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Abstract. In this paper, we present a framework for visual object track-
ing based on clustering trajectories of image key points extracted from a
video. The main contribution of our method is that the trajectories are
automatically extracted from the video sequence and they are provided
directly to a model-based clustering approach. In most other methodolo-
gies, the latter constitutes a difficult part since the resulting feature tra-
jectories have a short duration, as the key points disappear and reappear
due to occlusion, illumination, viewpoint changes and noise. We present
here a sparse, translation invariant regression mixture model for cluster-
ing trajectories of variable length. The overall scheme is converted into a
Maximum A Posteriori approach, where the Expectation-Maximization
(EM) algorithm is used for estimating the model parameters. The pro-
posed method detects the different objects in the input image sequence
by assigning each trajectory to a cluster, and simultaneously provides
the motion of all objects. Numerical results demonstrate the ability of
the proposed method to offer more accurate and robust solution in com-
parison with the mean shift tracker, especially in cases of occlusions.

Keywords: Motion segmentation, visual feature tracking, trajectory
clustering, sparse regression.

1 Introduction

Visual target tracking is a preponderant research area in computer vision with
many applications such as surveillance, targeting, action recognition from mo-
tion, motion-based video compression, teleconferencing, video indexing and traf-
fic monitoring. Tracking is the procedure of generating inference about apparent
motion given a sequence of images, where it is generally assumed that the ap-
pearance model of the target (e.g. color, shape, salient feature descriptors etc.)
is known a priori. Hence, based on a set of measurements from image frames the
target’s position should be estimated.

Tracking algorithms may be classified into two main categories[1]: The first
category is based on filtering and data association. It assumes that the moving
object has an internal state, where the position of an object is estimated by
combining the measurements with the model of the state evolution. Kalman
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filter [2] belongs to such methods which successfully tracks objects if the assumed
type of motion is correctly modeled including cases of occlusion. Alternatively
particle filters [3], including the condensation algorithm [4], are more general
tracking methods without assuming specific type of densities. Finally there are
methods relying on feature extraction and tracking using optical flow techniques
[5]. A general drawback of this family of tracking algorithms is that the type of
object’s motion should be known and modeled correctly.

On the other hand, there are algorithms which are based on target repre-
sentation and localization assuming for a probabilistic model for the object’s
appearance and the aim is to estimate it. More specifically, color or texture fea-
tures of the object masked by an isotropic kernel are used to create a histogram.
Then, the object’s position is estimated by minimizing a cost function between
the model’s histogram and candidate histograms in the next image. A typical
method in this category is the mean shift algorithm [1] and its extensions [6,7],
where the object is supposed to be surrounded by an ellipse and the histogram
is constructed from its internal pixel values. Also, algorithms based on the min-
imization of the differential Earth mover’s distance [8,9] belong to this category.

Motion segmentation constitutes a significant application of tracking algo-
rithms, which aims at identifying moving objects in a video sequence. It can be
seen either as the post-processing step of a tracking algorithm, or as an assis-
tive mechanism of the tracking algorithms by incorporating knowledge on the
number of individual motions or their parameters. It has been considered in the
framework of optical flow estimation, like in [10], where violations of brightness
constancy and spatial smoothness assumptions caused by multiple motions are
addressed and in [11], where affine flow is obtained by clustering the features
into segments using the EM algorithm. Also, sparse features are clustered into
groups and the number of groups is updated automatically over time in [12].

Trajectory clustering is also proposed in [13] where 3D trajectories are grouped
using an agglomerative clustering algorithm and occlusions are handled by mul-
tiple tracking hypotheses. Finite mixtures of hidden Markov models (HMMs)
were also employed [14] with parameter estimation obtained through the EM al-
gorithm. Zappela et al. [15] project the space of the trajectories into a subspace
of smaller dimensions and the clustering is performed by analyzing the eigenval-
ues of an affinity matrix, while in [16], overlapping trajectories are clustered and
the resulting clusters are merged to cover large time spans.

