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on Variational Component Splitting
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Abstract—In this paper, we present an incremental method for
model selection and learning of Gaussian mixtures based on the
recently proposed variational Bayes approach. The method adds
components to the mixture using a Bayesian splitting test proce-
dure: a component is split into two components and then vari-
ational update equations are applied only to the parameters of
the two components. As a result, either both components are re-
tained in the model or one of them is found to be redundant and
is eliminated from the model. In our approach, the model selection
problem is treated locally, in a region of the data space, so we can
set more informative priors based on the local data distribution.
A modified Bayesian mixture model is presented to implement this
approach, along with a learning algorithm that iteratively applies a
splitting test on each mixture component. Experimental results and
comparisons with two other techniques testify for the adequacy of
the proposed approach.

Index Terms—Clustering, mixture models, model selection, vari-
ational Bayes methods.

I. INTRODUCTION

GAUSSIAN mixture models are a valuable statistical tool
for modeling densities. They are flexible enough to ap-

proximate any given density with high accuracy, and, in addi-
tion, they can be interpreted as a soft clustering solution. Thus,
they have been widely used in both supervised and unsupervised
learning, and have been extensively studied [1] and applied in
several domains (for example, [2] and [3]). The parameters of
a mixture can be estimated using the expectation–maximization
(EM) algorithm [4], [5]. This is the standard training approach,
although it exhibits some drawbacks. At first, the EM converges
to a local maximum of the likelihood that depends on the initial
parameter values. Regarding likelihood, we have to avoid un-
bounded maxima due to singular covariance matrices [1]. To
tackle this, we can set constraints on the covariance matrices or
impose a proper prior. Another issue that arises in the training
of mixture models is the specification of the appropriate number
of mixture components for a given data set. Due to the impor-
tance of the model selection problem a number of methods have
been proposed to address it.
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The most straightforward model selection approach is fitting
a number of mixtures with varying number of components using
EM for likelihood maximization, and evaluating the solutions
using a suitable criterion. The criterion is usually in the form of a
likelihood term plus a penalty term that penalizes mixtures with
higher number of components. Examples of such criteria are
the Akaike’s information criterion, the Bayesian inference crite-
rion, the Laplace empirical criterion, and the minimum message
length (MML) criterion (see [1] for a review and comparisons
of the criteria). In the same spirit, in [6], the use of the cross-val-
idated likelihood has been proposed; mixtures of varying com-
plexity are fitted to the training data, and are evaluated using
the likelihood on a separate test set. A test that is based on sta-
bility has been proposed in [7]. The proposed stability measure
constitutes an upper bound to the cross-validation classification
error, and has been extended for clustering problems.

Methods that simultaneously train the mixture and adjust the
number of components have also been proposed. A top–down
algorithm has been proposed in [8] based on suitable statistical
tests, which check the tendency for clustering and the signif-
icant number of clusters in the data. In [9], the MML crite-
rion has been integrated in the likelihood function, and is op-
timized gradually using EM. Starting with a large number of
components, the optimization method progressively removes
components, and the MML criterion is used to suggest the best
model. Moreover, this approach is less sensitive to initialization
than standard EM training. Another method for maximizing a
weighted likelihood function has been proposed in [10]. The
proposed empirical objective function is maximized using an
EM algorithm which incorporates a rival penalization mecha-
nism. This mechanism forces the components to compete for
responsibility over the data, and the losers are penalized and
eventually fade out.

A fully Bayesian approach has been proposed in [11], where
the number of components is treated as a random variable,
and the reversible jump Markov chain Monte Carlo method
is used for sampling, however, this method is computation-
ally demanding. To deal with the intractable integrations
appearing in the Bayesian approach, the use of the variational
approximation [12]–[14] has been proposed that yields an
iterative method similar to the formulation of EM that has been
proposed in [15]. This general optimization method called
variational Bayes (VB) has been employed in a number of
recent works. An online version of VB has been proposed in
[16]. VB for fitting mixture models has been used in [17]–[19].
Also in [20], the VB method has been used in conjunction
with the split-and-merge EM algorithm [21]. They derived an
objective function that allows the estimation of the parameters
and the number of components simultaneously, and applied
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split-and-merge EM for fitting a Gaussian mixture, as well as a
mixture of experts for regression. The VB has also been used in
[13] to estimate the parameters and the number of components
for a mixture of factor analyzers. They utilize a birth/death
operation on components to treat the model selection problem.

