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Abstract

Autoradiographic analysis of the functional changes occurring in the rat brain are most often performed on coronal sections that

allow a good insight into the events occurring at the structural level but lacks the 3D context which is necessary to fully understand

the involvement of the brain structures in specific situations like focal seizures with or without generalization. Therefore a robust,

fully-automated algorithm for the registration of serially acquired autoradiographic sections is presented. The method accounts for

the main difficulties of autoradiographic alignment: corrupted data (cuts and tears), dissimilarities or discontinuities between slices,

non parallel or missing slices. The approach relies on the minimization of a global energy function based on robust statistics. The

energy function measures the similarity between a slice and its neighborhood in the 3D volume. No particular direction is privileged

in the method, so that global offsets, biases in the estimation or error propagations are avoided. The method is evaluated

qualitatively and quantitatively on real autoradiographic data. Rat brain autoradiographic volumes are reconstructed with

registration errors less than 1 degree in rotation and less than 1 pixel in translation.
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1. Introduction

Three-dimensional reconstruction of brain structures

is now an integral part of neuroscience research. In

autoradiography, samples of brain tissue are generated

by sectioning and image data are acquired in 2D format.

Reconstitution of such data sets into 3D volumes, via

the registrations of 2D sections, has gained an increasing

interest for the mapping of image data to anatomical

references. Indeed, cerebral functional changes occur-

ring in most situations involve only a limited number of

brain structures. The usual 2D analysis of metabolic or

circulatory changes on only one section (e.g. coronal

section) allows to identify the structures of interest but

does not give an easy insight into the network that is

involved in a particular situation, mainly when the

changes occur only in a limited number of structures

and spread from forebrain to brainstem. The 3D

reconstruction will for example be very useful to identify

the networks involved in epileptic seizures, especially

when seizures are only focal or propagate to a limited

number of regions outside of the focus.

Several registration algorithms have been proposed to

register serially acquired slices. A review of medical

image registration methods is presented in Gottesfeld-

Brown (1992), Maintz and Viergever (1998) and Van

den Elsen et al. (1993). A review of 3D reconstruction

from autoradiographs, as well as a comparison between

standard methods may be found in Hess et al. (1998).
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The principal autoradiography alignment methods may

be classified in the following categories: (a) fiducial

marker or artificial landmark-based methods (Goldszal

et al., 1995; Hess et al., 1998; Toga and Arnicar, 1985);

(b) principal axes alignement (Hess et al., 1998; Hibbard

and Hawkins, 1988); (c) feature-based methods, using

contours, crest lines or characteristic points extracted

from the images (Hibbard and Hawkins, 1988; Rangar-

ajan et al., 1997; Zhao et al., 1993); (d) grey level-based

registration techniques using the intensities of the whole

image, through similarity or correlation functions (An-

dreasen et al., 1992; Hess et al., 1998; Kim et al., 1997;

Ourselin et al., 1998; Zhao et al., 1993). The above

mentioned techniques do not simultaneously consider

the two major difficulties involved in autoradiographic

data registration.

At first, consecutive slices may differ significantly due

to distortions, cuts, tears and orientation differences

(slices may be non-parallel) (see Fig. 2 for a typical

example). Consecutive slices are also naturally dissim-

ilar, even if the data have not been corrupted, since 2D

sections of possibly discontinuous 3D anatomical struc-

tures are imaged. Dissimilarities are more pronounced

when distant slices are involved in the registration. From

this point of view, a registration method must be robust

to missing data and outlying measurements (Ourselin et

al., 1998; Zhao et al., 1993).

Besides, registering the slices sequentially (the second

with respect to the first, the third with respect to the

second, etc.) leads to different types of misregistrations.

If an error occurs in the registration of a slice with

respect to the preceding slice, this error will propagate

through the whole volume. As a consequence, if the

number of slices to be registered is large, a global offset

of the volume may be observed, due to error accumula-

tion (Andreasen et al., 1992; Hess et al., 1998).