Furthermore, spectral clustering approaches were also proposed, such as the
method in [17], where the motions of the tracked feature points are modeled by
linear subspaces and the approach in [18] where missing data from the trajec-
tories are filled in by a matrix factorization method. Moreover, Yan et al. [19]
estimate a linear manifold for every trajectory and then spectral clustering is em-
ployed to separate these subspaces. In [20], motion segmentation is accomplished
by computing the shape interaction matrices for different subspace dimensions
and combine them to form an affinity matrix that is used for spectral clustering.

Finally, many methods proposed independently rely on the separation of the
image into layers. For example, in [21] tracking is performed in two stages: at
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first foreground extracted blobs are tracked using graph cut optimization and
then pedestrians are associated with blobs and their motion is estimated by a
Kalman filter.

In this work, we present a framework for visual target tracking based on
clustering trajectories of key points. The proposed method creates trajectories
of image features that correspond to Harris corner features [22]. However, key
point tracking introduces an additional difficulty because the resulting feature
trajectories have a short duration, as the key points disappear and reappear
due to occlusion, illumination and viewpoint changes. Therefore, we are dealing
with time-series of variable length. Motion segmentation is converted next into
a clustering of these input trajectories, in a sense of grouping together feature
trajectories that belong to the same object. For this purpose, we use an efficient
regression mixture model, which has three significant features: a) Sparseness, b)
it is allowed to be translated in measurement space and c) its noise covariance
matrix is diagonal and not spherical as in most cases. The above properties
are incorporated through a Bayesian regression modeling framework, where the
Expectation-Maximization (EM) algorithm can be applied for estimating the
model parameters. Special care is given for initializing EM where an interpolating
scheme is proposed based on executing successively the k-means algorithm over
the duration of trajectories. Experiments show the robustness of our method
to occlusions and highlight its ability to discover better the objects motion in
comparison with the state-of-the art mean shift algorithm [1].

The rest of the paper is organized as follows: the procedure of feature extrac-
tion and tracking in order to create the trajectories is presented in section 2. The
trajectories clustering algorithm is presented in section 3, experimental results
are shown in section 4 and a conclusion is drawn in section 5.

2 Extracting Trajectories

Trajectories are constructed by tracking points in each frame of the video se-
quence. The main idea is to extract some salient points from a given image and
associate them with points from previous images. To this end, we employ the
so called Harris corners [22] and standard optical flow for the data association
step [23]. Let us notice that any other scale or affine invariant features [24,25]
would also be appropriate. In this work we use Harris corner features due to
their simplicity, as they rely on the eigenvalues of the matrix of the second order
derivatives of the image intensities.

Let T be the number of image frames and Y = {yi}i=1,...,N be a list of
trajectories with N being unknown beforehand. Each individual trajectory yi

consists of a set of 2D points, the time of appearance of its corner point into the
trajectory, (i.e. the number of the image frame) and the optical flow vector of
the last point in the list.

Initially, the list Y is empty. In every image frame, Harris corners are detected
and the optical flow vector at each corner is estimated [5]. Then, each corner
found in the current image frame is attributed to a trajectory that already exists
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Fig. 1. Example of trajectories construction. The red dots represent the image key
points and the green lines represent their trajectories. The figure is better seen in color.

or a new trajectory is created having with only one element, the corner under
consideration. According to this scheme, three cases are possible:

– If any key point of the previous frame has an optical flow vector pointing
out the key point under consideration, then the current corner is attributed
to an existing trajectory. In this case, a trajectory follows the optical flow
displacement vector, meaning that the corner is apparent in consecutive
frames.

– If there is no such key point in the previous frame, we apply a window around
the last corner which is similar to the current corner. If there are more than
one similar corners then we choose the closet one.

– Otherwise, a new trajectory is constructed containing only the corner under
consideration.

