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Abstract. In this work, we present a method for automatic colorization
of grayscale videos. The core of the method is a Generative Adversarial
Network that is trained and tested on sequences of frames in a sliding
window manner. Network convolutional and deconvolutional layers are
three-dimensional, with frame height, width and time as the dimensions
taken into account. Multiple chrominance estimates per frame are aggre-
gated and combined with available luminance information to recreate a
colored sequence. Colorization trials are run successfully on a dataset
of old black-and-white films. The usefulness of our method is also val-
idated with numerical results, computed with a newly proposed metric
that measures colorization consistency over a frame sequence.
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1 Introduction

In this paper, we address the problem of automatic colorization of monochrome
digitized videos [8,9,13,15,16]. Perhaps the most straightforward practical appli-
cation is to colorizing black-and-white footage from old films or documentaries.
Video compression is another possible application of note [16].

Video colorization methods can be categorized according to the level of user
interaction required. A group of methods assume that a partially colored frame
exists in the video, where color has been manually annotated in the form of
color seeds [7,12,16]. The method must then propagate color from these seeds
to the rest of the frame, then to other frames in the video. Other methods
assume instead that a reference colored image exists that is similar in content
and structure to the target monochrome video frames [1,13,15]. These methods
may or may not require user intervention; for example, in [14] the user can
specify matching areas between the reference and the target frames. In reference
image-based methods, the problem of video colorization is hence converted to
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the problem of how to propagate color from the reference frame to other frames
and/or from frame to frame. Optical flow estimation has been used to guide
frame-to-frame color propagation [9,13]. In [12], Gabor feature flow is used as
alternative to standard optical flow as a more robust guide to color propagation.
Naturally, methods of this vein work best for coloring short videos or frames
coming from the same scene [13].

In the present work, we propose a learning-based method for video coloriza-
tion. As such, we assume that a collection of colored frames exist, that will be
used to train the model. In particular, the proposed method is based on an
appropriately designed Generative Adversarial Network (GAN) [4]. GANs have
gained a fair amount of traction in the last few years. Despite their being harder
to train even more than standard neural networks, requiring the employment
of various heuristics and careful choosing of hyperparameters to attain conver-
gence to a Nash equilibrium [3,11], they have proven to be excellent generative
models. The proposed model employs a conditional GAN (cGAN) architecture,
popularized by the pix2pix model [5]. In the current work, convolutional and
deconvolutional layers are 3D (height, width, time dimensions) to accomodate
for the sequential nature of video data.

The main novel points of the current paper are as follows: (a) we present a
model for learning-based automatic video colorization that can take advantage
of the sequential nature of video, while avoiding the use of frame-by-frame color
propagation techniques that come with their own inherent limitations (typically
they require existing colored key frames and/or are practically applicable within
a single shot). Other recent works use learning methods to color video via prop-
agation [8], or via frame-by-frame image colorization, with each frame processed
separately [6]; (b) we elaborate on the issue of video colorization evaluation and
propose a quantitative colorization metric specifically for video; (c) we show
that the proposed method creates colorization models that are transferable, in
the sense that learning over a particular frame sequence produces a plausible
output usable on a sequence of different content.

The rest of the paper is organized as follows. In Sect. 2, we briefly discuss
preliminaries on adversarial nets and present the architecture and processing
pipeline of the proposed video colorization method. In Sect. 3, we elaborate on
existing numerical evaluation methods and propose a new metric to evaluate
video colorization. In Sect. 4, we show numerical and qualitative results of our
method, tested on a collection of old films. We close the paper with Sect. 5, where
we discuss conclusions and future work.

2 Proposed Method

The proposed method assumes the existence of a training set consisting of a
sequence of Ntrain colored frames, and a test set consisting of a sequence of
Ntest monochrome frames that are to be colorized. During the training phase, a
cGAN model is used to learn how to color batches of C ordered frames. Hyper-
parameter C is fixed beforehand with C << min{Ntrain, Ntest}. During the
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Fig. 1. Architecture of the proposed model. Sequences of luminance frames (‘L’ chan-
nels) are fed to the generator network, which creates chrominance channels for the
corresponding frames (‘a’, ‘b’ channels). The discriminator network quantifies to what
extend the generated chrominance sequence corresponds to a plausible colorization. As
inputs and outputs are frame sequences, all convolutions are three-dimensional. During
training, model weights are estimated through optimization of a GAN loss that effec-
tively combines these constraints: how plausible the generated colorization is per frame
and as a sequence, and how close the chrominance estimate is to the ground truth. In
test time, the video is processed in a sliding window manner, producing C colorization
estimates (the size of the sliding window) for each frame, which are then aggregated to
obtain a single estimate per frame. The output chrominance is finally combined with
the luminance input in order to recreate a sequence of colorized frames.

testing phase, the model is run on the input monochrome video in a sliding win-
dow manner. Windows are overlapping and move by a single frame at a time,
thereby producing a set of C colorization estimates for each monochrome frame,
hence C video colorization proposals. These C estimates are then combined to
produce a single colorized output. In what follows we discuss the details of this
process.