The approach proposed in this paper addresses the

above mentioned shortcomings. A global energy func-

tion, having as variables the 2D rigid transformation

parameters of all the 2D slices in the 3D volume, is

optimized. The energy function is isotropic. As a

consequence, no direction is privileged in the registra-

tion process and the final alignment is not biased.

Global energy functions are a powerful tool in computer

vision applications (Heitz et al., 1994) but, to our

knowledge, they have not yet been considered for the

registration of serially acquired slices. Besides, the

global energy function considered here is associated

with a robust pixel similarity metric (Nikou et al., 1998)

rejecting outlying measures. By these means, non-over-

lapping and corrupted slices are correctly registered.

The remainder of the paper is organized as follows.

The global energy function formulation and the asso-

ciated registration algorithm is presented in Section 2.

The robust pixel similarity measure is described in

Section 3. Experimental results are presented in Section

4 and conclusions are drawn in Section 5.

2. A global energy function formulation

Before presenting the registration method, we intro-

duce the notations used in our formulation. A set of 2D

serially acquired slices is represented by

V �fIi½i�1; . . . Ng (1)

where Ii is a slice (a 2D image) and N denotes the total

number of slices. A pixel of a 2D slice is represented by

p�/(x , y ) so that Ii(p) corresponds to the grey level of

pixel p of slice Ii . nx and ny designate the number of

pixels of each slice in the horizontal and vertical

direction respectively.
We consider two-dimensional rigid registration,

which consists in estimating the rigid transformation

parameters (translations tx , ty and rotation through an

angle u) that have to be applied to the image to be

registered (floating image) so that it matches a reference

image. Let us notice that non-parallelism induces a shear

transformation between slices. A proper way to handle

this problem would consist in taking into account this
distorsion by adopting a higher order (for instance an

affine) transformation model. This has not been con-

sidered here, essentially to keep the computational cost

to an acceptable level. As will be seen in the following,

the robust estimator is able to cope with dissimilarities

induced by the non-parallelism and that are not taken

into account by the alignment model.

In the approach proposed here, the registration of the
2D sections, within the 3D volume, is considered

globally by minimizing an energy function, which

expresses the similarity between two arbitrary sections.

The 2D sections are considered pair-wise, using the

following definition for the global similarity measure:

E(U)�
XN

i�1

XN

j�1

Xnx�ny

p�1

f (Ii(TUi
(p)); Ij(TUj

(p))) (2)

where f (�; �) is a similarity metric, Ik denotes slice k and

TUk
designates a rigid transformation with parameters

Uk�ftk
x; tk

y; u
kg: The parameter vector to be estimated

is denoted U�fU1; U2; :::; UNg:/
It is common sense that distant slices present little

similarity, due to anatomy. Therefore, we have limited

the support region of function f (�; �) to a region of radius

R �/0 centered at each slice and set:

f (Ii(TUi
(p)); Ij(TUj

(p)))�0; for ½i� j½�R or i

� j (3)

Besides, we have adopted symmetric similarity func-

tions f (�; �); in order to preserve isotropy in the registra-

tion process:
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f (Ii(TUi
(p)); Ij(TUj

(p)))

�f (Ij(TUj
(p)); Ii(TUi

(p))) with:

f (Ii(TUi
(p)); Ii(TUi

(p)))�0 (4)

The global minimization problem thus reduces to:

Û�arg min
U

E(U)

�arg min
U

XN�1

i�1

X
iBj5min(i�R; N)

�
Xnx�ny

p�1

f (Ii(TUi
(p)); Ij(TUj

(p))) (5)

Without additional constraints, the optimization

problem (5) has clearly an infinite number of solutions

(if the set of rigid transformations fTÛ1;TÛ1; :::;TÛNg is
a solution, the same holds true for

fTÛ1
(TD;TÛ2

(TD; :::;TÛN
(TDg; where TD is an arbi-

trary 2D rigid transformation). To remove this ambi-

guity, the transformation TÛk applied to an arbitrary

chosen slice k is constrained to the identity transforma-

tion (we have chosen k�/N /2 in our implementation).

