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ABSTRACT
Current trends in free form editing suggest the development
of a new novel editing paradigm for CAD models beyond
traditional CAD editing of mechanical parts. To this end
we wish to develop accurate, robust and efficient 3D mesh
deformation techniques such as 3D structural morphing.

In this paper, we present a feature-based approach to 3D
morphing of arbitrary genus-0 polyhedral objects that is ap-
propriate for CAD editing. The technique is based on a
sphere mapping process built on an optimization technique
that uses a target function to maintain the correspondence
among the initial polygons and the mapped ones while pre-
serving topology and connectivity through a system of geo-
metric constraints. Finally, we introduce a fully automated
feature-based technique that matches surface areas (feature
regions) with similar morphological characteristics between
the two morphed objects and performs morphing according
to this feature correspondence list. Alignment is obtained
without user intervention and is based on pattern matching
between the feature graphs of the two morphed objects.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-Aided De-
sign (CAD); I.3.7 [Three-Dimensional Graphics and
Realism]: Animation

General Terms
feature-based morphing

Keywords
Laplacian smoothing, features, CAD models, solid modeling
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1. INTRODUCTION
There is an increasing trend to make the CAD design pro-

cess accessible to users with no previous CAD/CAM soft-
ware experience. To this end researchers and manufacturing
companies have proposed to mimic the way an artist shapes
a sculpture: start from a volume or object that is close to
the intended target and iteratively shape (morph) its parts
to finally render what the artist had in mind. Our final goal
is to offer a novel editing paradigm for CAD models that
goes beyond traditional CAD editing of mechanical parts.
In this paper we present an accurate and robust feature-
based morphing technique that can be applied between any
pair of genus-0 objects.

Although we have some quite versatile and accurate meth-
ods for 2D image morphing, the 3D case remains an open
problem both in terms of feasibility and accuracy.

Existing methods for 3D morphing can be categorized
into two broad classes: volume-based or voxel-based [11] and
mesh-based or structural [8] approaches. The volume-based
approach represents a 3D object as a set of voxels usually
leading to computationally intensive computations. The
mesh-based approach exhibits better results in terms of bound-
ary smoothness and rendering, since the intermediate morphs
are represented as volumes. Techniques such as marching
cube [13] are employed to acquire the final polygonal rep-
resentation used for rendering. Furthermore, most appli-
cations in graphics use mesh-based representations, making
mesh-based modeling more broadly applicable.

Although mesh morphing is more efficient as compared
to volume-based morphing, it requires a considerable pre-
processing of the two considered objects. Mesh morphing
involves two steps. The first step establishes a mapping
between the source and the target object (correspondence
problem), which requires that both models are meshed iso-
morphically with a one-to-one correspondence. The second
step involves finding suitable paths for each vertex connect-
ing the initial position to the final position in the merged
mesh (interpolation problem). For performing structural
morphing, we can use boundary representation (Brep) or
surface representation in which we represent each object by
its surface description, or volumetric or solid meshes, for in-
stance tetrahedral representations. In volumetric mesh mor-
phing, it is much easier to maintain robustness and avoid the



folding phenomenon. However, it is computationally expen-
sive compared to surface mesh morphing since the number
of elements in the former case is much larger in comparison
to the latter.

In this paper we propose an efficient surface mesh mor-
phing that maintains robustness. It introduces a sound and
complete approach to morphing between any two genus-0
objects. Recall that genus-0 objects are by definition home-
omorphic to the sphere. Our approach builds on a spherical
mapping approach presented in [4] for the purpose of param-
eterization of closed surfaces. Our mapping works in two
phases. In the first phase, we perform an initial mapping.
In the second phase, we optimize the mapping to achieve a
better placement under specific geometric criteria and un-
der a set of topological constraints. For the first phase, we
present a much faster alternative to [4] based on Laplacian
smoothing and adapt the second phase accordingly to cap-
ture morphing related requirements. We also present an im-
provement of this approach that takes into consideration 3D
features and derives a feature correspondence set to improve
the final visual effect. This is a very important characteris-
tic for similar objects, as in the case of morphing between
two articulated human representations. Object alignment,
feature detection and feature point matching is performed
automatically without user intervention.

