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Region and Shape Representation 

and Description

Well, but reflect; have we not several times 

acknowledged that names rightly given are the 

likeness and images of the things which they  

name?

Socrates
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Contents

• After performing image segmentation, a 
region may be represented in terms of

– external characteristics (boundaries).

– internal characteristics (texture).

• A shape may be considered as a filled 
region with a unique value, e.g. f (x,y)=1.
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• Several algorithms require the points in an 
ordered clockwise (or counterclockwise) 
direction.

• We will describe an algorithm whose 
output is an ordered sequence of points.

– Binary images (object and background 
points).

– Images are padded with a border of zeros to 
avoid object merging with the image borders.

– We limit the discussion to single regions. The 
extension is straightforward.

Boundary following
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• Given a binary region R or its boundary, 
the algorithm for following the border of R:

1. Let the starting point b0, be the uppermost, 
leftmost point in the image labeled 1. 

2. Denote by c0 the west neighbor of b0. c0 is 
always a background point.

Boundary following (cont.)
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3. Examine the 8-neighbors of b0, starting at c0

and proceeding in a clockwise direction. 

4. Let b1 denote the first neighbor encountered 
whose value is 1.

5. Let c1 denote the background point 
immediately preceding b1 in the sequence.

Boundary following (cont.)
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6. Store the locations of b0 and b1 for use in 
Step 10.

7. Let b=b1 and c=c1.

8. Let the 8-neighbors of b, starting at c and 
proceeding in a clockwise direction, be 
denoted by n1, n2,…, n8. Find the first nk

labeled 1. 

Boundary following (cont.)



8

C. Nikou – Digital Image Processing

9. Let b=nk and c=nk-1.

10. Repeat steps 8 and 9 until b=b0, that is, we 
have reached the first point and the next 
boundary point found is b1.

• The algorithm is due to G. Moore [1968]

Boundary following (cont.)
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• The need for the stopping rule “… and 
the next boundary point found is b1” is 
shown below.

• We would only include the spur at the 
right if we stop when we reach the initial 
point without checking the next point.

Boundary following (cont.)
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• Freeman codes [1961] represent a 
boundary by the sequence of straight line 
segments of specified length and 
direction.

• The direction is coded by a numbering 
scheme (4 or 8-connectivity).

Chain codes
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• To avoid noise degradation and long 
chains a resampling of the image grid is 
commonly used to describe the boundary 
at a coarser level.

Chain codes (cont.)
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• The chain code depends on the starting 
point.

• To normalize it, we treat the code as  a 
circular sequence of direction numbers 
and redefine the starting point so that the 
resulting sequence forms an integer of 
minimum magnitude.

• To account for rotation, we use the first 
differences of the chain code instead of 
the code itself.

Chain codes (cont.)
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• The first difference is obtained by 
counting the number of direction changes 
that separate two adjacent elements of 
the code.

• For instance, the first difference of the 
chain code 10103322 (e.g. in a 
counterclockwise direction) is 3133030.

Chain codes (cont.)
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• A digital boundary may be approximated 
by a polygon with arbitrary accuracy.

• The goal is to capture the essence of the 
shape using the fewest possible 
segments.

• Non trivial and time-consuming problem.

• The minimum perimeter polygon (MPP) 
approximation is of modest complexity 
and provides good representations for 
image analysis applications.

Minimum perimeter polygons
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• The idea is to enclose a boundary (think of it as a 
rubber band) by a set of concatenating cells.

• The boundary is allowed to shrink but it is 
constrained by the inner and outer walls of the 
bounding region defined by the cells.

• Ultimately, the shape shrinking provides the MPP.

Minimum perimeter polygons (cont.)
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• The vertices of the MPP coincide with corners of 
the inner or the outer wall.

• The size of the cells determines the accuracy of 
the representation.

• The objective is to use the largest possible cell 
size acceptable in a given application.

Minimum perimeter polygons (cont.)
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• The shape of the object enclosed by the inner wall of 
the light gray cells is shown in dark gray.

• Traversing the boundary (counterclockwise) encounters 
convex (white dots) or concave (black dots) vertices.