As a result, there are 3(N�/1) parameters to estimate.

The algorithm used to minimize the objective function
(5) may be described as following:

. do until convergence.

�/ declare all slices unvisited.

�/ do until all slices are declared visited.

�/ randomly choose an unvisited slice Ii � V :/
�/ update the rigid transformation parameters TUi

bringing into alignment slice Ii with the other

slices in the neighborhood of i , by minimization

of the following local energy function:

Ei(Ui)�
def

X
max(1; i�R)5j5min(i�R; N)

j"i

�
Xnx�ny

p�1

f (Ii(TUi
(p)); Ij(TUj

(p))) (6)

�/ declare slice Ii visited.

�/ end do

. end do

In our current implementation, the minimization of

the local energy function (6) has been conducted by the

standard variable-size sequential simplex optimization

due to Nelder and Mead (Walters et al., 1991). This

algorithm has the advantage to require only function

evaluation, not derivatives and thus may be quickly

adapted to a large class of similarity functions. We have
adopted the standard implementation described in Press

et al. (1992). The drawback of the simplex algorithm is

its computational cost: it is planned to replace it by a

more efficient gradient descent or quasi-Newton

method. The local energy function (6) for slice i is first

minimized with respect to tx and ty , then with respect to

u; and the procedure is repeated until convergence. The
algorithm is stopped after a specified number of scans

on all slices (in practice 15 scans on the complete data

set yield a satisfactory compensation of the misregistra-

tion).

The optimization method converges towards a local

minimum of the local energy function (6) and is

guaranteed to decrease the global energy function (5)

at each step. It is thus easy to see that the described
algorithm converges towards a local minimum (or

towards a saddle point) of the initial energy function

(2). This local minimum corresponds to a satisfactory

registration if the initial alignment of the 2D sections is

close enough to the desired solution (if this is not the

case, a good initialization may be obtained by a

standard coarse alignment technique such as principal

axes registration). It is thus not necessary to resort here
to greedy global optimization procedures, such as

simulated annealing or genetic algorithms (Nikou et

al., 1998).

If the algorithm is to be used on a routine basis, the

similarity metrics must be forgiving about missing data

and outlying measurements, which commonly corrupt

autoradiographic data (see Fig. 2). A robust estimator-

based similarity metric has been adopted to this end.
This robust similarity measure is described in the next

section.

3. A robust pixel similarity measure

A standard similarity measure in single modal image

registration is based on the quadratic error function:

f (Ii(p); Ij(p))� [Ii(p)�Ij(p)]2 (7)

The quadratic error function, which is closely related

to the standard cross-correlation measure, works at best

under additive Gaussian noise assumptions. Its limits

are now well known (Arun et al., 1987; Umeyama,

1991). It is commonly accepted that least squares or
cross-correlation are sensitive to gross differences in

images due to incomplete images, missing data, non

Gaussian noise or ‘outliers’. Outliers generally contri-

bute too much to the overall solution since outlying

points are assigned a high weight by the quadratic error

function. When a significant amount of outlying mea-

surements or missing data are present in the images to

be registered, inaccurate registrations or even misregis-
trations are observed. To increase robustness, the cost

function must thus be forgiving about outlying measure-

ments.
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Robust estimators have become popular in computer

vision applications because they have proven effective in

tolerating gross outliers in the data (Meer et al., 1990;

Stewart, 1997). A review on robust estimators in
computer vision may be found in Meer et al. (1990)

and Black and Rangarajan (1996).