A GAN is a generative, neural network-based model that consists of two
components, the generator network and the discriminator network. The cGAN
architecture [5] that is employed as part of the proposed method, is a supervised
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variant of the original unsupervised GAN [4]. A cGAN learns a mapping from
observed input x to target output y1.

Formally, the objective to be optimized is:

arg min
G

max
D

[Ey[logD(y)]

+Ex[log(1 − D(G(x)))]] + λEx,y[‖y − G(x)‖1],
(1)

with hyperparameter λ controlling the trade-off between the GAN (discrim-
inator) loss and the L1 loss. D(·) and G(·) correspond to the discriminator
and generator respectively. The GAN loss quantifies how plausible the col-
orization output, while the L1 loss forces the colorization to be close to the
ground truth. We use representations in the CIE Lab color space (following e.g.
[17]). For a monochrome frame sequence, only luminance is known beforehand.
Input is a sequence of luminance channels (channel L) of C consecutive frames
x ∈ IRH×W×C×1, and the objective is to learn a mapping from luminance to
chrominance (channels a,b) y ∈ IRH×W×C×2 where H, W are frame dimensions.

The generator network is comprised of a series of convolutional and decon-
volutional layers. Skip connections are added in the manner introduced by
UNet [10]. As inputs and outputs are sequences of fixed-size frames, all con-
volutions and deconvolutions are three-dimensional (frame height, width and
time dimensions). The encoder and decoder stacks comprise 8 strided convo-
lutional/deconvolutional layers each (stride = 2), followed iteratively by batch
normalization (BN) and rectified linear unit (ReLU) activation layers. Following
[2], outputs are forced to lie in the (−1, 1) range with a tanh activation layer
at the end of the generator network, and only later renormalized to valid a, b
chrominance values. The discriminator network is a 3D convolutional network
comprising 5 convolutional layers iteratively followed by BN and ReLU layers.
The discriminator is topped by a fully connected (“dense”) layer and a sigmoid
activation unit in order to map the image to a real/fake probability figure.

At test time, we use the generator in a sliding window fashion over the footage
to be colorized. Hence, each frame is given as input to the generator at a total of
C times, since C is the size of the sliding window. The produced C chrominance
estimates χ1, χ2, · · · , χC

2 then need to be used to produce a single estimate χ̂.
We can write χ̂ as a maximum-a-posteriori (MAP) estimate as:

χ̂ = arg max
χ

p(χ|χ1, · · · , χC) (2)

where a prior distribution p(χ) can be assumed over possible a, b values in
order to favor a particular chrominance setup. If identical distributions centered
around each χi and an uninformative prior is used, the above formula simplifies
as an average over all chrominance values per frame pixel: χ̂ = 1/C

∑C
i=1 χi.

1 Other variants of a cGAN are possible; for example, a noise variable z could be
added to produce a non-deterministic output [5]. We employ a deterministic cGAN
variant in this work.

2 χi denotes the ith colorization estimate for a frame. y denotes a colorization estimate
for a sequence of C frames.
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Fig. 2. Comparison of proposed model vs non-sequential 2D cGAN model. The pro-
posed model produces better results than the non-sequential variant, as the former
can take advantage of optical flow information, with its 3D convolution/deconvolution
layers and estimate aggregation scheme. (Note for example how each method colorizes
the hand of the standing actor on the top frame, or the color of the suit on the bottom
frame). Depicted frames are samples from the film “Dial M for Murder”.

Finally, the chrominance estimate is recombined with input luminance to recre-
ate colored RGB frames for the input video. The architecture of the proposed
model is summarized in Fig. 1.
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Grayscale Ground Truth Proposed

Fig. 3. Colorization results using our method. Depicted frames are samples from films:
“Et Dieu..créa la femme” and “Tzéni, Tzéni” (2 top and 2 bottom rows respectively).

3 Metrics for Numerical Evaluation of Video Colorization

In this section we describe the metrics we use for numerical evaluation of video
colorization. We use two metrics that measure per-frame colorization quality,
also usable in single-image colorization. Furthermore, we propose a new metric
suitable for video colorization in particular.
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Peak Signal-to-Noise Ratio (PSNR): PSNR is calculated per each test frame
in the RGB colorspace, and their mean is reported as a benchmark over the
whole video.

Raw Accuracy (RA): Raw Accuracy, used in [17] to evaluate image coloriza-
tion, is defined in terms of accuracy of predicted colors over a varying threshold.
Colors are classified as correctly predicted if their Euclidean distance in the ab
space is lower than a threshold. Accuracy is computed over color values for every
pixel position and frame. Integrating over the curve that is produced by taking
into account varying threshold yields the RA metric. We integrated from 0 to
150 distance units as in [17].

