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Abstract—In this paper, a human behavior recognition method using multimodal features is presented. We focus on modeling

individual and social behaviors of a subject (e.g., friendly/aggressive or hugging/kissing behaviors) with a hidden conditional random

field (HCRF) in a supervised framework. Each video is represented by a vector of spatio-temporal visual features (STIP, head

orientation and proxemic features) along with audio features (MFCCs). We propose a feature pruning method for removing irrelevant

and redundant features based on the spatio-temporal neighborhood of each feature in a video sequence. The proposed framework

assumes that human movements are highly correlated with sound emissions. For this reason, canonical correlation analysis (CCA) is

employed to find correlation between the audio and video features prior to fusion. The experimental results, performed in two human

behavior recognition datasets including political speeches and human interactions from TV shows, attest the advantages of the

proposed method compared with several baseline and alternative human behavior recognition methods.

Index Terms—Hidden conditional random fields, audio-visual synchronization, multimodal fusion, canonical correlation analysis,

human behavior recognition
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1 INTRODUCTION

RECOGNIZING human behaviors from video sequences is a
challenging task [1], [2]. A behavior recognition system

may provide information about the personality and psycho-
logical state of a person. Its applications vary from video sur-
veillance to human-computer interaction. Human behavior
is often expressed as a combination of non-verbal multi-
modal cues such as gestures, facial expressions and auditory
cues. The correlation between cues from different modalities
has been shown to improve recognition accuracy [3], [4], [5].

The problem of human behavior recognition is challenging
for several reasons. First, constructing a visual model for
learning and analyzing human movements is difficult. Sec-
ond, the fine differences between similar classes and the short
time duration of human movements make the problem diffi-
cult to address. In addition, annotating behavioral roles is
time consuming and requires knowledge of the specific event.
The variation of appearance, lighting conditions and frame
resolution makes the recognition problem amply challenging.
Finally, the inadequate benchmark datasets pose a challenge.

When attempting to recognize human behaviors, one
must determine the kinematic states of a person. From psy-
chological point of view, human behaviors may be classified

in three types: behavioral, cognitive and social [6]. Our goal
is to understand not only social behaviors (e.g., relation-
ships and interactions between people such as hugging or
kissing) but also individual behaviors (e.g., expression of
personal feelings such as aggressiveness or friendliness).

Factors that can affect human behavior may be decom-
posed into several components including emotions, moods,
actions and interactions with other people. Hence, the recog-
nition of complex actions may be crucial for understanding
human behavior. Recognizing human actions that corre-
spond to a specific emotional state of a person or an affective
label such as boredom, or kindness, may help understand
social behaviors. The task of learning human behaviors is to
identify the psychological state or the social activities of a
person taking place in the surroundings [7]. Several affective
computing methods [8], [9] used semantic annotations in
terms of arousal and valence to capture the underlying affect
from multimodal data. However, obtaining affective labels
for real world data is a challenging task [10] and it may lead
to biased representation of human behaviors.

The dimensionality of audio and visual data poses signifi-
cant challenges to audio-visual analysis. Video features are
much more complex and high dimensional than audio, and
thus techniques for dimensionality reduction play an impor-
tant role [11]. In the literature, there are two main fusion
strategies, which can be used to tackle this problem [3], [12].
The early fusion or fusion at the feature level, combines fea-
tures from different modalities, usually by reducing the
dimensionality of features from each modality and creating
a new feature vector that represents the individual. Canoni-
cal correlation analysis (CCA) [13] was widely studied in the
literature as an effective way for fusing data at feature level
[14], [15]. The advantage of early fusion is that it yields good
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recognition results when the different modalities are highly
correlated, since only one learning phase is required. On the
other hand, the difficulty of combining the different modali-
ties may lead to the domination of the strongest modality.

The second category of methods, which is known as late
fusion or fusion at the decision level, combines several prob-
abilistic models to learn the parameters of each modality
separately. Then all scores are combined together in a
supervised framework yielding a final decision score [16].
The individual strength of each modality may lead to better
recognition results. However, this strategy is time consum-
ing and requires more complex supervised learning meth-
ods, which may cause a potential loss of the inter-modality
correlation. A comparison of early versus late fusion meth-
ods for video analysis was reported by Snoek et al. [17].

In this work, we address the problem of multimodal data
association for human behavior recognition. First, audio
and visual data from the video sequences are extracted and
then a feature pruning technique is applied to remove
redundant features according to the spatiotemporal neigh-
borhood of the features in the video frames. Then, CCA [13]
is employed to find the synchronization offset between the
audio and video features, such that the correlation between
sound emissions and human movements is maximized.
Finally, the projected data are concatenated into a new fea-
ture vector and are used as input to a chain hidden condi-
tional random field (HCRF) [18] model to capture the
interaction across modalities and compute the underlying
hidden dynamics between the labels and the features. Our
method is also able to cope with videos with varying human
poses as feature pruning may reduce the background and
discard irrelevant frames. In contrast to most of the multi-
modal human behavior analysis methods, the combination
of feature pruning and early fusion keeps the complexity of
our method relatively low, as only one step of classification
for estimating human behaviors is required.

The contributions of this paper can be summarized as
follows:

� We developed a supervised multimodal learning
framework, for human behavior recognition based
on the canonical correlation of audio and visual
features.

� We proposed a feature selection technique for prun-
ing redundant features, based on the spatio-temporal
neighborhood of the visual features that reduced the
complexity of the classification algorithm.

� We employed an audio-visual synchronization
method to temporally align the audio and video fea-
tures, to better exploit the correlation of the audio-
visual features and improve the recognition accuracy.

� We introduced a novel behavior dataset, called the
Parliament dataset [19] and conducted comprehen-
sive experiments to assess the effect of the audio
information on the behavioral recognition task.

Although the Parliament dataset was first introduced by
Vrigkas et al. [19], it is in this paper that audio information is
employed to enhance the recognition accuracy for this data-
set. The main difference with respect to [19], is that in [19] a
fully connected conditional random field (CRF) [20] model is
employed, where different labels for each video frame were

considered. This makes the model more suitable to handle
video sequences with more than one label per video, but it
significantly increases the complexity of themodel.

To evaluate our method, we used two publicly available
datasets, the Parliament dataset [19] with three behavioral
labels: friendly, aggressive, and neutral and the TV human
interaction (TVHI) dataset [21], which contains four different
interaction activities: hand shakes, high fives, hugs and kisses.

The remainder of the paper is organized as follows: in
Section 2, a brief review of the related work is presented.
Section 3 presents the proposed approach including the fea-
ture selection method and the audio-visual synchronization
technique. In Section 4, the novel Parliament dataset is pre-
sented and experimental results are reported. Finally, con-
clusions are drawn in Section 5.

