent the output of the outlier elimi-
nation method based on DSaM [11] and PA [12] respectively.
It may be observed that both methods provide similar results,
which confirms that the proposed framework is consistent in-
dependently of the line segment detection algorithm selected.
Moreover, the Helmholtz principle enables the determination of
amore elaborated criterion that can trim outliers at a higher level
(e.g. remove circles in a set with linear structures). This cannot
be achieved with a standard density method, e.g. Xianchao et.
al [18], as can be seen in Fig. 4(d), where a significant part of
the linear structures was also removed.

V. CONCLUSIONS

A method for removing outliers from unordered point clouds
has been presented. The method relies on the Helmholtz prin-
ciple, which states that in a random model meaningful observa-
tions should not be expected.We showed that approximating the
local manifold of the scattered points yields an efficient mod-
eling of the outliers. Comparisons with established algorithms
for outlier elimination and robust regression highlighted that the
proposed method consists an efficient framework.
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