In a nutshell this paper makes the following technical con-
tributions:

• Presents an easy to implement feature-compatible method
for mapping genus-0 3D objects on the sphere using an
optimization technique that achieves a mapping geo-
metrically similar to the original object while preserv-
ing connectivity and topology with the use of geomet-
ric constraints.

• Introduces a feature-based fully automated method that
achieves smooth visual results in morphing between
objects with structural similarities.

Section 2 presents related work on 3D morphing. Section
3 presents the sphere mapping step of our approach. Section
4 briefly describes the efficient computation of the intersec-
tions among the polygons on the sphere and the calculation
of the interpolation trajectory. Section 5 presents an alter-
native mapping method that can be applied to one of the
morphed objects based on the mapping of the other object
and a feature correspondence list of the two solid representa-
tions. Section 6 presents an experimental evaluation of our
method and some visual morphing results. Finally, section
7 provides conclusions.

2. RELATED WORK
Most surface-based mesh morphing techniques employ a

merging strategy to obtain the correspondence between the
vertices of the input model. The merging strategy may be
either automatic or user specified. [8] proposes an algorithm
for the morphing of two objects topologically equivalent to
the sphere. The mapping presented is accomplished by a
mere projection to the sphere and thus is applicable solely
to star shaped objects.

In [6] the authors use a spring system to model the mesh
and gradually force the mesh to expand or shrink on the
unit sphere by applying a force field. Our method uses a
similar technique for determining an initial mapping over the

unit sphere. Methods using springs do not always produce
acceptable mappings especially when handling complex non
convex objects. We overcome this problem successfully in
our approach.

[2, 19] use a spring-like relaxation process. The relaxation
solution may collapse to a point, or experience foldovers,
depending on the initial state. Several heuristics achieving
convergence to a valid solution are used. Our approach prov-
ably achieves convergence with no foldovers and collapsing
triangles.

[16, 14, 5] describe methods to generate a provable bijec-
tive parameterization of a closed genus-0 mesh to the unit
sphere. The projection involves the solution of a large sys-
tem of non-linear equations. A set of constraints on the
spherical angles is maintained to achieve a valid spherical
triangulation. We have adapted some of these ideas in our
work.

[15] presents a method that directly creates and optimizes
a continuous map between the meshes instead of using a
simpler intermediate domain to compose parameterizations.
Progressive refinement is used to robustly create and opti-
mize the inter-surface map. The refinement minimizes a dis-
tortion metric on both meshes. [9] also presents a method
that relies on mesh refinement to establish a mapping be-
tween the models. First a mapping between patches over
base mesh domains is computed and then mesh refinement
is used to find a bijective parameterization. An advantage of
this approach is that it naturally supports feature correspon-
dence, since feature vertices are required as user input for the
initial patch mapping. However, it requires user supervision
and interaction whereas our method is fully automated.

[10] uses reeb-graphs and boolean operations to extend
spherical parameterization for handling models of arbitrary
genus. Existing methods for producing valid spherical em-
beddings of genus-0 models can be integrated into their
framework. In that respect, this work is orthogonal to our
approach. Another method that uses reeb-graphs for mor-
phing topologically different objects of arbitrary genus is [7].
The method specifies the correspondence between the input
models by using graph isomorphic theory. The super Reeb
graph, which has the equivalent topological information to
the Reeb graphs of the two input objects, is constructed and
used to conduct the morphing sequence.This method is very
interesting from a theoretical point of view, but in practice
the resulting matching may be unintuitive. Our method
obtains intuitive matching results for similar objects and
produces visually smooth morphing sequences.

[12] provides efficient techniques for morphing 3D poly-
hedral objects of genus-0. The emphasis of the method is
on efficiency and requires the definition of feature patches
to perform 2D mapping and subsequent merging. Their
method does not avoid self intersection and requires em-
bedding merging and user intervention for mapping. Our
method overcomes these shortcomings in expense of a con-
siderable preprocessing time for mapping.

The method presented in this paper overcomes these lim-
itations and allows for a totally automated and appropri-
ate for morphing mapping of an object of genus-0 surface
into a 2D space with spherical topology. An initial mapping
over the unit sphere is computed and used as an initial state
and then improved by nonlinear optimization. For smoother
morphing that takes advantage of object morphology we in-
troduce a feature-based approach. Feature correspondence



is performed automatically without any user intervention.