A standard performance measure for a robust esti-

mator is its breakdown point. The breakdown point is

the largest fraction of data that can be arbitrarily bad

and will not cause the solution to be arbitrarily bad. The

least median of squares regression (Rousseeuw, 1984)

relies on the minimization of the median of the squared
residuals. The resulting estimator can resist to the effect

of nearly 50% of contamination in the data. In the

special case of simple regression, it corresponds to

finding the narrowest strip covering half of the observa-

tions. The MINPRAN algorithm (Stewart, 1997) has

also a breakdown point of 50% and relies on random

data sampling. These estimators have high breakdown

points but also yield a high computational load, since
they are based on random data sampling and sorting.

Another class of estimators, the M-estimators (Huber,

1981), that have attractive properties (i.e. satisfactory

breakdown points and moderate computational cost),

have been used in computer vision (Black and Rangar-

ajan, 1996; Odobez and Bouthemy, 1995) and medical

imaging (Alexander and Somorjai, 1996; Nikou et al.,

1998). This class of robust estimators reduces the
optimization problem to a simple, low cost, weighted

least squares problem (Black and Rangarajan, 1996;

Meer et al., 1990). They have a theoretical breakdown

point of 1/(p�/1), where p is the number of parameters

to fit (Meer et al., 1990). In practice, it has been

observed, in low dimensional estimation problems

(Black and Jepson, 1996; Nikou et al., 1999), that this

family of robust estimators can tolerate roughly up to
35�/45% of the data as outliers. Thus, M-estimators

provide a good compromise between computational

complexity and outlier rejection capacity.

In our case, we have used the Geman-McClure robust

M-estimator that has successfully been used in Nikou et

al. (1998) to match 3D multimodal images of the human

brain. The similarity function associated to this estima-

tor is defined by:

f (Ii(p); Ij(p); s)�
def

r(Ii(p)�Ij(p); s)�
def

[Ii(p) � Ij(p)]2

[Ii(p) � Ij(p)]2 � s2
(8)

where s is a scaling parameter.

The Geman-McClure r function (Fig. 1a) has a shape

that rejects large residual errors, i.e. it is more forgiving

about large residuals than the standard quadratic error
function. The influence function (Fig. 1b) is the deriva-

tive of function r(�) and characterizes the influence of the

residuals. As can be seen on Fig. 1(b), as the magnitude

of the residuals increases and grows beyond a point, its

influence on the solution begins to decrease and the

value of r(�) approaches a constant. The scaling para-

meter s affects the point at which the influence of
outliers begins to decrease. For the error function r used

here, points p for which:

jIi(TUi
(p))�Ij(TUj

(p))j] sffiffiffi
3

p

can be viewed as outliers, as the outliers rejection begins

where

@2r

@x2
�0:

The calculation of the rigid transforms parameter

vector U now involves the minimization of the non-

linear cost function:

E(U)�
XN�1

i�1

X
iBj5min(i�R; N)

�
Xnx�ny

p�1

f (Ii(TUi
(p)); Ij(TUj

(p)); s) (9)

depending on the scale parameter s:/
A standard strategy (Stewart, 1997; Nikou et al.,

1998) consists in starting the optimization procedure

with a high value for s: The value of s decreases during

the minimization process following the formula s�
a � s with 0:8BaB1 until s reaches a predefined value.
The effect of this procedure is that initially no data are

rejected as outliers and a first, crude solution is

obtained. During the following optimization steps the

influence of the outliers is gradually reduced by decreas-

ing s; leading to a reliable estimation of the rigid

transformation parameters, which is robust to gross

image differences. Another approach, proposed in

Odobez and Bouthemy (1995), estimates s as the
variance of the current smallest residual error. At each

iteration step, if slice Im has been selected for the local

minimization of (9), s is computed as follows. At first

the slice Ij providing the smallest registration error with

slice Im is found. Then s is defined as the standard

deviation of that residual error:

sm�minjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nx � ny

Xnx�ny

p�1

[Im(TUm
(p))�Ij(TUj

(p))]2�m2
j

vuut (10)

where:

mj �
1

nx � ny

Xnx�ny

p�1

[Im(TUm
(p))�Ij(TUj

(p))] (11)

and the local energy function, to be minimized becomes:
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Em(Um)�
def

X
max(1; m�R)5k5min(m�R; N)

k"m

�
Xnx�ny

p�1

f (Im(TUm
(p)); Ik(TUk

(p)); sm) (12)

This second strategy thus automatically decreases the

scale parameter s while the registration is in progress. It

gives good results in practice and has been adopted in

our implementation.