• The vertices of the MPP coincide either with convex 
vertices in the inner wall or with the “mirrors” of the 
concave vertices in the outer wall.

Minimum perimeter polygons (cont.)
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• Useful: the orientation of triplets of points:

Minimum perimeter polygons (cont.)

1 1 2 2 3 3( , ), ( , ), ( , )a x y b x y c x y  

1 1

2 2

3 3

1

1

1

x y

A x y

x y

 
 


 
  

0 ( , , ) is a counterclockwise sequence

det( ) 0 , , are colinear

0 ( , , ) is a clockwise sequence

a b c

A a b c

a b c




 


• Convenient notation: sgn(a,b,c)=det(A)
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• sgn(a,b,c)>0 indicates that point c lies on the 
positive side of the line passing from (a,b).

• sgn(a,b,c)<0 indicates that point c lies on the 
negative side of the line passing from (a,b).

• Note: sgn(a,b,c)=sgn(c,a,b) because the 
direction of traversal is the same. 

– However, the geometrical interpretation is 
different. For example, sgn(c,a,b)>0 indicates that 
point b lies on the negative side of the line 
passing from (c,a).

Minimum perimeter polygons (cont.)
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• Data preparation

– List of coordinates of each vertex.

– Label each vertex as W (convex) or B (concave).

– List of the mirrors of B vertices.

– Vertices must be in sequential order.

– The first vertex V0 is the uppermost leftmost 
vertex. 
• It is always a W vertex (proof skipped).

– The algorithm uses a white crawler WC and a 
black crawler BC crawling along the convex (W) 
and mirrored concave (B) vertices respectively.

Minimum perimeter polygons (cont.)
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• Initialization: WC = BC = V0. 

• VL is the last vertex examined 

• VK is the current vertex being examined.

• sgn(VL, WC, VK)>0 or VK lies to the positive side 
of the line through (VL, WC).

– The next MPP vertex is WC,

– VL=WC 

–Continue with the next vertex after VL.

Minimum perimeter polygons (cont.)
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• sgn(VL, WC, VK) ≤0 and sgn(VL, BC, VK) ≥0 

– VK becomes a candidate MPP vertex. 

– If VK is convex then WC=VK 

– Else BC=VK. 

– Continue with the next vertex in the list.

• sgn(VL, WC, VK) ≤0 and sgn(VL, BC, VK)<0

– BC becomes a candidate MPP vertex.

– VL=BC

– Reinitialize the algorithm by setting WC = BC = VL

– Continue with the next vertex in the list.

Minimum perimeter polygons (cont.)
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Minimum perimeter polygons (cont.)
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• 1D functional representation of a boundary.

• A simple way s to plot the distance from the 
centroid as a function of the angle.

Signatures
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• Translation invariant but not rotation invariant.

– We have to find a way to select the same 
starting point.
• Select the point which is farthest from the centroid 

(not unique for a family of shapes).

• Select the point on the largest eigen axis.

• Obtain the chain code and use the first differences.

• Scale changes

– Scale to [0, 1]. Depends on min and max of the 
function. Noise affects this type of scaling.

– Divide each sample by the variance of the 
signature.

Signatures (cont.)
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• Distance vs angle is not the only way to obtain a 
signature.

• Line tangent to the boundary vs a reference line.
– Horizontal segments in the signature would correspond 

to straight lines as the tangent would be constant there.

• Slope density function
– Histogram of tangent-angle values at segments of the 

boundary of a certain length.

– Peaks at sections of boundary with constant tangent and 
valleys in sections with rapidly varying angles.

Signatures (cont.)
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• Decomposition into segments reduces the 
boundary complexity.

• Attractive approach in presence of 
concavities.

• We employ

– The convex hull H of the region S:
• The smallest convex set containing S.

– The convex deficiency H-S of S .

Boundary segments
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• The boundary is partitioned by following the  
contour of S and marking the points at which 
a transition is made into or out of the convex 
deficiency.

• Smoothing may be necessary to remove 
irregularities (noise).

Boundary segments (cont.)
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• It may be obtained by region thinning using 
morphological operators

– The skeleton is not always connected.