One of the most interesting approaches for the determination
of the number of components is suggested in [19]. It is a VB
method for optimizing the marginal likelihood given the mixing
coefficients. It starts with a large number of components, and
progressively removes those that reside in the same region of
the data space. We have found the method to be quite effective,
but the results are affected by the parameters of the priors. As
it will be discussed later, although the method does not allow
for several components covering the same cluster of data, if the
prior on the precision matrix (inverse covariance) of the com-
ponents is not properly chosen, it frequently reaches a solution
where a component covers more than two clusters. In addition,
although the method is deterministic, its convergence point de-
pends on the initial specification of the component parameters.

In this paper, we propose a Bayesian method for Gaussian
mixture learning that is deterministic, does not depend on
the initialization, and resolves adequately the model selection
problem. The method is an incremental one: it starts with
one component and progressively adds components to the
model. The procedure for component addition is based on a
splitting test applied to each of the existing mixture compo-
nents. According to this test, a component is replaced by two
subcomponents and, then, VB update equations are applied
to the specific pair of components, while the rest components
remain “fixed.” Due to the introduction of priors on the pa-
rameters of the Gaussians, a competition takes place between
the subcomponents. If the data distribution in the region of the
tested component strongly suggests the existence of more than
one clusters, then both subcomponents will “survive” and the
number of model components will be increased. Otherwise,
the competition among the two subcomponents will cause one
of them to be eliminated and the initial component will be
recovered. This strategy of incremental component addition
also facilitates the specification of the parameters of the priors,
since it can be based on the parameters of the component to be
split. In order to apply this idea, a modification of the Bayesian
mixture model is required that we will describe later.

In Section II, we describe in short the VB method. In
Section III, we present a modified Bayesian model and, in
Section IV, we derive update equations for mixture parame-
ters based on the maximization of a variational bound of the
marginal likelihood. In Section V, the splitting test is described
along with the proposed incremental training algorithm. Ex-
perimental results are presented in Section VI, and, finally, in
Section VII, we provide conclusions and directions for future
research.

II. VARIATIONAL BAYESIAN MODEL SELECTION

A convenient way to control complexity in mixture models
is by adjusting the values of the mixing coefficients. A com-
ponent is removed from the model if its mixing coefficient is
set to zero. Consequently, it is possible to consider a mixture

model with a large number of components and maximize a suit-
able objective function with respect to the mixing coefficients.
In this way, the redundant components would be eliminated, as
their mixing coefficients would be set equal to zero. The typ-
ical maximum likelihood estimation approach through EM is
not a viable choice for this kind of model selection, since a di-
minishing mixing coefficient results in a component whose co-
variance has diminishing eigenvalues, i.e., it leads to the forma-
tion of singular components. The Bayesian approach provides
a solution to this problem since it constrains the component pa-
rameters through the introduction of priors, thus it does not en-
courage the formation of singular components. In this manner,
only insignificant components are removed from the model. The
difficulties of the Bayesian method stem from the computation
of Bayesian integrals. However, on several occasions, the varia-
tional approximation has provided a viable solution to inference
in Bayesian models. In the rest of the section, we briefly describe
and discuss the variational Bayes approach proposed in [19].

Let be a set of observations, where each
is a feature vector. Let also be a mixture with Gaussian

components

(1)

where are the mixing coefficients (weights),
the means (centers) of the components, and the

precision (inverse covariance) matrices.
Modeling the data using implies the assumption that for

each observation there exists a hidden variable denoting
the component that generated . Let denote the
set of these hidden variables. can be represented as a -di-
mensional binary vector, such that if the th component is re-
sponsible for , then ; otherwise, . Thus, the
constraints hold for each . Consequently, the
density of given is , assuming for
some component .

A Bayesian mixture model is obtained by imposing priors on
the parameters and of the components. Typically, con-
jugate priors are used; that is, Dirichlet, Gaussian, and Wishart,
correspondingly. The Wishart prior for is

(2)

where the scalar denotes the degrees of freedom, is the
scale matrix, and the expected value of is .
However, in [19], a Bayesian model has been proposed that does
not assume a prior over the mixing weights, which are treated
as parameters and not as random variables. The graphical model
for this approach is depicted in Fig. 1(a).

In [19], the explicit estimation of means and covariances has
been suggested, using the expected values of their respective
variational posterior distributions. If we also assume a prior over
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Fig. 1 (a) Graphical model proposed in [19]. The plates represent repetitions
of the included random variables and the exact number of repetitions is depicted
in the upper right corner of each plate. We do not circle � to denote their special
treatment as parameters without priors. (b) Proposed graphical model adapted
for local model selection.

the mixing coefficients, and estimate them using the expecta-
tions with respect to the variational posterior, then these esti-
mates are going to be biased towards nonzero values. We avoid
this bias by omitting the prior over the mixing coefficients. We
are going to exploit these alternative choices for the develop-
ment of our method.