2 RELATED WORK

In this paper, the term “behavior” is used to describe both
activities and events, which are captured in a video
sequence. We categorize the human behavior recognition
methods into two main categories: unimodal and multi-
modal. The latter is of great interest, as several multimodal
fusion techniques have beenwidely studied in the literature.

2.1 Unimodal Behavior Recognition Methods

Much research has focused on unimodal behavior recogni-
tion methods. Social interactions are an important part of
human daily life. Fathi et al. [22] modeled social interactions
by estimating the location and orientation of the faces of the
persons taking part in a social event, computing a line of
sight for each face. This information is used to infer the loca-
tion an individual person attended. The type of interaction
is recognized by assigning social roles to each person. The
authors were able to recognize three types of social interac-
tions: dialogue, discussion and monologue. Ramanathan
et al. [23] aimed at assigning social roles to people associ-
ated with an event. They formulated the problem by using a
CRF [20] model to describe the interactions between people.
Tran et al. [24] presented a graph-based clustering algo-
rithm to discover interactions between groups of people in
a crowd scene. A bag-of-words approach was used to
describe the group activity, while an SVM classifier was
used to recognize the human activity. An advantage of
CRF-based methods is that they can model arbitrary fea-
tures of observation sequences.

The problem of multi-person interactions is presented by
Burgos et al. [25], where the social behavior of mice is dis-
cussed. Each video sequence is segmented into periods of
activities by constructing a temporal context that combines
spatio-temporal features. Morency et al. [26] first introduced
the latent-dynamic conditional random field (LDCRF) for
gesture recognition. They used hidden states to model the
sub-structure of each class and learn the dynamics between
the class labels. The main difference between the LDCRF
model and the HCRF [18] is that the former contains a class
label per observation, which makes it suitable for recogniz-
ing unsegmented sequences.

Patron-Perez et al. [21] introduced a method for recogniz-
ing dyadic human interactions in TV shows by tracking a
person through time and using head pose orientations for
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extracting useful information about the interactions. Gaidon
et al. [27] addressed the problem of human action recogni-
tion by introducing a supervised method for clustering
motion trajectories and representing a hierarchical scheme
for long human actions. Li et al. [28] have also used trajecto-
ries to tackle the problem of human action recognition using
canonical correlation to better exploit the intra-class varia-
tions of data. In general, although these methods may per-
form well under some circumstances, they suffer from the
problem of data association. That is, these methods are
based on the collection of time series of spatio-temporal fea-
tures at single pixel locations. However, the same pixel loca-
tion does not represent the same information over time as
acting humans are considered as highly deformable objects.
Thus, collecting time series may require tracking of visual
features in time.

2.2 Multimodal Behavior Recognition Methods

Recently, much attention has been focused on multimodal
behavior recognition methods. An event can be described
by different types of features that provide more and useful
information. In this context, several multimodal methods
are based on feature fusion, which can be expressed by two
different strategies: early fusion and late fusion. The easiest
way of gaining the benefits of multiple features is to directly
concatenate features in a larger feature vector and then
learn the underlying action [29]. This feature fusion tech-
nique may improve recognition performance, but the new
feature vector is of much larger dimension.

Audio-visual representation of human actions has gained
an important role in human behavior recognition methods.
Mar�ın-Jim�enez et al. [30] used a bag of visual-audio words
scheme along with late fusion technique for recognizing
human interactions in TV shows. Even though their method
performs well in recognizing human interaction, the lack of
an intrinsic audio-visual relationship estimation limits the
recognition problem. Bousmalis et al. [5] considered a system
based on HCRFs [18] for spontaneous agreement and dis-
agreement recognition using audio and visual features.
Wang et al. [31] proposed a semi-supervised framework for
recognizing human actions combining different visual fea-
tures. Although both methods yielded promising results,
they did not consider any kind of explicit correlation and/or
association between the different modalities.

Sargin et al. [32] suggested a method for speaker identifi-
cation integrating a hybrid scheme of early and late fusion
of audio-visual features and used CCA [13] to synchronize
the multimodal features. However, their method can cope
with video sequences of frontal view only. Wu et al. [33] pro-
posed a human activity recognition system by taking advan-
tage of the auditory information of the video sequences of
the HOHA dataset [34] and used late fusion techniques for
combining audio and visual cues. The main disadvantage of
this method is that it used different classifiers to separately
learn the audio and visual context. Also, the audio informa-
tion of the HOHA dataset contains dynamic backgrounds
and the audio signal is highly diverse (i.e., audio shifts
roughly from one event to another), which creates the need
for developing audio features selection techniques. Similar
in spirit is the work of Wu et al. [35], who used the general-
ized multiple kernel learning algorithm for estimating the

most informative audio features, while they applied fuzzy
integral techniques to combine the outputs of two different
SVM classifiers increasing the computational burden of the
method.

Song et al. [4] proposed a novel method for human behav-
ior recognition based on multi-view hidden conditional ran-
dom fields (MV-HCRF) [36] and estimated the interaction of
the different modalities by using kernel canonical correlation
analysis (KCCA) [13]. However, their method cannot
address the challenge of data that contain complex back-
grounds, and due to the down-sampling of the original data
the audio-visual synchronization may be lost. Also, their
method used different sets of hidden states for audio and
visual information. This property considers that the audio
and visual features were a priori synchronized, while it
increases the complexity of the model. Siddique et al. [37]
analyzed four different affective dimensions such as activa-
tion, expectancy, power and valence [38]. To this end, they
proposed joint hidden conditional random Fields (JHCRF)
as a new classification scheme to take advantage of themulti-
modal data. Furthermore, their method uses late fusion to
combine audio and visual information together. This may
lead to significant loss of the inter-modality dependence,
while it suffers from carrying the classification error across
different levels of classifiers. Although their method could
efficiently recognize the affective state of a person, the
computational burden was high because JHCRFs require
twice as many hidden variables as the traditional HCRFs
when features represent two different modalities.

An audio-visual analysis for recognizing dyadic interac-
tions was presented by Yang et al. [39]. The author com-
bined a Gaussian Mixture Model (GMM) [40] with a Fisher
kernel to model multimodal dyadic interactions and predict
the body language of each subject according to the behav-
ioral state of his/her interlocutor. Castellano et al. [41]
explored the dynamics of body movements to identify affec-
tive behaviors using time series of multimodal data.
Martinez et al. [42] presented a detailed review of learning
methods for classification of affective and cognitive states of
computer game players. They analyzed the properties of
directly using affect annotations in classification models,
and proposed a method for transforming such annotations
to build more accurate models. Nicolaou et al. [43] proposed
a regression model based on support vector machines for
regression (SVR) for continuous prediction of multimodal
emotional states, using facial expression, shoulder gesture,
and audio cues in terms of arousal and valence.