• The medial axis transformation (MAT) 
[Blum 1967] of a region R with border B
corrects this drawback:

– For each point p in R, we find each closest 
neighbor in B. 

– If p has more than one neighbor, it is said to 
belong to the medial axis of R.
• The definition of a distance is crucial (e.g. Euclidean).

Skeleton by medial axis 

transformation
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• MAT calculation is computationally 
expensive. 

• Numerous algorithms have been proposed 
for improving the execution time.

• They are based on thinning algorithms 
iteratively deleting boundary points subject to 
the constraints that the deletion of points:

– does not remove end points.

– does not break connectivity.

– does not cause excessive erosion of the region.

Skeleton by medial axis 

transformation (cont.)



31

C. Nikou – Digital Image Processing

• Such an iterative algorithm, 
consists of two thinning 
steps and it is based on 

– The number of nonzero 
neighbors N(p1) of a pixel p.

– The number of 0-1 
transitions T(p1) in the 
ordered sequence p2, p3,…, 
p8, p9, p2.

Skeleton by medial axis 

transformation (cont.)

• Example: 

N(p1) = 4, T(p1)=3.
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• Step 1 flags a boundary pixel p1 for deletion if 
the following conditions are satisfied:

a) 2 ≤ N(p1) ≤ 6

b) T(p1) = 1

c) p2 *p4 *p6 = 0

d) p4 *p6 *p8 = 0

Skeleton by medial axis 

transformation (cont.)
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• In Step 2, conditions a) and b) remain the 
same, but conditions c) and d) are changed:

a) 2 ≤ N(p1) ≤ 6

b) T(p1) = 1

c) p2 *p4 *p8 = 0

d) p2 *p6 *p8 = 0

Skeleton by medial axis 

transformation (cont.)
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• Step 1 is applied to every contour pixel and if all 
conditions are satisfied the pixel is flagged for 
deletion.

• However, it is not deleted until all contour pixels 
have been processed in order not to change the 
structure of the data during execution of Step 1.

• Then, Step 2 is applied to the remaining border 
pixels in exactly the same manner.

• The procedure is repeated until no points are 
deleted.

Skeleton by medial axis 

transformation (cont.)
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a) 2 ≤ N(p1) ≤ 6

– The condition is violated when contour pixel p1 has 
only one or seven neighbors.

• One neighbor implies that p1 is the endpoint of a 
skeleton and obviously it should not be deleted.

• Deleting p1 if it has seven neighbors would cause 
erosion into the region.

Skeleton by medial axis 

transformation (cont.)
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b) T(p1) = 1

– The condition is violated when it is applied to 
points on a stroke 1 pixel thick.

– It prevents breaking thin segments.

Skeleton by medial axis 

transformation (cont.)
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c) p2 *p4 *p6 = 0

d) p4 *p6 *p8 = 0

– The conditions are satisfied simultaneously by 
the minimum set of values (p4=0 or p6=0) or 
(p2=0 and p8=0).

Skeleton by medial axis 

transformation (cont.)
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– A point p1 that satisfies these conditions and 
simultaneously the conditions a) and b) is either
• an east or south boundary point.

• a northwest corner point in the boundary.

– Therefore, p1 is not a point of the skeleton and it 
should be removed.

Skeleton by medial axis 

transformation (cont.)
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– Similar assumptions hold for Step 2 concerning 
north or west boundary points and southeast 
corner points.  

Skeleton by medial axis 

transformation (cont.)
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Boundary descriptors

• Geometric descriptors

• Shape numbers

• Fourier descriptors

• Statistical moments
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Geometric boundary descriptors

• Length

• Diameter

• Major axis (connecting the two extreme points of 
the diameter)

• Minor axis (perpendicular to the major axis)
– The two axes define the basic rectangle completely 

enclosing the boundary

• Eccentricity
– ratio of the lengths between the major and the minor 

axis

• Curvature

,
Diam( ) max[Dist( , )]i j

i j
B p p
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• Recall that the chain code depends on the 
starting point.

– We select the smallest number in its 
representation. 

• The shape number of a boundary is the first 
difference of smallest magnitude.

– First differences make it invariant to rotation.