3. TOPOLOGY PRESERVING MAPPING TO
THE 3D SPHERE

3.1 Initial Mapping
We have used two alternative methods for obtaining an

initial mapping. Thermal conduction adapted from [4], is
actually an initial mapping of bounding voxels and is per-
formed in polar coordinates. Two polar coordinates θ and φ

are determined for all vertices in two steps. Two vertices are
selected as the poles (north and south) for this process. The
poles must not be too close as this will result in a poor initial
parameterization. [4] suggests selecting the poles based on
the z coordinate in object space and this is reasonable due
to the fact that they use it for voxel objects. Instead, we
have implemented this initial mapping by selecting as poles
the vertex pair with the largest distance between them (di-
ameter of the solid).

Figure 1: The result of initial mapping with the
thermal conduction method (top left), with the
Laplacian smoothing technique (top right), after op-
timization (bottom left) and finally the original frog
model (bottom right).

Laplacian smoothing is a simple and efficient method for
mesh smoothing. Every node is progressively shifted to-
wards the centroid of its adjacent nodes. This is a local
operation since at each step the movement of a vertex is
determined only by its neighboring vertices.

A mesh can be thought of as a spring system by con-
sidering each edge connecting two nodes as a linear spring.
Laplacian smoothing is then considered for minimizing the
spring forces that are active on each node. Since a balanced
spring system over the sphere can not contain folded ele-
ments, it turns out that if Laplacian smoothing is applied
to every vertex and the vertex is projected on the sphere,
all folded elements tend to unfold after a sufficient number
of iterations. Since Laplacian smoothing does not perform
any triangle area balancing, certain elements may become
degenerate. Besides, the relaxation process may collapse if

one or more elements overgrow [2]. We use a variation where
we determine the position based on the weighted sum of the
centroids of the surrounding triangles of each vertex. We
use as weights the areas of each such triangle. This simple
approach yields a smoother mesh with more balanced ele-
ment area since larger polygons tend to attract vertices while
smaller polygons tend to repulse them. It is easy to prove
convergence to robust configurations (avoidance of foldovers
and degenerate edges and triangles) by arguing that com-
plicated mesh folding consists of a sequence of simple trian-
gle foldings. However, each individual folding is not stable
and is forced to unfold according to the area weighted cen-
troid attraction rule. Figure 1 shows the results of the ini-
tial mapping when applying the thermal conduction method
and Laplacian smoothing on the frog from [1]. Laplacian
smoothing is faster, is guarantied to provide a robust un-
folded initial mapping and preserves similarities with the
initial mesh.

The above procedure is expressed concisely by the follow-
ing two steps: We first project each vertex on the unit sphere
by:

S(Vo) =
Vo

||Vo||
, ∀V

where V is the original mesh vertex and S(V ) is its image
on the unit sphere surface. Then, while folded elements still
exist, we transform each vertex Vs (initially Vs = S(V )) on
the unit sphere surface as follows:

Vs =

Pm

i areaiCentroidi

||
Pm

i
areaiCentroidi||

where areai is the area of the corresponding i-th triangle
that is adjacent to vertex Vs, Centroidi is the centroid of
the same triangle. Note that vertex Vs is adjacent to m

triangles. The normalizing denominator maintains Vs on
the unit sphere.

Figure 2: The final optimized result of mapping
(right) applied to the Blender monkey with 5600
faces (left).

3.2 Optimizing Mapping for Morphing
In spherical parameterization it is common to maintain

uniform triangle area and avoid long edges. We present this
approach and adapt it by introducing a more appropriate
for morphing set of constraints.