Finally, a large number of interpolations are involved

in the registration process. The accuracy of the rotation

and translation parameter estimates is directly related to

the accuracy of the underlying interpolation model.

Simple approaches such as the nearest neighbor inter-

polation are commonly used because they are fast and

simple to implement, though they produce images with

noticeable artifacts. Besides, in our application, as the

translation and rotation parameters to compensate have

subvoxel values, this type of interpolation is not

appropriate. More satisfactory results can be obtained

by small-kernel cubic convolution techniques, bilinear,

convolution-based interpolation or B-spline-based gen-

eralized interpolation (Thevenaz et al., 2000). According

to the sampling theory, optimal results are obtained

using sinus cardinal interpolation, but at the expense of

a high computational cost. As a compromise, we have

used a bilinear interpolation technique in the optimiza-

tion steps. At the end of the algorithm, the registration

parameters are refined using a truncated sinus cardinal

interpolation. This final interpolation step gives high

quality image reconstructions, significantly better than

those obtained with the bilinear interpolation.

4. Experimental results

Computation and display were performed on a

Hewlett-Packard HP9000/200 workstation by using a

2D�/3D image analysis software (MEDIMAX) devel-

oped at IPB. This software, running under Unix, is

developed in C language and uses the standard graphics

interface X11/R6. All registration techniques presented

in this paper were implemented under this software

environment and are easily available to users.

To evaluate our method, we have first applied the

algorithm to the reconstruction of an artificially mis-

aligned human brain acquired by 3D MRI (for which

ground truth is readily available). The slices of the

original 128�128�128 MRI volume (pixel size 2

mm�/2 mm, slice thickness 2 mm) were transformed

using translations varying from �/10 to �/10 pixels and

rotations varying from �/10 to �/10 degrees. The

transformations for each slice were random, following

a uniform distribution in order not to privilege any slice.

The resulting consecutive 2D sections are locally dis-

similar, due to discontinuities in the 3D anatomical

structures of the brain. Quadratic similarity functions

are not able to recover the transformation parameters

with subvoxel accuracy in this case. Table 1 presents

statistics on the registration errors, obtained with the

robust error function. The algorithm revealed robust in

registering the locally dissimilar 2D sections, with

subvoxel accuracy.

We have also evaluated our method in the alignment

of autoradiographic rat brain images presenting dissim-

ilarities due to discontinuities, cuts and tears (Fig. 2). To

obtain the initial data set, four contiguous autoradio-

graphic slices were retained, every ten slices. The other

slices were not considered, yielding large discontinuities

Fig. 1. The Geman-McClure robust similarity function p ( �/) (a) and its derivative p ?( �/) (the influence function) (b).
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in the data set. An average of 400�/600 slices was thus

obtained, for each rat volume. These slices were then

exposed on films. Each film was scanned and the data

files transferred to the HP Unix workstation to be

processed. An automated algorithm based on thresh-

olding and labelling extracts from each scanned film the

slices. Each slice of the volume has dimensions of 128�
128 pixels. The pixel dimensions are 127 m�/127 m and

slice thickness is 20 m. Since large discontinuities are

present every four slices, standard registration methods

are unable to register the data. Moreover, in general the

location of the discontinuities is not known and the

number of slices between two discontinuities may also

vary accidentally.

At first, a semi-manually registered rat brain volume

was created, to provide some ‘ground truth’. The semi-

manually registration consisted of three steps:

. Processing of the data with the proposed automatic

method.