• The order n of a shape number is defined as 
the number of digits in its representation.

Shape numbers
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• Examples. All closed shapes of order n=4, 6 and 8.

• First differences are computed by treating the chain 
as a circular sequence.

Shape numbers (cont.)
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• Although first differences are invariant to rotation 
the coded boundary depends on the orientation of 
the grid.

• Solution: align the chain-code grid with the sides of 
the basic rectangle.

– Compute the basic rectangle and the order n of the 
shape.

– Approximate the basic rectangle with a rectangle of order 
n (a rectangle with perimeter equal to n), e.g. if n=12, all 
the rectangles with a perimeter 12 are in {2x4, 3x3,1x5}.

– Select the one that best matches the eccentricity of the 
basic rectangle of the shape.

– Establish the grid on the new rectangle.

Shape numbers (cont.)
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• Suppose that n=12 for the specified boundary.

Shape numbers (cont.)

• Basic rectangle

• The closest 
rectangle is 
of size 3x6

• The grid is 
aligned to it.
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• The two coordinates are treated as a complex 
number and the DFT is computed.

Fourier descriptors

( ) ( ) ( ), 0,1,2,..., 1s k x k jy k k K   

21

0

( ) ( ) , 0,1,2,..., 1
uK j k

k

a u s k e u K
 




  

21

0

( ) ( ) , 0,1,2,..., 1
kK j u

u

s k a u e k K






  
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• Approximation by the first P<K first DFT 
coefficients, a(u)=0 for u>P:

Fourier descriptors (cont.)

21

0

1
ˆ( ) ( ) , 0,1,2,..., 1

kP j u
P

u

s k a u e k K
P





  

• Notice that the number of points is always K, 
that is the initial number of points is 
represented by fewer frequencies.

• Recall from DFT that high frequency 
components account for fine detail and low 
frequencies capture the global shape.
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Fourier descriptors (cont.)

• The properties of the DFT hold.

• A change in the starting point affects all 
descriptors in a different but known way as 
the term multiplying a(u) depends on u.
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Fourier descriptors (cont.)
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Statistical moments

• A boundary segment may be represented 
as a 1D function g(r) by connecting the end 
points and rotating the line segment to be 
horizontal.

• Normalizing g(r) to unit area we can treat it 
as a histogram.
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Statistical moments (cont.)

1

0

1

0

( ) ( ) ( )

( )

K
n

n i i

i

K

i i

i

r r m g r

m r g r










 







• The second moment measures the spread 
of the curve around the mean

• The third moment measures the symmetry 
with respect to the mean.

• ….
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Regional descriptors

• Simple descriptors

– Geometric descriptors similar with the 
boundary case and descriptors including pixel 
intensities

• Topological descriptors

• Texture descriptors

– Statistical approaches

– Structural approaches

– Spectral approaches

• Moment invariants
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• The area of a region S:

f (x,y)=1 on the pixels belonging to the region 
and zero otherwise.

• The perimeter of a region S:

where (xi,yi) are the coordinates of the i-th pixel 
of the boundary of the region.

( ) ( , )
x y

S f x y 

Simple region descriptors

2 2

1 1( ) ( ) ( )i i i i

i

P S x x y y    
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• The compactness of a region S:

• The denominator is the area of a circle whose 
perimeter is P(S).

• It measures the ratio of area of the shape and 
the circle that can be traced with the same 
perimeter.

• For a perfectly circular region A(S)=1.

2 2

4 ( ) ( )
( )

( ) ( ) / 4

A S A S
C S

P S P S




 

Simple region descriptors (cont.)
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• The dispersion of a region S:

• It measures the ratio of the major chord 
length to the area.

• The numerator defines the area of the 
maximum circle enclosing the region.

    2 2
max

( )
( )

i i
i

x x y y
I S

A S

   


Simple region descriptors (cont.)



56

C. Nikou – Digital Image Processing

• An alternative definition of dispersion of a 
region S measures the ratio of the 
maximum to the minimum radius:

• It is the ratio between the radius of the 
maximum circle enclosing the region and 
the minimum circle that may be contained 
in the region.