Multimodal affect recognition methods in the context of
neural networks and deep learning have generated consid-
erable recent research interest [44]. Metallinou et al. [45]
employed several hierarchical classification models from
neural networks to hidden Markov models and their combi-
nations to recognize audio-visual emotional levels of
valence and arousal rather than emotional labels such as
anger or kindness. Kim et al. [46] used deep belief networks
(DBN) [47] in both supervised and unsupervised manner to
learn the most informative audio-visual features and clas-
sify human emotions in dyadic interactions. Their system
was able to preserve non-linear relationships between mul-
timodal features and shown that unsupervised learning can
be used efficiently for feature selection. In a more recent
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study Martinez et al. [48] could efficiently extract and select
the most informative multimodal features using deep learn-
ing, to model emotional expressions and recognize the
affective states of a person. They incorporated psychological
signals into emotional states such as relaxation, anxiety,
excitement and fun, and demonstrated that deep learning
was able to extract more informative features than feature
extraction on psychological signals.

3 THE PROPOSED APPROACH

We assume that a set of training labels is provided and each
video sequence is pre-processed to obtain a bounding box
of the human in every frame and each person is associated
with a behavioral label. The model is general and can be
applied to several behavior recognition datasets. Our
method uses HCRFs, which are defined as a chained struc-
tured undirected graph G ¼ ðV; EÞ (Fig. 1), as the probabilis-
tic framework for modeling the behavior of a subject in a
video. First, audio and visual features are computed in each
video frame capturing the roles associated with the bound-
ing boxes. Next, irrelevant visual features are eliminated
according to their spatio-temporal relationship of neighbor-
ing features. Then, the synchronization offset between the
different modalities is estimated by using CCA. Finally,
belief propagation (BP) [49] is applied to estimate the labels.

3.1 Multimodal HCRF

We consider a labeled dataset with N video sequences D ¼
fxi;j; yigNi¼1, where xi;j ¼ ðai;j; vi;jÞ is a multimodal observa-

tion sequence, which contains audio (ai;j 2 Rna�T ) and

visual data (vi;j 2 Rnv�T Þ of length T with j ¼ 1 . . .T . For
example, xi;j corresponds to the jth frame of the ith video
sequence. Finally, yi corresponds to a class label defined in
a finite label set Y. Our model is applied to all video sequen-
ces in the training set. In what follows, we omit indices i and
j for simplicity.

It is useful to note that our HCRF model is a member of
the exponential family and the probability of the class label
given an observation sequence is given by:

pðyjx;wÞ ¼
X
h

pðy;hjx;wÞ

¼
X
h

exp Eðy;hjx;wÞ �AðwÞð Þ ;
(1)

where w ¼ ½uu;vv� is a vector of model parameters, h ¼
fh1; h2; . . . ; hTg, with hi 2 H is a set of latent variables. In
particular, the number of latent variables may be different
from the number of samples, as hj may correspond to a sub-
structure in a sample. However, for simplicity we use the
same notation. Finally, Eðy;hjx;wÞ is a vector of sufficient
statistics and AðwÞ is the log-partition function ensuring
normalization:

AðwÞ ¼ log
X
y0

X
h

exp Eðy0;hjx;wÞð Þ : (2)

Different sufficient statistics Eðy;hjx;wÞ in (1) define dif-
ferent distributions. In the general case, sufficient statistics
consist of indicator functions for each possible configuration
of unary and pairwise terms:

Eðy;hjx;wÞ ¼
X
j2V

X
‘

F‘ðy; hj; x; uu‘Þ

þ
X
j;k2E

X
‘

C‘ðy; hj; hk;vv‘Þ ;
(3)

where the parameters uu and vv are the unary and the pair-
wise weights, respectively, that need to be learned and
F‘ðy; hj; x; uu‘Þ, C‘ðy; hj; hk;vv‘Þ are the unary and pairwise
potentials, respectively.

The unary potential is expressed by:

F‘ðy; hj; x; uu‘Þ ¼
X
j

f1;‘ðy; hj; uu1;‘Þ þ
X
j

f2;‘ðhj; x; uu2;‘Þ ; (4)

and it can be considered as a state function, which consists
of two different feature functions. The label feature func-
tion, which models the relationship between the label y and
the hidden variables hj, is expressed by:

f1;‘ðy; hj; uu1;‘Þ ¼
X
�2Y

X
a2H

uu1;‘1ðy ¼ �Þ1ðhj ¼ aÞ ; (5)

where 1ð�Þ is the indicator function, which is equal to
1, if its argument is true and 0 otherwise. The observa-
tion feature function, which models the relationship
between the hidden variables hj and the observations x,
defined by:

f2;‘ðhj; x; uu2;‘Þ ¼
X
a2H

uu2;‘1ðhj ¼ aÞx : (6)

The pairwise potential is a transition function and repre-
sents the association between a pair of connected hidden
states hj and hk and the label y. It is expressed by:

C‘ðy; hj; hk;vv‘Þ ¼
X
�2Y
a;b2H

vv‘1ðy ¼ �Þ1ðhj ¼ aÞ1ðhk ¼ bÞ : (7)

3.2 Parameter Learning and Inference

Our goal is to assign a test video sequence with a behavioral
role by maximizing the posterior probability:

y ¼ argmax
y2Y

pðyjx;wÞ : (8)

Fig. 1. Graphical representation of the chain structure model. The grey
nodes are the observed features and the unknown labels represented
by x and y, respectively. The white nodes are the unobserved hidden
variables h.
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In the training step the optimal parameters w� are esti-
mated by maximizing the following loss function:

LðwÞ ¼
XN
i¼1

log pðyijxi;wÞ � 1

2s2
kwk2 : (9)

The first term is the log-likelihood of the posterior proba-
bility pðyjx;wÞ and quantifies how well the distribution in
(1) defined by the parameter vector w matches the labels y.
It can be rewritten as:

log pðyijxi;wÞ ¼ log
X
h

expðEðy;hjx;wÞÞ

� log
X
y0;h

expðEðy0;hjx;wÞÞ : (10)

The second term is a Gaussian prior with variance s2 and
works as a regularizer. The loss function is minimized using
a gradient-descent optimization method. More specifically,
in our experiments we used the limited-memory BFGS
(LBFGS) method to maximize the negative log-likelihood of
the data.

Having set the parameters w, the marginal probability is
obtained by applying the BP algorithm [40] using the graph-
ical model as depicted in Fig. 1.

3.3 Multimodal Feature Extraction

In this work, we used three different sets of visual features
(i.e., STIPs, head orientations, and proxemic features).
First, we extract local space-time features at frame rate of
25 fps using a 72-dimensional vector of HoG and
90-dimensional vector of HoF feature descriptors [50] for
each STIP [51], which captures the human motion between
frames. These features were selected because they can cap-
ture salient visual motion patterns in an efficient and com-
pact way.