In Fig. 1, an intuitive example is presented where three corners are considered
for demonstration purposes and five time instances are depicted. In the first
frame, three corners are detected and three trajectories are created. In the second
frame, the same corners are detected and associated with existing trajectories
due to optical flow constraint. Next, one corner is detected and attributed to an
existing trajectory due to optical flow constraints while the other two key points
are occluded. During the fourth frame, the key point that was not occluded
is also detected and attributed to an existing trajectory. One of the other two
corner points that reappear is attributed to a trajectory due to local window
matching. The other corner is not associated with any existing trajectory, so
a new trajectory is created. In the last frame three corners are detected and
associated with existing trajectories due to optical flow. Thus, four trajectories
have been created, two of the same key point and another two of distinct key
points.

Once the list Y is constructed trajectories of corner points belonging to the
background are eliminated. This is achieved by removing the trajectories hav-
ing small variance along the whole video sequence, according to a predefined-
threshold value, as well as trajectories of small length (e.g. 1% of the number of
frames). The complete procedure is described in the next algorithm 1.

3 Clustering Trajectories of Variable Length

Suppose we have a set of trajectories of N tracked feature points over T frames
obtained from the previous procedure. The aim is to detect K independently
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Algorithm 1. Trajectories construction algorithm
1: function CreateTrajectories(Im)
2: Input: an image sequence Im.
3: Output: a list of trajectories Y .
4: Y = ∅.
5: for every image {im(t)}t=1,...,T do

6: Detect corners {c(t)
l }l=1,...,L(t) and estimate optical flow {f (t)

l }l=1,...,L(t) in
each one.

7: for every corner {c(t)
l }l=1,...,L(t) detected in im(t) do

8: if yi has its last corner clast
i in the image t− 1 and it’s optical flow f last

i

points to the current corner, i.e. clast
i + f last

i ≈ c
(t)
l then

9: Insert c
(t)
l into yi.

10: else if yi has its the window around it’s last corner clast
i similar to the

window around thw current corner c
(t)
l then

11: Insert c
(t)
l into yi.

12: else
13: Insert a new trajectory yi with only c

(t)
l into Y .

14: end if
15: end for
16: end for
17: Eliminate trajectory yi with small variation in it’s corners coordinates.
18: end function

moving objects in the scene by estimating labels on these points and classifying
them into groups of different motions. Also, we want to estimate the character-
istic motion of all objects.

A 2D trajectory yi = (y(1)
i , y

(2)
i ) consists of two directions: (1) horizontal

and (2) vertical and is defined by a set of Ti points {(y(1)
i1 , y

(2)
i1 ), . . . , (y(1)

iTi
, y

(2)
iTi

)},
corresponding to the successive image positions (ti1, . . . , tiTi) in the image se-
quence. That is important to note is that we deal with trajectories of variable
length Ti, since occlusions or illumination changes may block the view of the
objects in certain image frames.

Linear regression model constitutes a powerful platform for modeling sequen-
tial data that can be adopted in our case. In particular, we assume that a tra-
jectory y

(j)
i of any direction j = {1, 2} can be modeled through the following

functional form:
y

(j)
i = Φiw

(j) + d
(j)
i + e

(j)
i , (1)

where Φi is the design kernel matrix (common for both directions) of size Ti×T ,
and w = (w1, . . . , wT ) is the vector of the T unknown regression coefficients
that must be estimated. In our case we have considered a design matrix Φ of
size T × T having constructed with wavelets kernels. Thus, the matrix Φi is a
block-matrix of Φ, which has only the Ti lines that corresponds to the sucessive
Ti frames (ti1, . . . , tiTi) of the i-th trajectory.

Also in the above equation, we assume an translation scalar term d
(j)
i that

allows for the entire trajectory to be translated as a unit [26]. Incorporating



Motion Segmentation by Model-Based Clustering of Incomplete Trajectories 151

of such term results in a regression model that allows for arbitrary transla-
tions in measurement space. Finally, the error term e

(j)
i in the above formula-

tion is a Ti-dimensional vector that is assumed to be zero-mean Gaussian and
independent over time, i.e. ei ∼ N (0, Σi) with a diagonal covariance matrix
Σ

(j)
i = diag(σ2(j)

ti1
, . . . , σ2(j)

tiTi
)1.