    
    

2 2

2 2

max
( )

min

i i
i

i i
i

x x y y
I S

x x y y

  


  

Simple region descriptors (cont.)
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• Other regional descriptors include statistics 
on the intensity levels of the pixels in the 
region 

– mean 

– median 

– minimum

– Maximum

– Number of pixels with values above or below the 
mean

Simple region descriptors (cont.)
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• Topology is the study of properties that are 
unaffected by any deformation.

– Rubber-sheet distortions.
• No tearings or joinings of the region.

• These properties do not depend on the notion 
of distance or a distance measure.

– Number of connected components C.

– Number of holes H.

• Euler number: 

E = C - H

Topological descriptors
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Topological descriptors (cont.)

E = C - H = 1 - 2 = -1
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• Regions represented by straight line 
segments (polygonal networks) have a 
particular simple interpretation in terms of the 
Euler number.

• Classification of interior regions into faces 
and holes.

• The number of vertices (V) and the number of 
edges (Q) and the number of faces (F) give 
the Euler formula:

V – Q + F = C – H = E

Topological descriptors (cont.)
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Topological descriptors (cont.)

C – H = 1 – 3 = – 2

V – Q + F = 7 – 11 + 2 = -2
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Texture

• Basic texture representation

– Statistical approaches

• Histogram

• Co-occurrence matrices.

– Structural approaches

• relational descriptors based on rules (we will look 

at them at the end of the section)

– Spectral methods.
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Histogram approaches

• Statistical moments of the histogram of a 

region.

– Let p(z) be the histogram of an image region 

with L possible gray levels zi, i=1,…L.

– nth moment:

• The third moment measures the skewness and 

fourth moment measures flatness of the 

histogram.

1 1

0 0

( ) ( ) ( ), ( ),
L L

n

n i i i i

i i

z z m p z m z p z
 

 

   
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Histogram approaches (cont.)

– Contrast: 

– Uniformity (maximum for uniform images):

– Entropy:

1
2

0

( ) ( )
L

i

i

U z p z






 
1

0

( ) ( ) log ( )
L

i i

i

E z p z p z




 

2

1
( ) 1

1 ( )
R z

z
 


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Histogram approaches (cont.)
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Co-occurrence Matrices

• Let  Q be an operator that defines the 

position of two pixels relative to each 

other.

• Consider an image f, with L possible gray 

levels.

• Let G be a matrix whose element gij is the 

number of times that pixel pairs with 

intensities zi and zj occur in f in the position 

specified by Q. 

• G is called co-occurrence matrix.
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Co-occurrence Matrices (cont.)

• Quantization of intensities due to computational load. 

Many matrices per region. Here L=8 gray levels.
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Co-occurrence Matrices (cont.)

,

ij

ij

ij

i j

g
p

g



1

( )
K

ij
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Co-occurrence Matrices (cont.)

Random noise

Periodic texture (sine)

Mixed texture

256x256 co-occurence matrices 

“one position immediately to the 

right”.
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Co-occurrence Matrices (cont.)
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Co-occurrence Matrices (cont.)

• Is there an image portion containing a certain 

texture (a repetitive pattern)?

• Sequences of co-occurrence matrices are 

employed.

– the correlation descriptor for varying horizontal 

offset of adjacent pixels may be calculated.

• In the next experiment, this is performed for 

co-occurence matrices computed for 

horizontal offsets from 1 to 50 pixels.
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Co-occurrence Matrices (cont.)

Noise image Sine image Circuit image

Disadvantage: co-occurrence matrices are 

not efficient for coarse texture description
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Structural approaches

• Rule that indicates that the symbol S may be 

rewritten as aS: S aS

• Three repetitions of the rule yield the 

string aaaS.

• If a represents a circle and the meaning 

“circles to the right” is assigned to a string 

of the form aaa…then the rule allows the 

generation of the pattern:

a aaa…
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Structural approaches (cont.)

• We add new rules, for example:

, , , ,S bA A cA A c A bS S a    

• b means “circle down”.

• c means “circle to the left”.

• aaabccbaa corresponds to a 3x3 matrix of 

circles.

• Larger texture patterns may be generated.