Feature extraction may be erroneous due to cluttered
backgrounds caused by camera motion or changes in illu-
mination and appearance. Reducing the number of irrele-
vant/redundant features drastically reduces the running
time of a learning algorithm and yields a more general
concept. For this reason, we adopt a similar technique
with Liu et al. [52] and we perform feature pruning based
on spatial and temporal neighborhood of motion features.

The proposed algorithm depends on two factors: (i) the
distance between the centers of the feature locations
and (ii) the scatter of each feature group in consecutive
frames.

Let Nt be the number of features in frame t and N be the
total number of features in the video sequence. Let also, mt

and s2
t be the center and the variance of the feature locations

in frame t, respectively. First, we discard those frames
where Nt is much larger than the mean number of features
in the video sequence. Next, if the ratio of the difference of
the means to the standard deviation of feature locations and
the number of features between frame t and its neighboring
frames t� 1 and tþ 1 are over a predefined threshold, we
selectMt � Nt features that lie close to the centers of the fea-
ture locations in neighboring frames. A detailed description
of the proposed feature pruning algorithm is presented in
Algorithm 1. Fig. 2 depicts some representative examples of
the feature pruning technique. Feature pruning may signifi-
cantly reduce the number of features (Fig. 6).

Algorithm 1. Feature Pruning

Input: Original features vt for frame t.
Output: Pruned features zt for frame t.
1: if Nt >> meanðNÞ then
2: Discard frame t;
3: end if

4: if
kmt�1 � mtk2
s2
t�1 þ s2

t

> " &
kmt � mtþ1k2
s2
t þ s2

tþ1
> "

 !
& jNt�1 �Ntj >ð

z & jNt �Ntþ1j > zÞ then
5: j 1;
6: for i 1 toNt do

7: if
kmt�1 � mtk2
kvi;t � mtk2

< T &
kmt � mtþ1k2
kvi;t � mtk2

< T then

8: zj;t  vi;t;
9: j jþ 1;
10: end if
11: end for
12: end if

In cases where the video sequences are not person-
centric, but may contain human interactions (e.g., hug-
ging), STIP features are not adequate. For this reason,
we have used head orientation as additional feature.
This choice is motivated by the fact that a person who
interacts with another is more likely to look at that per-
son than looking at somewhere else. Furthermore, we
have also used proxemic features, which capture the spa-
tial and temporal relations between interacting persons
detected in the video sequences. This means that inter-
acting persons are in general more probable to lie close
to each other (spatially and temporally).

Moreover, many audio features have been studied for
speaker detection and voice recognition [53]. Mel-frequency
cepstral coefficients (MFCCs) [54] are the most popular and
common audio features. We employ the MFCCs features
and their first and second order derivatives (delta and
delta-delta MFCCs) to form an audio feature vector of
dimension 39. Table 1 summarizes all audio and visual fea-
ture types used in our algorithm.

Fig. 2. Representative examples of feature pruning. (a) The original fea-
tures and (b) the pruned features for the Parliament dataset [19] (top
row) and the TV human interaction dataset [21] (bottom row). Feature
pruning may reduce the number of features by 29 percent on average.
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3.4 Audio-Visual Synchronization and Fusion

The purpose of the proposed method is to perform multi-
modal human behavior recognition by taking into account
both visual and audio information. One drawback of combin-
ing features of different modalities is the different frame rate
that each modality may have. Thus, prior to the fusion step,
visual features are interpolated tomatch the audio frame rate.
However, interpolation may harm the synchronization
between the audio and visual features, which is necessary to
better exploit the correlation between the differentmodalities.
To this end, we propose using CCA to estimate audio-visual
synchronization offset and perform the data fusion.

Given a set of zero-mean paired observations fðai; viÞgMi¼1,
with A ¼ ½a1; . . . ; aM � and V ¼ ½v1; . . . ; vM �, CCA seeks to
find two linear transformation vectors gga and ggv, such that

the correlation rðggT
aA; ggT

vVÞ between the projections onto

these vectors, a ¼ ggTaA and v ¼ ggTv V (also known as canoni-
cal variates) is maximized:

rða; vÞ ¼ max
gga;ggv

E½av�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½a�2E½v�2

q
¼ max

gga;ggv

E½ggT
aAVTggv�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ggTaAATgga�E½ggT
vVVTggv�

q
¼ max

gga;ggv

ggT
aSavggvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ggT
aSaaggaw

T
v Svvggv

p ;

(11)

where E½�� is the expected value, Saa 2 Rna�na and
Svv 2 Rnv�nv are the covariance matrices, respectively, and
Sav 2 Rna�nv is the cross-covariance matrix of A and V.

The solutions for gga and ggv are the eigenvectors corre-

sponding to the largest eigenvalues of S
�1
aa SavS

�1
vv Sva and

S
�1
vv SvaS

�1
aa Sav, respectively.

The greatest challengewhen dealingwith audio-visual fea-
tures is to correctly identify the auditory information that cor-
responds to the motion of the underlying event. This means,
that audio and visual features need to be precisely correlated
before data fusion is applied [11], [32]. To this end,we assume
that there is a time gap t, which can be seen as an integer offset
of frames between audio and visual streams such that the
visual feature vector vt in frame t corresponds to the ðtþ tÞth
audio feature vector atþt .We assume that the synchronization
offset t may lie in an interval ½�s; s�. First, we remove the first
and last s frames from the audio signal and compute the
audio features in the remaining cropped sequence of length
T � 2s. Then, we compute the visual features vt,
t 2 ½1; 2sþ 1� in all groups of T � 2s consecutive frames.
Finally, CCA is applied between the set of cropped audio

features a and each visual feature group vt. We select the opti-
mal temporal gap such that the correlation between audio
and visual features ismaximized according to:

t ¼ argmax
t

�t � ðsþ 1Þ; (12)

where � corresponds to the largest eigenvalue, which is
associated with the maximization of the canonical correla-
tion between the audio feature vector and each group of
visual features, as the audio feature vector is slid over the
visual features. The steps of the audio-visual synchroniza-
tion algorithm are summarized in Algorithm 2.

Algorithm 2. Audio-Visual Synchronization

Input: Audio and video streams, time interval ½�s; s�.
Output: Synchronization offset t.
1: Delete the first and last s frames from the auditory signal.
2: Compute the audio features in the remaining T � 2s instan-

ces of the audio stream.
3: for all groups of T � 2s consecutive frames do
4: Compute the visual features vt; t 2 ½1; 2sþ 1�.
5: Estimate the CCA between the cropped audio and the

visual features vt
6: end for
7: Estimate the temporal offset t according to Eq. (12).