For each vertex Vs(vx, vy , vz):

v
2

x + v
2

y + v
2

z = 1, ∀Vs(vx, vy , vz) (1)

To avoid unequal faces, for each face f on the sphere, the



Start

(a) (b) (c)

Model A

Model B

Intersection

Figure 3: (a) Finding intersections in merged topology (b) Curve faces visited in clockwise manner (c)
Triangulation

area is constrained to be exactly

area(fs) =
4π

n
, ∀fs (2)

where n is the number of faces. Finally the angles of each
face are constrained to be in [0, π] which is compiled to six
inequalities per triangular face. The objective function that
favors short lengths on face edges is:

X

∀fs

3
X

i=1

cos(sfs

i ) (3)

where s
fs

i is the angle (length of the arc) formed by the i-th
edge of face fs and the center of the unit sphere. We im-
plemented this method for morphing and observed that the
results were not appropriate for our purposes. The method
is very slow in converging and may place some faces very far
away from their original position or place neighboring faces
in distant spots on the sphere.

For this reason we use the following set of constraints and
objective function that are more appropriate for morphing:
Geometric Constraints: For each vertex V (vx, vy , vz) we use
equation (1) to keep the vertices on the unit sphere surface.
Topological Constraints: For each face with vertices V0, V1,
V2 and for each vertex of this face, each vertex should stay on
the same side of the plane defined by the other two vertices
and the center of the sphere:

(V1 × V2) · V0 > 0 (4)

Objective Function: We use as the objective function to be
minimized the sum of all inner products of every mapped
vertex Vs with their corresponding original position Vo =
M(Vs) on the mesh.

X

∀Vs

Vs · M(Vs) (5)

For optimization we have used several local optimization
techniques. The best results were attained with a gradient
descent method. Figure 1 illustrates the optimized mapping
for the frog, while Figure 2 illustrates the final optimized
mapping on the sphere for the Blender monkey [3]. The
preservation of the initial characteristics is apparent.

4. SURFACE CORRESPONDENCE AND IN-
TERPOLATION

Following the successful mapping of two objects A and
B on the sphere, a merging process of the two topologies

is performed. The purpose of this step is to create a final
merged topology that is suitable for navigating back and
forth to the original models.

This process requires each projected edge of one model to
be intersected with each projected edge of the other. The
algorithm to compute this step efficiently is based on the
observation that starting from an intersection over an edge
we can traverse all the remaining intersections by exploiting
the topological information contained in the models. The
complexity of this step is O(EA + K) where K is the total
number of intersections.

From the intersections found, along with the vertices of
the two models, a set of spherical regions bounded by cir-
cular arcs is determined. These regions are always convex,
therefore it is straightforward to triangulate them. First for
each edge, the list of intersections that belong to that edge
is sorted by the distance from each vertex of the edge. Ad-
ditionally, for each vertex, a list of the edges incident to it in
clockwise order is calculated. Based on the aforementioned
geometrical data we traverse each closed bounded region in a
clockwise order and compute the triangulated merged topol-
ogy in O(K log K) time complexity. Figure 3 illustrates this
process.

The final step of the algorithm involves the projection of
the merged topology back to the original models. For each
model A the vertices of the other model B along with the
intersection points are projected on A.

Following the successful establishment of a correspondence
between the source and target vertices, the vertex positions
are interpolated to acquire the final morphing sequence. To
this end, we use simple linear interpolation. The advantage
of linear interpolation, besides its simplicity, is that it can
be efficiently realized using GPUs using a simple morphing
shader for interpolating vertices and features (lighting, tex-
tures) in real-time. Nevertheless, linear interpolation may
not always be desirable, especially in very complex meshes
where self-penetrations may appear during the morphing se-
quence of the models. More advanced interpolation tech-
niques are applied in such cases. Some of them are also
implemented in shaders but their performance may vary de-
pending on the limits set by the GPU.

5. FEATURE-BASED MORPHING
To detect feature regions in a point cloud we built on a

method [17] developed earlier for reverse engineering based
on discovering features on the point cloud by detecting local
changes in the morphology of the point cloud. We use region



Figure 4: Detecting feature regions in two head
meshes.

growing, detection of rapid variations of the surface normal
and the concavity intensity, i.e. the distance from the convex
hull. This results in a number of regions that represent
object feature areas (Figure 4). In the context of this paper
we employ this method to detect features in models for the
purposes of matching and alignment of the two morphed
solids.

More specifically, morphological features in the point cloud
are detected using a characteristic called concavity intensity
of a point which represents the smallest distance of a point
from its convex hull.