Under these assumptions, the conditional density of trajectory is Gaussian,
i.e. p(y(j)

i |w(j), Σ
(j)
i , d

(j)
i ) = N (Φiw

(j) + d
(j)
i , Σ

(j)
i ). In our case we consider

the scalar d
(j)
i to be a zero-mean Gaussian variable with a variance u(j), i.e.

p(d(j)
i ) = N (0, u(j)). We can further integrate out di to obtain the marginal

density for y
(j)
i which is also Gaussian,

p(y(j)
i |θ) =

∫
p(y(j)

i |w(j), Σ
(j)
i , d

(j)
i )p(d(j)

i )dd
(j)
i = N (Φiw

(j), Σ
(j)
i + u(j)

�) ,

(2)
where � is a matrix of 1’s of size Ti × Ti. The marginal density is implicitly
conditioned on the parameters θ = {w, u, Σ}.

In our study we consider a different functional regression model for every
object k, as described by the set of model parameters θk = {θ(1)

k , θ
(2)
k }, where

θ
(j)
k = {w(j)

k , u
(j)
k , Σ

(j)
k }. Therefore, the task of discovering K objects becomes

equivalent to clustering the set of N trajectories into K clusters. This can be
described by the following regression mixture models:

p(yi|Θ) =
K∑

k=1

πkp(yi|θk) =
K∑

k=1

πkp(y(1)
i |θ(1)

k )p(y(2)
i |θ(2)

k ) , (3)

where we have assumed independence between that trajectories of both direc-
tions (y(1)

i , y
(2)
i ). In addition, πk are the mixing weights satisfying the constraints

πk ≥ 0 and
∑K

k=1 πk = 1, while Θ is the set of all the unknown mixture param-
eters, Θ = {πk, θk}K

k=1.
An important issue, when dealing with regression models is how to deter-

mine their order. Models of small order can lead to under-fitting, while larger
order lead to curve over-fitting. Both cases may cause to serious deterioration
of the clustering performance. Sparse modeling [27] offers a significant solu-
tion to this problem by employing models having initially many degrees of free-
dom than could uniquely be adapted given data. Sparse Bayesian regression can
be achieved through a hierarchical prior definition over regression coefficients
w

(j)
k = (w(j)

k1 , . . . , w
(j)
kT )T . In particular, we assume first that coefficients follows

a zero-mean Gaussian distribution:

p(w(j)
k |α(j)

k ) = N (w(j)
k |0, A−1(j)

k ) =
T∏

l=1

N (w(j)
kl |0, α−1(j)

kl ) (4)

1 Again Σi is a blosck matrix of a T ×T diagonal covariance matrix that corresponds
to the noise variance of T frames.
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where A
(j)
k is a diagonal matrix containing the T elements of precisions α

(j)
k =

(α(j)
k1 , . . . , α

(j)
kT )T . We impose next a Gamma prior on these hyperparameters::

p(α(j)
k ) =

T∏
l=1

Gamma(α(j)
kl |a, b) ∝

T∏
l=1

α
(j)a−1

kl exp(−bα
(j)
kl ) , (5)

where a and b denote parameters that are a prior set to near zero values (e.g.
a = b = 10−6). The above two-stage hierarchical prior is actually a Student-t
distribution [27]. This is a heavy tailed prior distribution that enforces most
of the values α

(j)
kl to be large, thus the corresponding w

(j)
kl are set zero and

eliminated from the model. In this way the complexity of the regression models
is controlled in an automatic and elegant way and over-fitting is avoided.

Now the clustering procedure has been converted into a Maximum-A-Posterior
(MAP) estimation approach, in a sense of estimating the mixture model param-
eters that maximize the MAP log-likelihood function:

L(Θ) =
N∑

i=1

log{
K∑

k=1

πkp(yi|θk)} +
K∑

k=1

2∑
j=1

{log p(w(j)
k |α(j)

k ) + log p(α(j)
k )} .(6)

In this direction, the Expectation - Maximization (EM) algorithm [28] can be ap-
plied in order to MAP estimate the model parameters Θ. It iteratively performs
two main stages: During the E-step the expected values of the hidden variables
are calculated. In our case this includes the cluster labels of trajectories as given
by the posterior probabilities:

zik = P (k|yi) =
πkp(yi|θk)∑
k′ πk′p(yi|θk′)