We now consider the fusion of the audio and visual fea-
tures a and v respectively by projecting these features onto

the canonical basis vectors ½ggT
a ; gg

T
v �T and use this projection

for recognition.

4 EXPERIMENTAL RESULTS

In what follows, we refer to our synchronized audio-visual
cues for activity recognition method by the acronym SAVAR.
The experiments are applied to the novel Parliament dataset
[19] and the TV human interaction dataset [21]. The number
of features is kept relatively small in order not to increase
the model’s complexity.

4.1 Datasets

Parliament [19]: This dataset is a collection of 228 video
sequences, depicting political speeches in the Greek parlia-
ment. All behaviors were recorded for 20 different sub-
jects. The videos were acquired with a static camera and
contain uncluttered backgrounds. The video sequences
were manually labeled with one of three behavioral labels:
friendly (90 videos), aggressive (73 videos), or neutral (65
videos). Fig. 3 depicts some representative frames of the
Parliament dataset. The subjects express their opinion on a
specific law proposal and they adjust their body move-
ments and voice intensity level according to whether they
agree with that or not.

TABLE 1
Types of Audio and Visual Features Used

for Human Behavior Recognition

Audio features (39) Visual features (166)

MFCCs (13) STIP (162)
Delta-MFCCs (13) Head orientations (2)
Delta-delta-MFCCs (13) Proxemic (2)

The numbers in parentheses indicate the dimension of the
features.

Fig. 3. Sample frames from the proposed Parliament dataset. (a)
Friendly, (b) Aggressive, and (c) Neutral.
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Each video sequence was manually labeled with one of
three behavioral labels according to human perception on
kindness and aggressiveness. The distribution of the three
classes friendly, aggressive, and neutral is depicted in Fig. 4.
Each plot depicts the univariate histogram for each class.
Note that all classes are not linearly separable.

The videos of the Parliament dataset were captured at a
resolution of 320� 240 pixels at 25 fps and their length is
250 frames. The dataset was annotated by two observers of
Greek origin, who watched the videos independently and
recorded their labels separately. Disagreement was
resolved by a third observer. It is worth noting that the ini-
tial two annotators disagreed in only 3 percent of the vid-
eos of the dataset. The observers were asked to categorize
the videos with respect to the notions of kindness and
aggressiveness according to a general perception of a
political speech by a citizen with a Greek mentality as fol-
lows. (i) Subjects with large and abrupt body, head and
hand movements and high speech signal amplitude are to
be labeled as aggressive. This corresponds to statesmen
who express strongly their disagreement with the topic
discussed or a previous speech given by a political oppo-
nent. (ii) Subjects with very small variations in their
motion and speech signal amplitude are to be labeled as
neutral. This class includes standard political speeches
only expressing a point of view without any strong indica-
tion (body motion or voice tone) of agreement or disagree-
ment with the topic discussed. (iii) Subjects with large but
smooth variations in the pose of their body and hands
speaking with a normal speech signal amplitudes are to be
labeled as friendly.

TV human interaction [21]: This dataset consists of 300
video sequences collected from over 20 different TV shows.
The video clips contain four kinds of interactions: hand
shakes, high fives, hugs and kisses, which are equally distrib-
uted to the four classes (50 video sequences for each class).
Negative examples (e.g., clips that do not contain any of the
aforementioned interactions) consist the remaining 100 vid-
eos. The length of the video sequences ranges from 30 to 600
frames. The great degree of intra and inter-class diversity
between the clips, such as different number of actors in
each scene, variations in scale, and changes in camera angle,
is an important factor that popularized this dataset for real
world evaluation. Some representative frames of the TVHI
dataset are illustrated in Fig. 5.

In particular, the Parliament and the TVHI datasets are
representative examples of individual and social behaviors,
respectively. The Parliament contains examples of behav-
ioral attributes, which may correspond to positive (e.g.,
friendliness) or negative (e.g., aggressiveness) behaviors.
Passive is also a possible behavioral state for this dataset.
The TVHI dataset on the other hand, models the social
behaviors of people in terms of communication/interation
with other people. Both kinds of behaviors entail much
effort in order to analyze the given information.

4.2 Implementation details

We used five-fold cross validation to split the Parliament
dataset into training and test sets, and we report the average
results over all the examined configurations. Moreover, for
the same dataset, we also used the leave-one-speaker-out
(LOSO) cross validation, to split training and testing data
into two independent sets so that training and testing data
may not have utterances from the same speaker. For the
evaluation of our method to the TVHI dataset, we used the
provided annotations, which are related to the locations of
the persons in each video clip including the bounding boxes
that contain them, the head orientations of each subject in
the clips, the pair of the subjects who interact to each other
and the corresponding labels. For comparison purposes, we
used the same data split described in [21], which is a 10-fold
cross validation. To obtain a bounding box of the human in
every frame we used the method described by Dalal and
Triggs [55]. Each frame is considered as a grid of overlap-
ping blocks, where HOG features [50] are computed for
each block. Finally, a binary SVM classifier is used to iden-
tify wether there exists an object or not. The detection win-
dow is extracted in all positions and scales and non-
maximum suppression is used to detect each object. This
method is able to cope with variations in appearance, pose,
lighting and complex backgrounds.

The audio signal was sampled at 16 KHz and processed
over 10 ms using a Hamming window with 25 percent
overlap. The audio feature vector consisted of a collection of
13MFCC coefficients along with the first and second deriva-
tives forming a 39 dimensional audio feature vector.

4.3 Model Selection

As shown in Fig. 2, there are many features that are non-
informative due to pose variations or complex backgrounds.
A comparison of the per class number of visual features
before and after pruning using Algorithm 1 for both Parlia-
ment and TVHI datasets is illustrated in Fig. 6. It can be

Fig. 4. Distribution of classes (a) friendly, (b) aggressive, and (c) neutral.

Fig. 5. Sample frames from the TVHI dataset. (a) Hand shake, (b) High
five, (c) Hug, and (d) Kiss.

Fig. 6. Comparison of the per class number of visual features before and
after pruning for (a) the Parliament and (b) the TVHI datasets.
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observed that the number of visual features before pruning
is much higher than the number of visual features after
pruning, which indicates that our pruning algorithm may
significantly reduce the number of features by 29percent
for the Parliament dataset and by 27 percent for the TVHI
dataset on average.

To automatically estimate the synchronization offset, such
that the correlation between audio and video features is max-
imized, we used Algorithm 2. Fig. 7 illustrates the synchroni-
zation offset for some randomly selected video sequences by
plotting the most significant canonical basis as the visual fea-
tures slide over the audio features. It is worth noting that, for
the synchronization offset, we selected the frame with the
maximum correlation. The corresponding canonical bases
for the synchronized audio and visual features are depicted
in Fig. 8. The similarity between the audio and visual canoni-
cal variates indicates high correlation.