Bayesian model selection is obtained through maximization
of the marginal likelihood that results by integrating out
the variables from the joint density

(3)

and treating the mixing weights as parameters. The variational
approximation of the VB method suggests the maximization of
a lower bound of the logarithmic marginal likelihood

(4)

where the variational posterior is an arbitrary distribution
approximating the posterior . During maximization,
the mean-field approximation [13], [14], [17]–[19] is adopted,
namely that

A notable property of the method is that during maximization
of , if some of the components fall in the same region in the
data space, then there is a strong tendency in the model to elim-
inate the redundant components, once the data in this region are
sufficiently explained by fewer components. An interpretation
of this competition between components is obtained from the
following decomposition of the variational bound:

(5)

The first term corresponds to the expected log-likelihood, with
respect to . The second term is the Kullback–Leibler diver-
gence of the prior from . Due to the mean-field ap-
proximation, the divergence is a sum of three terms

(6)

If the adopted conjugate priors factorize over the number of
components, then the divergence is a sum over the number of
components, for example

(7)

If only a few data are available for the estimation of the poste-
rior , then this estimation is dominated by the prior .
Therefore, as the number of data that are available to the th
component tends to zero, the corresponding term of (7) also
tends to zero. Similar results hold for the rest of the terms in
(6). Consequently, a redundant component that covers few data
favors the decrease of divergence, and the variational bound (5)
increases as the component is eliminated. On the other hand, if
there is a strong evidence from the data, then the component is
retained, and the bound increases dominated by the increase of
the expected log-likelihood term in (5). In [18], it is discussed
how the Bayesian information criterion and the MML criterion
can emerge as a limiting case of the variational maximization of
the marginal likelihood.

The competition between components suggests a natural ap-
proach for addressing the model selection problem: fit a mixture
initialized with a large number of components and let the com-
petition eliminate the redundant. This is an effective method,
and in general provides the correct solution; however, it ex-
hibits some weaknesses. The method depends on the initial pa-
rameters of the mixture, and this affects model selection espe-
cially if initially fits a small number of components. Also, if
the mixture is initialized with a large number of components,
it is computationally expensive for large data sets in high di-
mensions. Apart from these, the most serious difficulty to be
addressed is related with the specification of the Wishart prior
imposed on the precision matrix. More specifically, the prior
knowledge captured by the scale matrix affects the results of
model selection (see, for an example, Fig. 2). The method of
[19] (we refer to it as VBgmm) has been applied on an artifi-
cial data set with 208 two-dimensional (2-D) points that form
15 Gaussian clusters. Three different scale matrices (
with ) were tested for fitting a mixture with
40 initial components, resulting in solutions with 9, 13, and 15
components, respectively.

We have observed that this is a consistent trend of the method:
the more narrow scale matrices are adopted, the more compo-
nents are used in the final solution. Here, we use the term narrow
to denote a scale matrix with comparably small eigenvalues.
However, it does not seem possible to determine in advance a
good value for the scale matrix. This issue becomes more im-
portant in the case of data sets that contain both large and small
clusters. If a broad scale matrix is selected, then many small
clusters will be covered by a single component. If a narrow scale
matrix is selected, then large clusters will be covered by more
than one component. It must be noted that we have not observed
analogous sensitivity to the prior over the centers, which is set
to be broad and uninformative.

Concluding, the disadvantage of the method is that by using
an arbitrarily broad scale matrix, it is not possible to take into
account the characteristics of the data in the region where the
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Fig. 2. Fitting artificial data using VBgmm with different prior parameters.
From (a) through (c), the results are shown using narrower scale matrices.

competition between components takes place. In other words,
the method operates with a global precision prior that is diffi-
cult to be correctly determined a priori, while a local precision
prior seems to be desirable. The proper choice of a different
for each component seems to be a very difficult and complicated
task. The use of a hierarchical Bayesian model, as in [15], could
offer a solution. Namely, we could impose a distinct prior over
the precision matrix of each component and a suitable hyper-
prior over the parameters of these priors, and estimate the pa-
rameters of the priors maximizing a proper variational bound.
However, we propose an incremental method for building the
mixture that allows us to define in a more explicit way. At
each step, learning is restricted in the data region occupied by a
specific mixture component , thus a local precision prior can be
specified based on the precision matrix . In order to achieve
this behavior, a modification to the generative model used in
VBgmm is needed that restricts the competition in a subset of

the components only. This idea of local model selection is pre-
sented in Section III.