• We will treat the topic in detail later.
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Spectral Approaches

• The Fourier transform (FT) is useful for 

description of the directionality of periodic or 

almost periodic structures.

– Peaks in the FT give the principal direction of 

patterns.

– The location of peaks gives the fundamental 

period of patterns.

– The FT is symmetric around the origin and only 

half of the frequency plane needs to be 

considered.
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Spectral Approaches (cont.)

• The spectrum is expressed in polar 

coordinates S(r,θ) for simplification

– We define Sr(θ) which is a 1D function for a given 

r and Sθ(r) which is a 1D function for a given θ.

– Analyzing Sθ(r) for a fixed value of θ yields the 

behavior of the spectrum along a radial direction 

from the origin.

– Analyzing Sr(θ) for a fixed value of r yields the 

behavior of the spectrum along a circle of radius 

r which is centered at the origin.
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Spectral Approaches (cont.)

• A more global description is obtained by 

integrating these functions:

– with R0 being a the radius of a circle centered at 

the origin.

• The result constitute a par of values [S(r), S(θ)] 

for each pair of coordinates (r,θ).

0

( ) ( )S r S r



 


0

1

( ) ( )
R

r

r

S S 
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Spectral Approaches (cont.)

Images and FT The periodic bursts extending in 2D in 

both spectra are due to the periodic 

texture of coarse background material.

The other dominant components in the 

left are due to the random orientation of 

object edges.

In the right figure, the energy not 

associated with the background is along 

the horizontal axis.
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Spectral Approaches (cont.)

Random

Ordered

Periodic horizontal repetition:

Matches and background.

S(r)

S(r)

S(θ)

S(θ)

θ= 0, 90 and 180, indicate that there 

is information at these orientations.
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• 2D moment of order (p+q) of a MxN image 
is defined as:

• It may be used on gray scale images as 
well as on shapes. For a shape boundary 
we may consider that f (x,y)=1 on the 
boundary and zero otherwise.

1 1
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( , ),
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M N
p q

pq

x y

m x y f x y

p q

 
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Moment invariants
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• The corresponding central moment of 
order (p+q) is defined as:

• The normalized central moments are 
defined as:

1 1
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Moment invariants (cont.)
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• A set of seven invariant moments can be 
derived from the second and third 
moments. Invariance is obtained with 
respect to:

– translation

– rotation

– scale change

– mirroring

Moment invariants (cont.)
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Moment invariants (cont.)
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Moment invariants (cont.)
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Moment invariants (cont.)
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Moment invariants (cont.)

• Sgn(φi)log10(|φi|) is shown to reduce the dynamic 
range.

• The values of the moments are very close.

• The sign of φ7 is different for the mirrored image.
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Principal Component Analysis (PCA)

• We want to construct a low-dimensional linear 

subspace that best explains the variation in the 

components of a multidimensional image:

1

2

n

x

x

x

 
 
 
 
 
 

x


• n=3 for RGB images or n=6 for LANSAT images.
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Principal Component Analysis 

(cont.)

• Multispectral images in the visible blue, visible green, visible red, near 

infrared, middle infrared and thermal infrared bands.
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Principal Component Analysis 

(cont.)

• One n-dimensional vector for each pixel is created.
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Principal Component Analysis 

(cont.)

• Goal: find a low dimensional 

representation for the vectors 

that

• minimizes the projection 

error (the distance 

between the initial vectors 

and their projections)

or equivalently

• maximizes the variance of 

the projected data.
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Principal Component Analysis 

(cont.)

• Given: N data points x1, … ,xN in Rd 

• We want to find a new set of features that 

are linear combinations of the original 

ones:

w(xi) = uT(xi – mx),

• What unit vector u in Rd captures the most 

variance of the data?

1

1 N

i

iN 

 xm x
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Principal Component Analysis 

(cont.)
• The variance of the projected data:

Projection of data point

Covariance matrix of data

   
1 1

1 1
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T T T

i i i i i

i i

w w w
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Principal Component Analysis 

(cont.)

• We now estimate vector u maximizing the variance:

subject to:
2|| || 1T  u u u

because any multiple of u maximizes the 

objective function.