The optimal number of hidden states was automatically
estimated based on validation, varying the number of hid-
den states from three to ten. The L2 regularization scale

term s was set to 10k; k 2 f�3; . . . ; 3g. Finally, our model
was trained with a maximum of 400 iterations for the termi-
nation of the LBFGS minimization method.

4.4 Results and Discussion

We compared the SAVAR approach, which uses audio-visual
feature synchronization with an HCRF model, SAVAR(A/V
sync), with previously reported methods in the literature and
seven baseline approaches (variants of the proposedmethod).
First, we compared the proposed SAVAR method with an
HCRF variant, which does not employ audio-visual feature
synchronization prior to the fusion process, SAVAR(A/V no-
sync). To show the benefit of audio-visual fusion and synchro-
nization, we compared our SAVAR(A/V sync) method

against two HCRF variants, which use only audio, SAVAR
(audio), and only visual, SAVAR(visual), features as input,
respectively. Moreover, we compared our method with a late
fusion technique without using audio-visual synchronization
as it is not necessary in late fusion. Information from each
modality was learned separately by the HCRF model and
then the resulting classification scores were used as input to
an SVM model to fuse the results. The parameters of SVM
were chosen using cross validation.

A conditional random field model, using four different
variants, was also used as a baseline method, to demonstrate
the effectiveness of the HCRF model to learn the hidden
dynamics between the video clips of different classes. First,
synchronized and unsynchronized audio-visual features
were used as input to two CRF models comprising two dif-
ferent variants A/V sync CRF andA/V no-sync CRF, respec-
tively. Finally, we trained two CRFs, one with only audio
features (audio CRF) and one with only visual (visual CRF)
features.

4.4.1 Feature Pruning

The classification accuracy with respect to the number of
hidden states before and after feature pruning for both the
five-fold and the LOSO cross validation schemes for the Par-
liament dataset is shown in Table 2. It is clear that the model
obtained by the proposed algorithm, which uses pruned
features, leads to better classification accuracy compared to
the model, which uses the un-pruned features for both cross
validation schemes. This is due to the fact that the un-
pruned visual features may contain outliers and decrease
the recognition accuracy, as the redundant visual features
may lead to false estimation of the synchronization offset.
Although audio features may improve the overall accuracy

Fig. 7. Synchronization offsets between audio and video features for
some sample video sequences of the Parliament (left) and TVHI (right)
datasets. The circle indicates a delay of (a) �44 frames, (b) þ37 frames.

Fig. 8. Canonical variates of audio and visual features for two sample
videos of the Parliament (left) and the TVHI (right) datasets. Notice the
high correlation between audio and visual features obtained by the
projection.

TABLE 2
Recognition Accuracy of the Proposed HCRF Model with

Respect to the Number of Hidden States (h ¼ {3 . . . 10}) for the
Parliament Dataset [19] Using Five-Fold and LOSO Cross

Validation, before Feature Pruning and after Feature Pruning

##Hidden states: 3 4 5 6 7 8 9 10

HCRF before feature pruning using five-fold cross validation

A/V sync 29:0 55:7 56:8 64:5 46:3 47:7 51:4 51:0
A/V no-sync 34:6 46:5 55:4 51:0 34:1 44:7 42:0 44:4
Visual 44:9 56:6 47:6 52:9 44:1 40:9 60:8 48:9

HCRF before feature pruning using LOSO cross validation

A/V sync 67:8 70:0 42:1 52:8 51:8 34:4 35:5 66:5
A/V no-sync 37:1 43:7 47:1 33:4 50:1 44:7 40:9 53:9
Visual 48:4 31:4 47:6 36:4 43:0 43:2 42:6 43:6

HCRF after feature pruning using five-fold cross validation

A/V sync 88:1 95:2 85:7 80:2 97:6 95:2 90:5 92:9
A/V no-sync 63:9 66:9 64:4 71:0 69:8 73:8 72:3 78:9
Audio 58:2 71:0 72:7 72:7 54:7 67:1 69:6 67:3
Visual 67:1 57:2 48:2 67:1 15:1 44:9 44:0 59:9

HCRF after feature pruning using LOSO cross validation

A/V sync 91:0 89:7 94:9 77:1 93:6 94:9 97:4 97:4
A/V no-sync 63:0 59:3 74:9 80:4 76:9 79:2 75:1 89:7
Audio 59:3 63:0 50:0 63:0 51:9 53:7 62:7 50:0
Visual 42:7 63:7 58:2 65:6 60:0 42:7 39:6 58:2

Classification accuracies using late fusion

Late-fusion (five-fold) 91:1 84:4 89:6 82:9 69:6 72:6 71:9 68:9
Late-fusion (LOSO) 83:3 78:7 83:9 81:5 63:2 67:1 69:3 68:9
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of the proposed method, in the case of un-pruned features
they do not provide any significant performance as visual
features may dominate over the audio features. For LOSO
cross validation, and in contrast to the five-fold scheme,
visual features perform better than audio as there exist no
utterances from the same speaker, and thus model overfit-
ting, due to existence of redundant information, may be pre-
vented. It is worth mentioning that the accuracy difference
between visual and audio cues may be due to the difference
in number of features for each modality. The optimal num-
ber of hidden states for the five-fold and LOSO cross valida-
tion schemes, which use only audio and only visual data, in
the case where feature pruning is used, is six. For the A/V
no-sync method the optimal number of hidden states is 10.
The number of hidden states remains the same for the
LOSO scheme. The optimal number of hidden states for the
proposed A/V sync method for the five-fold scheme is
seven, while for the LOSO scheme increases to nine.

Also, Table 2 shows the classification results with respect
to the number of hidden states when late fusion is applied.
It can be seen that the proposed method yields better results
than late fusion for both five-fold and LOSO cross valida-
tion schemes. For more than seven hidden states, the results
of the proposed method are notably higher than those
obtained by late fusion. Although late fusion may work bet-
ter than the proposed method for a small number of hidden
states (3, 5, and 6) for five-fold cross validation, and 6 hid-
den states for LOSO cross validation, it is evident that for
the majority of number of hidden states the proposed
method performs better. Furthermore, even when late
fusion outperforms the proposed approach, the improve-
ment is marginal with respect to the improvement obtained
by the proposed early fusion approach versus the late
fusion for the same number of hidden states. This can be
inferred by the fact that the optimal number of hidden states
for the proposed five-fold cross validation scheme is seven
and the recognition accuracy is almost 30 percent higher
than corresponding the late fusion approach for the same
number of hidden states. Also, for the LOSO cross valida-
tion scheme, the recognition accuracy of the proposed
method is higher in seven out of eight cases. This might be
due to the low number of dimensions that late fusion

handles. The proposed method exploits context provided
by all modalities and the gain obtained by early fusion cor-
responds to the synchronized audio-visual cues, as they
may be complementary in time. Also, despite the fact that
late fusion is a suitable approach for handling multi-modal
data, where each modality can be learned separately and
differently, we may loose inter-modality dependence,
which is crucial for audio-video classification.