, (7)

as well as the mean value of the translations d
(j)
ik at any direction. The latter

is obtained by using the fact that the posterior density of translations is also
Gaussian:

p(d(j)
ik |y(j)

i , k) ∝ p(y(j)
i |θ(j)

k )p(d(j)
ik ) = N (d̂(j)

ik , V
(j)
ik ), (8)

where

d̂
(j)
ik = V

(j)
ik

(
y

(j)
i − Φiw

(j)
k

)T

Σ−1(j)

ik 1i and V
(j)
ik =

(
1T

i Σ−1(j)

ik 1i +
1

u
(j)
k

)−1

,

(9)
where 1i is a Ti-length vector of 1’s.

In the M-step, the maximization of the expected value of the complete log-
likelihood function (Q-function) is performed. This leads to the following update
rules [26], [29]:



Motion Segmentation by Model-Based Clustering of Incomplete Trajectories 153

π̂k =
∑N

i=1 zik

N
, (10)

ŵ
(j)
k =

[
N∑

i=1

zikΦT
i Σ−1(j)

ik Φi + A
(j)
k

]−1 N∑
i=1

zikΦT
i Σ−1(j)

ik (y(j)
i − d̂

(j)
ik ) , (11)

α
(j)
kl =

1 + 2a

ŵ2(j)

kl + 2b
∀ l = 1, . . . , T , (12)

σ̂2(j)

kl =

∑N
i=1 zik

{(
y

(j)
il − [Φiŵ

(j)
k ]l − d̂

(j)
ik

)2

+ V
(j)
ik

}
∑N

i=1 zik

, ∀ l = 1, . . . , T (13)

û
(j)
k =

∑N
i=1 zik

(
d̂2(j)

ik + V
(j)
ik

)
∑N

i=1 zik

. (14)

where [.]l indicates the l-th component of the Ti-dimensional vector that corre-
sponds to time location til.

After convergence of the EM algorithm, two kinds of information are avail-
able: At first the cluster labels of the trajectories are obtained according to the
maximum posterior probability (Eq. 7). Moreover, the motion of objects are ob-
tained from the predicted mean trajectories per cluster, i.e. μk = (μ(1)

k , μ
(2)
k ) =

(Φw
(1)
k , Φw

(2)
k ).

3.1 Initialization Strategy

A fundamental issue when applying the EM algorithm, is its strong dependence
on the initialization of the model parameters due to its local nature. Improper
initialization may lead to reaching poor local maxima of the log-likelihood, a
fact that may affect significantly the performance of the method. A natural
way for initialization is by randomly selecting K samples from the set of input
trajectories, one for each cluster. Then, we can obtain the least-squared solution
for the regression coefficients. In addition, the noise variance Σk is initialized
by a small percentage of the total variance of all trajectories equally for each
clusters, while we set the mixing weights πk equal to 1/K. Finally, one step of the
EM algorithm is executed for further refining these parameters and calculating
the MAP log-likelihood function. Several such different trials are made and the
optimum solution is selected according to the likelihood function as the initial
state of the parameters.

However, the above scheme cannot be easily applied to our approach due to the
large variability in length (Ti) of the input trajectories which brings a practical
difficulty in obtaining the least-squared solution. For this reason we have followed
an alternative initialization scheme based on interpolation among successive time
steps. More specifically, starting from the first time we perform periodically (e.g.
every 0.05T frames) the k-means clustering over the points (y(1)

it , y
(2)
it ) until the
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(a) (b) (c) (d)

Fig. 2. The overall progress of our method to a experimental sequence of 250 images
with k = 4 objects of different motion (a). First the input trajectories (b) are cre-
ated, then an initial estimation of mean trajectories (c) are produced, and finally the
predicted motion (d) is obtained

end of frame T . Then, the resulting K centers are associated with those of the
previous time according to the minimum distance criterion. Finally, a linear
interpolation (per cluster) is performed and thus the initial mean curves are
produces used for estimating the initial values of the parameters. It must be
noted that in cases where there is a large number of dense features representing
the background, the initialization may diverge from the desired solution since
the existence of a significant amount of outliers will affect the k-means solution.
Even if during our experiments we have not faced with any such problem, treating
this situation and eliminating this case still remains a future plan of study. An
example of the proposed process is given in Fig. 2 adopted from a experimental
data set, where both the initial interpolated trajectories and the final clustering
solution are shown.