• The Lagrangian is

leading to the solution:

( ; ) (1 )T TJ    u u Σu u u

Σu u

which is an eigenvector of Σ. The one maximizing J 

corresponds to the largest eigenvalue of Σ.

T
u Σu
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Principal Component Analysis 

(cont.)

• The direction that captures the maximum 

variance of the data is the eigenvector 

corresponding to the largest eigenvalue of 

the data covariance matrix.

• The top k orthogonal directions that 

capture the most variance of the data are 

the k eigenvectors corresponding to the k

largest eigenvalues.
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Principal Component Analysis 

(cont.)

• Because Σ is real, symmetric and positive 

definite its eigenvalues are non negative and its 

eigenvectors are orthogonal.

• Let be the eigenvalues of Σ in 

descending order and

be a matrix whose rows are the eigenvectors of Σ.
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Principal Component Analysis 

(cont.)
• The transformation that maps x to the new k-dimensional 

(k<d) subspace (using the first k eigenvectors)  is

1
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k

 
 

   
 
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• Properties of the new subspace:

ym 0
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The components of y
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Principal Component Analysis 

(cont.)

• Because the rows of A are orthonormal 1 T A A

• Therefore, we can reconstruct the original data x

from their k-dimensional projections y:

ˆ T

k  xx A y m

• The mean square reconstruction error is:

1 1 1

d k d

j j j

j j j k

e   
   

    

which is zero if we make use of all of the 

eigenvectors.
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Principal Component Analysis 

(cont.)

• In our example, the eigenvalues of the covariance matrix of the 6-

dimensional pixels are:

λ1 = 10344

λ2 = 2966

λ3 = 1401

λ4 = 203

λ5 = 94

λ6 = 31
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Principal Component Analysis 

(cont.)

• The six principal component images
6( ) xy A x-m

• The first two images account for 89% of the total variance.
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Principal Component Analysis 

(cont.)

• Reconstructed images using the first two principal components

2
ˆ T  xx A y m
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Principal Component Analysis 

(cont.)

• Reconstruction error (enhanced for better visualization).



102

C. Nikou – Digital Image Processing

Principal Component Analysis 

(cont.)

• PCA is a convenient 

way to normalize 2D 

boundaries with respect 

to rotation and 

translation.

• Shifting by (y1min, y2min) 

makes the coordinate 

non negatives.

• Further division by 

λ1and λ2 normalizes the 

scale.
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Principal Component Analysis 

(cont.)

• Application: 

eigenfaces for 

face recognition
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Principal Component Analysis 

(cont.)

Mean image

• Eigenfaces
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• Rewriting rules that capture the basic repetitive 
pattern.

• It applies to both boundaries and regions.

• Example: the staircase structure has been 
extracted from an image and we want to 
describe it. 

• We employ two primitive elements and a set of 
rules.

Relational descriptors
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• S and A are variables and a and b are constants.

• Rule 1 indicates that the starting symbol S can be 
replaced by a and a variable A.

• Rules 2 and 3 indicate that variable A in turn can be 
replaced by b and S or b alone.

– Replacing A by bS leads to the first rule and the procedure may 
be repeated.

– Replacing A by b terminates the process as there ar no more 
variables to be processed.

Relational descriptors (cont.)
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• Example derivations of the rules.

• The relationship between a and b is preserved 
as the rules force an a to be followed by a b.

Relational descriptors (cont.)
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• These strings are 1D structures.

• Applications of the rules to images requires an 
establishment of methods for reducing 2D 
positional relations to 1D relations.

• An approach is to follow the contour of an object 
and code the result with head-to-tail segments of 
specified direction and length.

Relational descriptors (cont.)
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• Another approach is to employ directed line 
segments with other ways, besides head-to-tail 
connections.

Relational descriptors (cont.)

Primitives and operations among them
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• Step by step generation of a specific shape.

Relational descriptors (cont.)
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• Tree structures better represent non contiguous 
textured regions.

• Important information in a tree
– A set of words describing the node  (e.g. image 

region).

– Relation between a node and its neighbors (e.g. 
“inside of”).

Relational descriptors (cont.)