The dependence of the classification accuracy and the
number of hidden states on the TVHI dataset for both
pruned and un-pruned features is shown in Table 3. Note
that the visual model, which uses the original un-pruned
features, performs better than the proposed A/V sync
method, which uses pruned visual features, for six and 10
hidden states. This is because the additional visual features
may act as outliers and affect the estimation of the true syn-
chronization offset. We can observe that in the case of fea-
ture pruning the visual model requires seven hidden states
to achieve the best classification accuracy. It can also be
noted that the audio model achieves the best recognition
result by using four hidden states. Although the recognition
results for this model are affected by background noise, it is
obvious that the combination with the visual information
can significantly improve the recognition rate. The A/V no-
sync method requires eight hidden states, while the pro-
posed A/V sync method uses nine hidden states to reach
the best recognition accuracy. The number of hidden states
depends not only on the number of the classes in a specific
dataset, but also on the variety of the features used.

Table 3 demonstrates also the classification results, when
late fusion is applied. Although in three out of seven cases,
the late fusion scheme was able to improve the classification
results, the proposed early fusion method performed better
for the majority of the different number of hidden states.
This is due to the heterogeneity of the different modalities
and the confidence scores of each classifier, which may
affect the discriminative ability of the SVM classifier as it
may assign larger weights to scores that are less prominent.

Taking a closer look at the visual model, we can see that
the number of hidden states plays a crucial role in the recog-
nition process; when the hidden states are increased from
six to seven, recognition accuracy falls drastically from 67:1
to 15:1 percent for the Parliament dataset and from 60:9 to
37:5 percent for the TVHI dataset. In order to estimate the
optimal number of hidden states we used cross validation.
The reason for reporting the classification accuracies for all
hidden states and not only for the optimal configuration is
to demonstrate the behavior of the method with respect to
the different number of hidden states and the cross valida-
tion schemes. It is also worth noting that five-fold and
LOSO cross validation schemes do not achieve the best
accuracy for the same number of hidden states, which leads
us to the conclusion that knowing in advance the optimal
number of hidden states is not an easy task. Moreover, for
both datasets, the optimal number of hidden states for each
method with respect to the recognition accuracy is depicted
in bold in Tables 2 and 3. When the same accuracy is
achieved for more than one hidden states, the smallest num-
ber is considered to be the optimal. However, a larger num-
ber of hidden states may lead to a severe overfitting of the
model. In this case, the regularization term in Eq. (9) may

TABLE 3
Recognition Accuracy of the Proposed HCRFModel with

Respect to the Number of Hidden States (h¼ {4 . . .10}) the TVHI
Dataset [21] before Feature Pruning and after Feature Pruning

##Hidden states: 4 5 6 7 8 9 10

HCRF before feature pruning

A/V sync 40:6 60:9 46:9 43:8 53:1 54:7 54:7
A/V no-sync 39:1 42:2 40:6 32:8 46:9 51:6 35:9
Visual 35:9 37:5 48:4 42:2 29:9 35:9 60:9

HCRF after feature pruning

A/V sync 53:1 79:7 70:3 73:4 73:4 81:3 76:6
A/V no-sync 46:9 53:1 35:9 56:6 60:9 54:7 42:2
Audio 35:9 34:4 29:7 28:1 28:1 32:8 23:4
Visual 28:1 50:0 59:4 60:9 37:5 35:9 57:8

Classification accuracies using late fusion

Late-fusion 80:1 75:0 73:4 75:0 71:8 78:1 76:5
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act as a preventer however, tuning the regularization
parameters may be difficult and thus, overfitting may not
be perfectly eliminated. It is also worth mentioning that
both the Parliament and the TVHI datasets hold strong intra-
class variabilities as certain classes are often confused
because the subject performs similar body movements. This
confirms that audio and visual information combined
together constitute an important cue for action recognition.

4.4.2 Comparison of Learning Frameworks

Tables 4 and 5 report the classification accuracy on the Par-
liament dataset, for both five-fold and LOSO cross validation
schemes, and the TVHI datasets, respectively. We compare
our SAVAR(A/V sync) method with the seven baseline
methods and include previous results for each dataset
reported in the literature. The results indicate that our
approach captures the hidden dynamics between the clips
(i.e., the interaction between an arm lift and the raise in the
voice). It is clear that HCRFs outperform CRFs when multi-
modal data are used for the recognition task. Notably, our
approach achieves very high recognition accuracy for the
Parliament dataset (97:6 percent), when five-fold cross vali-
dation is used. Comparable results are also provided by the
LOSO cross validation scheme as the recognition accuracy
is only by 0:2 percent lower than the five-fold cross valida-
tion counterpart method. Note that for the SAVAR(A/V no-
sync) variant, when LOSO scheme is used, the classification
accuracy is by approximately 12 percent higher than the
corresponding five-fold cross validation method. Also,
when the five-fold cross validation scheme is employed,
SAVAR(audio) performs better than SAVAR(visual) as
training data may have utterances from the same speaker.
For the LOSO scheme, where the same speaker is excluded
from the training data, visual features perform by approxi-
mately 3 percent better than the acoustic.

The method in [19] employs a fully connected CRF model,
where not only the labels but also the observation samples
are associated to each other between consecutive frames.
That is, the method in [19] assigns a distinct label to each
frame, which makes it more suitable to cope with un-seg-
mented videos (i.e., videos with more than one class labels).
On the other hand, this property significantly increases the
complexity of the method, which makes it quite difficult to
use for large video clips.

Also, Table 5 demonstrates that the SAVAR approach per-
forms significantly higher than other methods proposed in
the literature for the TVHI dataset, by achieving an accuracy
of 81:3 percent, which is remarkably higher than the best rec-
ognition accuracy (68 percent) for this dataset achieved by Li
et al. [28], when only visual features are used, and the best rec-
ognition accuracy (54:5 percent) achieved by Mar�ın-Jim�enez
et al. [30], when audio and visual features are combined
together. It is also worth noting that the SAVAR(visual) and
the SAVAR(A/V no-sync) models achieve the same recogni-
tion accuracy for this dataset, indicating how important the
audio-visual synchronization is for the recognition task, as
the unsynchronized multimodal data may not provide any
further information to the overall process. For the methods
[21], [27], [28], [30], [56] the standard deviations of the classifi-
cation accuracies are not provided in the original papers and
thus, they are not included in Table 5.