. Inspection of the result by an expert neurologist who

validates the registration between two successive
slices.

. If necessary adjustment of the registration by manu-

ally aligning the eventually misregistered slices.

This semi-manually registered volume was then

transformed with known rigid transformation para-

meters. Each slice was transformed using the same

procedure as described for the human brain image

(random translations varying from �/10 to �/10 pixels

and rotations varying from �/10 to �/10 degrees). Table

2 summarizes the registration errors measured in this

case (parameter R was set to R�/3). As it can be seen,

median and mean translation and rotation errors are

significantly less than 1 pixel and 1 degree, respectively.

Maximum errors are also less than 1 pixel and 1 degree

respectively, showing the robustness of the technique.

The method was tested on several real rat brain

volumes, exhibiting standard degradations, such as cuts,

tears, orientation differences and discontinuities.

Fig. 3 shows an example where standard similarity

measures based on the quadratic error function (7)

failed (Fig. 3c) to correctly register two consecutive

slices (Fig. 3a and b) exhibiting severe distorsion, but

where the robust registration achieved accurate match-

ing by discarding outliers (Fig. 3d). Cross-correlation

give results very close to the one obtained by the

quadratic error function.

Fig. 4 presents an example of two sets of consecutive

slices exhibiting moderate (Fig. 4a) and severe distor-

sions (Fig. 4b). The image differences before and after

registration illustrate the efficiency of the robust regis-

tration method and its ability to cope with large image

differences.

The difference in accuracy is readily visible on the

registration errors shown in Fig. 3(c) and (d), corre-

sponding to the residual image difference after registra-

tion.

Table 1

A set of 128 slices of a 3D MRI of a human brain volume were

artificially transformed using different rigid transformation parameters

Registration error statistics

/Dtx /Dty /Du

Median 0.11 0.12 0.22

Maximum 0.59 0.48 1.25

Mean9/S.D. 0.24/9/0.11 0.18/9/0.12 0.40/9/0.23

Each slice was randomly transformed using translations varying

from �/10 to �/10 pixels and rotations varying from �/10 to �/10

degrees. Different statistics on the errors for the rigid transformation

parameters are presented. Translation errors are expressed in pixels

and rotation errors in degrees.

Fig. 2. Consecutive slices of a rat brain autoradiography considered in

our experiments. Four autoradiographic images every ten slices are

acquired from the same rat introducing discontinuities in the

autoradiographic volume. Cuts and tears are also visible on the

sequence of slices.

Table 2

A set of 400 slices of a 3D rat brain autoradiography volume was

artificially transformed using different rigid transformation parameters

Registration error statistics

/Dtx /Dty /Du

Median 0.14 0.11 0.27

Maximum 0.65 0.63 0.62

Mean/9/S.D. 0.27/9/0.14 0.19/9/0.11 0.25/9/0.15

Each slice was randomly transformed using translations varying

from �/10 to �/10 pixels and rotations varying from �/10 to �/10

degrees. Different statistics on the errors for the rigid transformation

parameters are presented. Translation errors are expressed in pixels

and rotation errors in degrees.
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Fig. 5 finally present a representative example of real

rat brain autoradiographic data reconstruction. As can

be seen, the original data is significantly corrupted by

distortions, cuts and tears. Slight orientation differences

(non-parallel slices) are also observed as well as missing

data and discontinuities in the 3D anatomical structures.

The slices before registration are shown in Fig. 5(a)�/(b)

and the result of the registration using the global energy

function with the robust pixel similarity measure is

presented in Fig. 5(c)�/(d). The cuts, tears, missing data

and misalignments are clearly visible on the original

data, on the multiplanar visualization. The final regis-

trations have been assessed by an expert physician, who

has observed a satisfactory alignment of internal as well

as external anatomical structures. Let us notice that the

algorithm has a computational complexity of O (nxnyN )

and requires approximately 2 h to register a 128�128�
400 volume on a HP 9000/C200 (200 MHz) workstation.