4 Experimental Results

We have studied the performance of our approach using both simulated and
real examples. Some implementation details of our method are the following:
At first, we have normalized spatial and temporal coordinates into the interval
[0, 1]. Next, extracted trajectories with length less than 1% of the number of
frames T were not taken into account. The same stands for those trajectories
with variance less than 0.01. We have selected the mexican hat wavelet kernel
φ(x) ∝

(
1 − x2

σ2

)
e

−t2

2σ2 . Experiments have shown that the method was not very
sensitive to these kernel parameters. During our study we have set σ = 0.3. It
must be noted that we have taken similar results for various values from the
range [0.1, 0.5].

Comparison has been made with the mean shift algorithm [1] which is a state
of the art algorithm in visual tracking. For the mean shift algorithm, the images
were represented in the RGB color space using histograms of 16 bins for each
component. For initializing it we have manually selected the position and the
size of each object in the first frame of the image sequence. After that, mean
shift tracks the objects, using a distinct tracker for each target. The centers of
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Fig. 3. Features are not uniformly distributed over the object and the center of gravity
of the key points does not coincide with the center of gravity of the object. The small
dots represent the features and the big dot represents their barycenter. The figure is
better visualized in color.

the ellipses surrounding the targets are used to construct the mean trajectory
of each object. This comparison favors mean shift in cases where the features
are not uniformly distributed around the object, as the center estimated by the
features may vary from the geometric center of the object (Fig. 3).

4.1 Experiments with Simulated Data Sets

The first series of experiments involves seven (7) simulated image sequences
with spheres moving in predefined directions as shown in Fig. 4 and Fig. 5.
Each sequence contains 130 frames of dimensions 512× 512. About 1500− 2000
trajectories per problem were created with average length near 60 frames each. In
sequences Sim1 through Sim5 all objects are visible during the whole sequence.
In the next two experimental setups there is occlusion. In particular, in Sim6 a
sphere disappears while in Sim7 a sphere disappears and reappears.

Since in our study we are aware of the ground truth, the performance of both
tracking approaches was evaluated using two criteria:

• The mean squared error (MSE), measured in pixels, between the ground
truth r and the estimated mean trajectories μ as given by

MSE =
1

K · T
K∑

k=1

2∑
j=1

||r(j)
k − μ

(j)
k ||2 .

• The percentage of correctly classified trajectories (ACC). It must be noted
that the input trajectories created by our method have been chosen also to
evaluate mean shift algorithm. In particular, we assign every input trajectory
to an object according to the smallest distance with the predicted mean
trajectory.

Table 1 shows the results obtained by the proposed method and the mean shift
algorithm. As it may be seen, both methods have comparable accuracy. However,
our approach estimates better the true motion of the objects, as shown from the
MSE criterion. Also in problem Sim7, mean shift fails to track the sphere that
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Problem
The objects with
their true motion

Input trajectories
Estimated motion
by our approach

Estimated motion
by mean shift

Sim1

Sim2

Sim3

Sim4

Fig. 4. A part of the simulated data sets used in our experimental study. For each
problem we give the real objects motion, the created input trajectories and the pre-
dicted motion as estimated by both compared approaches.

disappears and reappears and tracks the object only as long as it is visible. In
the case of problems Sim6 and Sim7, the frames in which a sphere is not visible
are not taken into account for computing MSE. On the other hand, the proposed
method correctly associates the two separated trajectories of the sphere.