III. BAYESIAN FRAMEWORK FOR LOCAL MODEL SELECTION

Consider a set of observations
and a mixture model with Gaussian components

(8)

Suppose that a number of the components fit the data well
in their corresponding region of influence; then, the question is:
can we further optimize the parameters of the remaining com-
ponents and also impose a model selection mechanism? In other
words, the problem is how to adapt the model of Section II so
that the competition among components is restricted in a spe-
cific subset of them, while the rest remain “fixed.”

This means that we partition the components in two groups,
the “fixed” components and the “free” ones, and we estimate
only the parameters of the latter. However, before proceeding
to such an estimation, it is necessary to impose a suitable prior
on the mixing coefficients of the “fixed” components (called
“fixed” mixing coefficients), thus preventing their elimination
from the mixture model. Following the introduction of this prior,
the “fixed” mixing coefficients are treated as random variables
and are integrated out, leading to a marginal likelihood that de-
pends only on the “free” mixing coefficients. Maximizing the
marginal likelihood with respect to the “free” mixing coeffi-
cients, we restrict the search for the redundant components to
the corresponding components.

The proposed graphical model is illustrated in Fig. 1(b). It can
be observed that it is similar to the model in Fig. 1(a) with the
difference that a prior has been imposed on the “fixed”
mixing coefficients . As before, given the set of hidden vari-
ables , it holds that

(9)

assuming independent identically distributed (i.i.d.) obser-
vations. The prior distribution of assuming i.i.d. hidden
variables is a product of multinomials

(10)

given the subset of “fixed” mixing coefficients and
the subset of “free” mixing coefficients. For nota-
tional convenience and assuming mixing components, we can
always rearrange the indices so that the first components are
the “free” ones. The subsets of the mixing coefficients are dis-
joint, and their values are restricted to be nonnegative and sum
to unit: . We also note that in the
boundary case where coefficient becomes zero, it is neces-
sary that for all , and, consequently, all the corre-
sponding factors become unit.
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The typical Bayesian framework assumes conjugate Dirichlet
priors over the entire set of mixing coefficients. However, in
order to apply our idea, it is necessary to define the conditional
joint distribution of the “fixed” coefficients given the
“free” ones. Thus, we define a Dirichlet prior over all the mixing
coefficients

(11)

where for and for
. Consequently, the first factors are reduced to a “uniform dis-

tribution” that allows some of the “free” coefficients to become
zero, while the “fixed” ones have zero probability to become
zero. It is known that if the joint distribution of a set of variables
is Dirichlet, then the marginal joint distribution of a subset of the
variables is also Dirichlet (see [22]). Using Bayes theorem, the
conditional joint distribution can be derived, which is a
nonstandard Dirichlet

(12)

and constitutes a conjugate prior of the “fixed” coefficients. The
expected values of and given are

(13)

(14)

where is the digamma function, .
Completing the specification of our Bayesian model, we as-

sume Gaussian and Wishart priors for and , respectively

(15)

(16)

In Section IV, we derive a learning method for this model, based
on the maximization of the marginal likelihood.

IV. VARIATIONAL LEARNING WITH LOCAL MODEL SELECTION

Learning in the Bayesian framework can be achieved through
maximization of the marginal likelihood of the data which is
obtained by integrating out the hidden variables of the model.
In our case, the marginal likelihood of given is obtained by
integrating out as follows:

(17)

Following the VB methodology [13], [14], [17]–[19], which
aims to maximize a lower bound of the logarithmic marginal
likelihood , we maximize

(18)

where is an arbitrary distribution that approximates the poste-
rior distribution . The choices that affect are
explicitly the mean-field constraint that we describe in the fol-
lowing, and implicitly the conjugate priors that we impose on
the variables of the graphical model. The maximization of is
performed in an iterative way, where at each iteration two steps
take place: first, maximization of the bound with respect to ,
and, subsequently, maximization of the bound with respect to .