At last we have registered the 3D reconstructed

autoradiographic image on the 3D MRI image of the

same rat obtained with a SMIS (UK) 4.7T MRI system.

A 40-mm field of view, 256�/256 pixel matrix were used

as imaging parameters. The whole brain was scanned

with a T2-weighted spin-echo fast imaging method

sequence (TR:5600/TE:80) by using consecutive 1-mm-

thick coronal slices (30 slices). Fig. 6 presents the 3D

MRI registered on the autoradiographic image by using

a fully-automated data-driven registration algorithm.

The algorithm, developed by the authors (Nikou et al.,

1999), also relies on robust voxel similarity-based

metrics, that enable an accurate rigid registration of

dissimilar multimodal 3D images. The autoradiographic

image is presented in Fig. 6(a) and the 3D MRI,

registered with the robust pixel similarity measure,

appears in Fig. 6(b). The hippocampus obtained by

segmentation of the autoradiography is visualized and

superimposed on the two 3D images. The 3D visualiza-

tion of the hippocampus on Fig. 6 enables to assess the

quality of the registration of the autoradiographic slices.

The coupling of MRI with autoradiography (through

the registration of two 3D images) allows to correlate

the morphological changes observed in MRI with the

functional modifications observed in autoradiography.

Fig. 3. One set of consecutive slices (a) and (b); (c) difference between

the slice (a) and slice (b) after registration using the standard quadratic

error function (or cross-correlation); (d) difference between the same

slices when the Geman-McClure robust estimation function is used.

Fig. 4. Two sets of consecutive slices (S1, S2) and (S3, S4) of a rat

brain autoradiography. (S1, S2) exhibit moderate distorsions (small

differences between slices), (S3, S4) show severe distorsions (large

differences between slices). S1reg, S2reg, S3reg, S4reg are the slices

after registration using the robust registration method. The differences

between slice S1 and S2 or S3 and S4 are presented before registration

(S1�/S2) and (S3�/S4) and after registration (S1reg�/S2reg) and (S3reg�/

S4reg).
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This method highlights the neuronal networks involved

in the pathological process.

5. Conclusion

The alignment method described in this paper has

been inspired by the robust voxel similarity metrics-

based registration method presented by the authors in

Nikou et al. (1998), accounting for inter-image dissim-

ilarities in the case of MRI/SPECT brain image regis-

tration. The main contribution of the approach is to
consider the alignment of serially acquired sections

through the minimization of a global energy function

expressing the similarity between two arbitrary sections

in the 3D volume. The approach does not privilege any

particular direction in the registration process. By these

means, the major problems set by the registration of

serially acquired slices are addressed. Thanks to the

global (isotropic) formulation of the registration pro-

blem (rather than a standard step by step, sequential

formulation), no global offset nor error propagations

are observed in the final alignment. Besides, gross image

differences due to tears, cuts, missing slices or discontin-

uous anatomical structures are efficiently handled by

integrating robust estimation in the similarity measure.

The robust function determines whether a measure is an

outlier or not, and excludes it from the estimation,

providing reliable alignments, even on highly corrupted

data.

Fig. 5. Reconstruction of a rat brain autoradiography of 400 slices. (a) Three-dimensional view of the volume before registration. (b) Multiplanar

view of the volume before registration. (c) Three-dimensional view of the volume after registration. (d) Multiplanar view of the volume after

registration.

C. Nikou et al. / Journal of Neuroscience Methods 124 (2003) 93�/102100



The proposed robust 3D reconstruction technique will

allow the study of volumes of a whole brain structure

instead of partial structures obtained from 2D slices.

Moreover, by using the standard calibration curve, a 3D
image of functional activity may be calculated and

superimposed on the morphological 3D brain, obtained

by MRI. This operation is usually performed in human

brain studies by estimating the blood flow or glucose

utilization with SPECT/PET and MR images fusion.
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