4.2 Experiments with Real Data Sets

We have also studied our motion segmentation approach on five (5) real se-
quences shown in Fig. 6. Three of them (Real1-3 ) show mobile robots moving in
various directions and two other sequences (Real4-5 ) contain two persons walk-
ing. In there, occlusions take place, as one person gets behind the other. All
images are of size 512 × 512 pixels. During the set Real1 (T = 250), the robots
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Sim5

Sim6

Sim7

Fig. 5. A part of the simulated data sets used in our experimental study. For each
problem we give the real objects motion, the created input trajectories and the pre-
dicted motion as estimated by both compared approaches.

Table 1. The performance of our approach and mean shift in terms of classification
accuracy and mean squared error criteria

Problem Our approach Mean shift

MSE ACC MSE ACC

Sim1 69 100% 121 100%

Sim2 10 99% 114 100%

Sim3 10 96% 114 99%

Sim4 15 97% 130 99%

Sim5 20 100% 118 100%

Sim6 29 100% 74 100%

Sim7 41 99% lost lost

are moving towards the borders of the image forming the vertices of a square. In
Real2 (T = 680), the robots are moving around the center of the image, forming
a circle, while in Real3 (T = 500), the robots are moving forward and backward.
Finally, in Real4 (T = 485) two persons are moving from the one side of the
scene to the other and backwards, and in Real5 (T = 635) the persons are not
only moving from one side to the other many times but also they move forward
and backward in the scene. In problems Real4 and Real5, due to occlusions,
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Problem
The objects with
their true motion

Input trajectories
Estimated motion
by our approach

Estimated motion
by mean shift

Real1

Real2

Real3

Real4

Real5

Fig. 6. The five real data set used in our experimental study. For each problem we
give the real objects motion (chosen manually), the created input trajectories and the
predicted motion as estimated by both comparative approaches.

the mean shift algorithm fails to track the objects while the proposed algorithm
successfully follows them.

As ground truth is not provided for these sequences, only visual evaluation
can be done. In problems Real1-3 both algorithms produce approximately the
same trajectories. On the contrary, in problems Real4 and Real5, where we deal
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(a) (b)

Fig. 7. Estimated trajectories for the sequence Real4. (a) Our method, (b) mean shift.
The green (printed in light gray in black and white) trajectory in (b) corresponds to
the person in black moving from the right side of the image to the left and backwards.
The ellipse highlights the part of the trajectory where the person is lost, because mean
shift fails to track the object due to occlusion. The figure is better visualized in color.

with articulated objects and occlusion, mean shift does not produce smooth
trajectories and one object is lost. This is due to the change in the appearance
of the target. When the person walks there are instances where both arms and
legs are visible and instances where only one of them is present. In these cases,
mean shift identifies the target with respect to its initial model and may produce
abrupt changes in motion estimation. On the other hand, our method smooth
out these effects through data association.

Looking in more detail the problem Real4, we can see the person in black
disappears (because he gets behind the other person) twice during this sequence:
at first, when he is moving from right to left, and then, as he is moving from
left to right. Mean shift successfully follows the object before and after the first
occlusion, but it fails to track it then the second one takes place. This is better
depicted in Fig. 7(b) where the predicted trajectory, corresponding to the person
in black, is shown in green. The part of the trajectory where the object is lost is
highlighted by an ellipse. On the other hand, the proposed method successfully
tracks the object in all frames (Fig. 7(a)).

5 Conclusion

We have presented a compact methodology for objects tracking based on model-
based clustering trajectories of Harris corners extracted from a video sequence.
Clustering is achieved through an efficient sparse regression mixture model that
embodies special characteristics in order to handle trajectories of variable length,
and to be translated in measurement space. Experiments have shown the abilities
of our approach to automatically detect the motion of objects without any human
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interaction and also have demonstrated its robustness to occlusion and feature
misdetection. Some directions for future study include an alternative strategy
for initializing mixture model parameters during EM procedure especially in
cases of occlusion, as well as to simultaneously estimate the number of objects
K in the image sequences. Also, our willing is to study the performance of our
method in other interesting computer vision applications, such as human action
recognition [30], as well as to fully 3D motion estimation.
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