In order to provide a statistical evidence of the recogni-
tion accuracy, we computed the p-values of the obtained
results with respect to the compared methods. The null
hypothesis was defined as: the mean performances of the
proposed model are the same as those of the state-of-the-art
methods; and the alternative hypothesis was defined as: the
mean performances of the proposed model are higher than
those of the state-of-the-art methods. For the assessment of
the statistical significance, we used paired t-tests with statis-
tical significance threshold p < 0:05 for all experiments.

For the Parliament dataset (Table 6), we may observe that
the SAVAR-five-fold and SAVAR-LOSO approaches reject
the null hypothesis as all values are greater than the critical

TABLE 4
Classification Results on the Parliament Dataset [19]

Method
Accuracy (percent)

Audio Visual A/V no-sync A/V sync

Vrigkas et al. [19] N/A 85:5	 0:412 N/A N/A

SVM [40] 53:2	 0:053 65:7	 0:140 69:8	 0:135 72:6	 0:043

CRF [20] 50:3	 1:416 78:1	 1:560 67:6	 0:491 83:7	 0:653

SAVAR-5-fold 72:7	 0:721 67:1	 0:389 78:9	 0:042 97:6	 0:165

SAVAR-LOSO 62:2	 0:338 65:5	 0:347 89:7	 1:613 97:4	 0:079

TABLE 5
Classification Results on the TVHI Dataset [21]

Method
Accuracy (percent)

Audio Visual A/V no-sync A/V sync

Patron-Perez

et al. [21]

N/A 54:7 N/A N/A

Li et al. [28] N/A 68:0 N/A N/A

Yu et al. [56] N/A 66:2 N/A N/A

Gaidon et al. [27] N/A 55:6 N/A N/A

Mar�ın-Jim�enez

et al. [30]

48:5 46:0 54:5 N/A

SVM [40] 46:3	 0:008 56:7	 0:009 64:6	 0:012 75:9	 0:012

CRF [20] 36:7	 0:354 38:7	 0:527 49:5	 0:544 52:8	 0:746

SAVAR 35:9	 0:283 60:9	 0:028 60:9	 0:644 81:3	 0:191

TABLE 6
P-Values of the Proposed Method for the

Parliament Dataset [19]

Method SAVAR-5-fold SAVAR-LOSO

Vrigkas et al. [19] 0:0200 0:0058
SVM [40] 0:0096 0:0001
CRF [20] 0:0137 0:0047

TABLE 7
P-Values of the Proposed Method for the

TVHI Dataset [21]

Method SAVAR

Patron-Perez et al. [21] 0:0012
Li et al. [28] 0:1239
Yu et al. [56] 0:0620
Gaidon et al. [27] 0:0015
Mar�ın-Jim�enez et al. [30] 0:0002
SVM [40] 0:0401
CRF [20] 0:0007
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value (95 percent of significance level). For the TVHI dataset
(Table 7) the null hypothesis is rejected for the majority of
the cases. That is, for four out of seven cases the p-values
were less than the significance level of 0:05. Therefore, we
may conclude that the null hypothesis can be rejected and
the improvements obtained by our model are statistically
significant.

The resulting confusion matrices of the proposed
method for the optimal number of hidden states for the
Parliament dataset using five-fold and LOSO cross valida-
tion, are depicted in Fig. 9. The proposed SAVAR(A/V
sync) method has significantly small classification errors
between different classes, when is compared to the other
variants, for both five-fold and LOSO cross validation
schemes. The SAVAR(A/V no-sync) variant has also good
classification results and particularly, for the LOSO cross
validation scheme, it can perfectly recognize the classes
friendly and neutral. It is also interesting to observe that the
different classes for the SAVAR(visual) and the SAVAR

(audio) variants may be strongly confused, which empha-
sizes the fact that when combining audio and visual infor-
mation together we are able to better separate the
emotional states of a person.

Finally, the confusion matrices for the TVHI dataset are
shown in Fig. 10. The smallest classification error between
classes belongs to the proposed SAVAR(A/V sync) method.
Note that the different classes may be strongly confused as
the TVHI dataset has large intra-class variability. Especially,
the SAVAR(audio) variant has the largest classification
error among all other variants as all classes are confused
with the class kiss. This is due to the fact that in class kiss the
audio information may serve as outlier since it contains
background sounds.

The main strength of the proposed method is that it
achieves remarkably good classification results when syn-
chronized multimodal features are used compared with the
results reported in the literature for the same datasets.
Additionally, it keeps the number of visual features rela-
tively small by pruning irrelevant features, thus reducing
the computational burden of the method.

5 CONCLUSION

In this paper, we considered the problem of human behav-
ior recognition in a supervised framework using a HCRF
model with multimodal data. Specifically, we used audio
features jointly with the visual information to take into
account natural human actions. We proposed a feature
selection technique for pruning redundant features, based
on the spatio-temporal neighborhood of each feature in a
video clip. This has helped reduce the number of features
and sped up the learning process.

We also proposed a method for multimodal feature syn-
chronization and fusion using CCA.We found that amoving
subject is highly correlated with the auditory information, as
human behaviors are characterized by complex actions of
movements and sound emissions. The experimental results
indicated that the exact synchronization of multimodal data
before feature fusion ameliorates the recognition perfor-
mance. In addition, the combination of audio and visual cues
may lead to better understanding of human behaviors. The
main strength of this method is that our multimodal fusion

Fig. 9. Confusion matrices for the classification results of the proposed SAVAR approach for the Parliament dataset [19], after feature pruning, using
five-fold cross validation (top row) and LOSO cross validation (bottom row).

Fig. 10. Confusion matrices for the classification results of the proposed
SAVAR approach for the TVHI dataset [21], after feature pruning.
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approach is general and it can be applied to several types of
features for recognizing realistic human actions.

According to our results, the proposed SAVAR method,
when it is usedwith synchronized audio-visual cues, achieves
notably higher performance than all the compared classifica-
tion schemes. This could be seen as an additional characteris-
tic of ourmodel to discriminate between similar classes, when
multimodal data is used. Nonetheless, when only one modal-
ity was used, the method seemed to have difficulties in effi-
ciently recognizing human behaviors, but it could yield
comparable results to the multimodal SAVAR method. That
is, although the combination of audio and visual cues could
constitute a strong attribute for discriminating between differ-
ent classes, each modality separately was unable to capture
the variation in temporal patterns of the input data. The pro-
posed method was also able to deal with natural video
sequences. The visual feature pruning process could signifi-
cantly reduce the amount of irrelevant features extracted in
each frame, and considerably increased the classification per-
formance with respect to all methods that do not incorporate
feature pruning.

In the future, we plan to extend our model to cope
with multimodal data, which can be considered mutually
uncorrelated. Also, in the present work the number of hidden
states is determined a priori. An automaticmethod necessitat-
ingmore complexmodels is an issue of ongoing research.
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