Definition 1: Concavity intensity of a vertex Vo of a
mesh denoted by I(Vo) is the distance of Vs from the convex
hull of the mesh.

This characteristic is used to detect concave features in
the point cloud. Feature regions are detected by rapid vari-
ations of the surface normal and the concavity intensity.
These two characteristics are combined in a region grow-
ing method that results in sets of points corresponding to
individual features (Figure 4). After obtaining the features
of the object we create a connectivity graph that captures
adjacency information as illustrated in Figure 5. For every
edge we calculate the geodesic distances between the cen-
troids of the corresponding feature regions. The graphs are
then simplified by reducing edges that correspond to large
geodesic distances (Figure 5). In addition, small regions that
can introduce noise and are not significant are merged. The
reduced adjacency graphs are used to perform a 3D align-
ment of the two models and establish a correspondence be-
tween the region patches. This is achieved by first matching
the three highest degree nodes in the two graphs and then
performing a 3D alignment of the two models. The remain-
ing regions are paired according to their degree but we also
take into account the distance between them. Furthermore,
we also take into consideration the area covered by each re-
gion favoring the matching of regions covering similar areas.
Equation (6) summarizes the distance between two feature
regions i and j, where Ci and Cj are the centroids of regions
i and j.

Distance(i, j) = ||Ci − Cj ||
max

i,j
Area

min
i,j

Area
(6)

For each feature region we detect points with certain proper-
ties that provide a high level description of specific structural
characteristics of the solids. The resulting point set, called a
feature point set, provides a high-level description of concave
and convex extrema the object. For each object we have:
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(a) Original adjacency graph of M1 showing the
region number (see Figure 4), the number of nodes
and the area covered in the original model.
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(b) Reduced graph of M1, all edges with large
geodesic distances are eliminated.
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(c) Original graph of M2
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(d) Reduced graph of M2

Figure 5: Graph reduction of the head meshes.

Definition 2: A vertex Vo is called a feature point if and
only if I(Vo) exhibits a local extremum at Vo.

Following the establishment of a correspondence between
the region patches of the two models the feature points of the
corresponding patches are paired according to the distance
between them.

For the feature based mapping of the second model we
use the following set of constraints and objective functions
to obtain a more appropriate mapping based on the feature
point correspondence of the models:
Geometric Constraints: For each vertex Vs(vx, vy, vz) we use
equation (1).
Topological Constraints: In addition to equation (4), the
length of each edge (circular arc over the sphere) must re-
main the same during the optimization:

Vi1 · Vi2 = ||M(Vi1) − M(Vi2)|| (7)

recall that M(V ) is the initial position of vertex V on the
original mesh. By doing so, we preserve the morphology
of the second object during the optimization process. This
avoids very long stretches of the triangles to satisfy a certain
feature point pair matching.

Objective Function: We use as the objective function to



Input: Two polyhedral representations for objects S1

and S2

for each vertex V of S1 do
calculate I(V )

end
for each vertex U of S2 do

calculate I(U)
end
for S1 and S2 do

compute the corresponding feature region sets F1

and F2

end
for F1 and F2 do

compute the corresponding connectivity graphs and
perform graph reduction on them

end
Establish a correspondence of the three nodes with the
highest degree in the two graphs and perform a 3D
alignment of F1 and F2 up to scaling,rotation and
translation based on that correspondence;
for each feature region in F2 do

find the closest feature region in F1 that covers
similar area and match the corresponding feature
point sets

end
Perform the sphere mapping on S1;
Perform the sphere mapping of S2 under the additional
constraint that each mapped point has to be close to
the corresponding point of the first object;

Figure 6: The algorithm for feature based morphing.

be minimized the sum of all inner products of every mapped
feature vertex VB of the second model with their correspond-
ing mapped feature vertex of the first model VA

X

∀VA

VA · VB (8)

The algorithm for feature-based morphing is illustrated in
Figure 6, whereas Figure 11 illustrates the visual improve-
ment offered by this method.

6. EXPERIMENTS AND PERFORMANCE
EVALUATION

We have developed software for implementing mapping,
merging and interpolation as described in the previous sec-
tions. The platform used for development was a Windows
XP Professional based system running on a Intel Pentium
Q6600 Core 2 at 2.4GHz, 2GByte of RAM, with NVIDIA
GeForce 8600GT. We have developed the system on Visual
Studio 2005, using OpenGL 2.0 (Shader Model 3.0) and
GLUT.