Color Consistency (CC): The aforementioned metrics measure strictly the
quality of colorization of each frame separately. We propose and use a metric to
measure both per-frame quality and also the consistency of the choice of colors
between consecutive frames. Such a metric can, for example, penalize erratic
differences in colorization from frame to frame, that would otherwise be “invis-
ible” to the other metrics, borrowed from single image restoration/colorization.
We define color consistency over sets of two consecutive colorization predictions
χ̂(t), χ̂(t+1) and corresponding ground truth values χ(t), χ(t+1) as

CC(t,t+1) = 1/HW

H∑

i=1

W∑

j=1

1/2[A(t)
ij + A

(t+1)
ij ]A(t×t+1)

ij (3)

where affinity matrices A(t) and A(t×t+1) are defined as

A
(t)
ij = φ(||χ(t)

ij − χ̂
(t)
ij ||),

A
(t×t+1)
ij = φ(

∥
∥
∥||χ(t)

ij − χ
(t+1)
ij ||−||χ̂(t)

ij − χ̂
(t+1)
ij ||

∥
∥
∥),

with function φ(·) a positive, strictly decreasing function that is used to convert
distances to similarities. We use φij(X) = �60Xij/(max(X) + ε) + 1�−1. Total
CC over a video sequence is calculated as the average CC over all consecutive
frames. Higher values correspond to better results.

4 Experiments

We have tested our method over a collection of old films: (a) “Dial M for Murder”
(USA, 1954; 63,243 frames) [18] (b) “Et Dieu..créa la femme” (France, 1956;
54,922 frames) [19] (c) “Tzéni, Tzéni” (Greece, 1965; 58,932 frames) [20] (d)
“A streetcar named desire” (USA, 1951; 18,002 frames) [21] (e) “Twelve angry
men” (USA, 1957; 12,000 frames) [22]. Frames were sampled off these films at
10 fps. Films (a), (b), (c) are colored, while (d) and (e) are originally black-and-
white. Consequently, only the colored films could be used for training, while the
black-and-white ones could be used only for testing with a colorizer trained on
another film.

We have first experimented with training and testing on different parts of the
same (colored) film. For training/testing we have used the first 75%/last 25%
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from each of the colored films. The proposed 3D cGAN model was used, with
model parameters set to C = 3 (sliding window size), λ = 100 (GAN-L1 loss
tradeoff), and compared against a 2D cGAN model that learned to colorize each
frame separately. We have also use data augmentation on our training set, with
random horizontal flips (50% chance to use a flipped input during training) and
gaussian additive noise (∼ N (0, 1.2e − 3)). For estimate aggregation (Eq. 2) we
present results with an uninformative prior (preliminary tests with priors learned
over data statistics did not give any definite improvement). We also compare with
a greyscale baseline, i.e. the case where the “colorized” video estimate uses only
luminance information. Numerical results can be examined in Table 1.

Table 1. Numerical results for colorization evaluation. Training and testing is per-
formed on different clips of the same film. PSNR is measured in dB; RA and CC values
are percentages. Higher values are better. The proposed model performs best, in all
cases.

PSNR RA CC

(a) “Dial M for Murder”

Grayscale 32.69 96.55 73.09

2D cGAN 34.97 96.67 82.07

Proposed 35.66 96.73 85.59

(b) “Et Dieu..créa la femme”

Grayscale 30.23 94.07 47.82

2D cGAN 32.08 95.17 56.67

Proposed 32.32 95.31 58.80

(c) “Tzéni, Tzéni”

Grayscale 29.83 92.85 39.17

2D cGAN 31.44 93.87 50.81

Proposed 31.77 94.14 55.16

Qualititative results can be examined in Figs. 2 and 3. While in general both
models fare satisfactorily, the proposed model can avoid erroneous colorizations
in several cases (cf. Fig. 2). This point is validated by our numerical results, where
we calculate the metrics presented in Sect. 3. While w.r.t. to PSNR and RA the
proposed model still is better, it could be argued that the difference in the result
is statistically insignificant. This is not the case with the proposed CC metric
however, where the performance of the proposed model is markedly better. These
results validate our expectation, as the 3D structure of the proposed model can
take into account the sequential structure of the video, in contrast to its 2D
counterpart.

We have also run tests for training and testing on different films. The case
that is perhaps closest to a practical application of the current model is using
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Fig. 4. Colorization results where color ground-truth is unavailable. Depicted are sam-
ples from “A streetcar named desire” and “Twelve angry men” (2 leftmost, 2 right-
most columns respectively), colorized with the proposed model trained on “Dial M for
Murder”.

trained models on one of the colored films to color black-and-white footage, i.e.
in our case films (d) and (e). Results for this case can be examined at Fig. 4
(training performed on film (a)). Video colorization demos are available online3.

5 Conclusion and Future Work

We have presented a method for automatic video colorization, based on a novel
cGAN-based model with 3D convolutional and deconvolutional layers and an
estimate aggregation scheme. The usefulness of our model has been validated
with tests on colorizing old black-and-white film footage. Model performance has
also been evaluated with single-image based metrics as well as a newly proposed
metric that measures sequential color consistency. As future work, we envisage
exploring the uses of the color prior in our aggregation scheme.
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