Table 1 summarizes the results of some of our experiments
on mapping for different models using both the Thermal and
the Laplacian smoothing initialization. The number of iter-
ations refers to the optimization phase, while the time refers
to the total time for both deriving the initial mapping and
for performing optimization. We observe that the Laplacian
smoothing initialization yields a much faster convergence in
the optimization phase (half the number of iterations and
50% faster). Our extensive experiments indicate that the

(a) M1 (b) 50% Morph with
alignment but no feature
point matching

(c) 50% Morph with
alignment and feature
point matching

(d) M2

Figure 11: Close-up of the morphing sequence.The
improvement around the ear area is noticeable.

number of iterations increases quadratically over the num-
ber of faces of the polyhedral representation for triangular
models. This is a considerable overhead but it can be calcu-
lated offline during a preprocessing phase and stored along
with the polyhedral representation. Table 2 show the re-
sults for the same set of experiments for the same model
with different LODs ranging from 854 faces up to 5610 for
the monkey model. This set of experiments confirms the
above observations.

As mentioned in Section 4 merging takes in average O(K log K)
time, where K is the number of intersections. For all cases
in Tables 1 and 2 this step took less than 2.5 sec. Finally, the
interpolation step is implemented in GPU so it is very fast
and can accommodate almost unlimited number of frames.

Figures 7, 8, 9 and 10 illustrate 4 different cases of mor-
phing. We have performed the experiments on well-known
models such as the Stanford bunny [18], the Blender monkey
[3] and the Aim@shape frog [1].

7. CONCLUSIONS
We have presented a method that performs morphing be-

tween arbitrary genus-0 objects without any user interven-
tion. The sphere mapping can be considered as preprocess-
ing and stored along with the representation of the solid.
The merging is very fast in the average case, and the inter-
polation is implemented with GPU GLSL shaders. Finally,
we have presented a fully automated technique for feature
matching and alignment that greatly improves the visual ef-
fect and allows for applying controlled morphing to CAD
model editing. We have used our method successfully on
object pairs of similar topology (for examples busts) and of
quite different topology (fish and duck). We are currently
exploring the feasibility of parallelization through GPUs of
the optimization phase and the use of user defined con-
straints for feature matching and morphing-based editing.



Figure 7: Morphing with alignment and feature point matching. Morphing is visuallly smooth through the
entire sequence.

Figure 8: Morphing with alignment and feature point matching. Morphing is visuallly smooth through the
entire sequence.

Figure 9: Morphing with alignment but no feature point matching: fish (4994 faces) to duck (1926 faces),
merged topology has 28526 faces.

Figure 10: Morphing with alignment and feature point matching: fish (4994 faces) to duck (1926 faces),
merged topology has 33038 faces.



Table 1: Experimental results of mapping with different models of various level of detail

model method # vertices # faces # constraints # iterations time (secs)

Monkey Laplace 429 854 2991 36 10.9
Monkey Thermal 429 854 2991 78 22.6
Bunny(Lod1) Laplace 440 876 3068 94 24.3
Bunny(Lod1) Thermal 440 876 3068 165 52.0
Frog(Lod1) Laplace 1964 3924 13736 70 422.2
Frog(Lod1) Thermal 1964 3924 13736 152 895.8

Table 2: Experimental results with the same model with different levels of detail

model method # vertices # faces # constraints # iterations time (secs)

Monkey(Lod1) Laplace 429 854 2991 36 10.9
Monkey(Lod1) Thermal 429 854 2991 78 22.6
Monkey(Lod2) Laplace 703 1402 4909 26 21.3
Monkey(Lod2) Thermal 703 1402 4909 70 54.8
Monkey(Lod3) Laplace 1404 2804 9816 49 151.3
Monkey(Lod3) Thermal 1404 2804 9816 91 271.3
Monkey(Lod4) Laplace 2807 5610 19637 79 934.0
Monkey(Lod4) Thermal 2807 5610 19637 136 1578.6
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