To implement the maximization with respect to , we have
adopted the mean-field approximation [13], [14], [17]–[19], and
we consider that is constrained to be a product of the form

The method does not assume any specific form for the factors of
; instead, it maximizes with respect to the functional form of

, and . The standard variational analysis optimiza-
tion involves the Euler equation and constraints of Lagrange
multiplier type to ensure that the solutions are density functions
(see [23]). The solution for each is

(19)

where the expectation is computed with respect to all the
variables except . Applying (19), the result is the following set
of densities:

(20)

(21)

(22)

(23)

The parameters of the densities are the following:

for (24)

for

(25)
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(26)

(27)

(28)

(29)

(30)

(31)

(32)

The expectations with respect to used in (24)–(32) satisfy
the following:

, and
. Concerning the responsibilities (posteriors) of compo-

nent with respect to , we have that for the “free” components
(for ), and for the “fixed” it holds that
, (for ). Thus, according to (13)

and (14), we get

(33)

(34)

It can be observed that the densities are coupled through their
expectations, thus an iterative estimation of the parameters is
needed. However, in practice, a single pass seems to be sufficient
for this step.

After the maximization of with respect to , the second step
of each iteration of the training method requires maximization
of with respect to , leading to the following update equation:

(35)

Comparing (33) and (35), we can see how the imposed prior
over the “fixed” coefficients affects their estimation. In contrast

to the “free” coefficients, the Dirichlet prior hinders the zeroing
of the “fixed” ones.

The previous update equations are applied iteratively until
convergence, which can be monitored through inspection of the
variational bound. During the optimization some of the “free”
coefficients converge to zero. Although these coefficients even-
tually will become exactly zero, we can eliminate the compo-
nents with very small coefficients. We used as a threshold the
value , as we verified experimentally that any value in
this scale can be used without affecting the obtained results.
In Section V, we present an algorithm that incorporates the
proposed local model selection method to solve the problem
globally.

V. INCREMENTAL LEARNING BASED ON

COMPONENT SPLITTING

We have exploited the local model selection method to
develop an incremental algorithm for Bayesian mixture model
learning. In our approach, mixture components are sequentially
added to the mixture model using the following component
splitting procedure: one of the mixture components is selected
and is appropriately split into two components. We treat the
resulting two components as “free” and the rest as “fixed,”
according to the terminology introduced in Section IV. Next,
we set the precision prior based on the characteristics of
the split component, and apply variational learning with local
model selection as described in Section IV. There are three
possible cases for the outcome of the local model selection.
In the first case, where the two “free” components provide a
much better fit to the data in their region, both of them are
retained in the mixture model. In the second case, where one
of them is redundant, during the optimization, it is eliminated
and the other is retained. There is also a rare third case, where
both components are eliminated because the split component
is insignificant (with a very low mixing coefficient). It happens
that such a component is responsible for a few outliers, in the
vicinity of a significant component. After splitting, the dom-
inant component also gets the responsibility for the outliers,
and the new components are both eliminated. In the proposed
algorithm, we do not accept this split because it may lead the
method to an infinite loop, so we restore the split component.
However, it is possible for one to remove the outlier compo-
nents after termination of the method. An obvious heuristic is
to set very small mixing coefficients equal to zero, and check
if these changes increase the variational bound. Although it is
possible for the proposed algorithm to overestimate the number
of components, we do not adopt a global pruning mechanism,
e.g., as given in [21]. We are solely based on the capability of
the splitting test to prune locally the redundant components.
Experimental results supported our choice, as we did not detect
a systematic overestimation. In order to apply the proposed
method, the mixture model must consist of two components at
least. To take into account the possibility that the data set has
been generated by a single component, we initially apply the
VBgmm method to a two-component model, using as precision
prior the inverse covariance of the data set. If learning yields
a single-component model, we terminate; otherwise, we start
applying splitting tests to the resulting two-component model.
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The splitting test is applied sequentially to all components and
the method terminates when all mixture components have been
unsuccessfully tested for splitting. In the case where a suc-
cessful split is encountered, the number of mixture components
increases and a new round of splitting tests for all components
is initialized. A description of the proposed algorithm is sum-
marized in the following.

1) Set � := 1e � 10, and � := d.
2) Initialize J := 2; V := CovfXg and train a

mixture model using VBgmm.
3) If after convergence there is only one

component, then stop.
4) Let C be the set of J components that

form the mixture model fJ.
5) Sort the elements of C in descending

order, according to jUj j.
6) For each component c 2 C do the

following.
a) Split c in c1 and c2, according to

(36)–(39), and form fJ+1.
b) Let F = fc1; c2g be the set of “free”

components, and �F the set of
“fixed” components with elements the
components of fJ+1 except c1 and c2.

c) Set �j :=
N

n=1
hzjni for cj 2 �F, and

V := ��I where � is the maximum
eigenvalue of Uc=�c.

d) Apply iteratively (20)–(35) on
the parameters of fJ+1, and
after convergence form fJ with J 0

components.
e) If both components in F have been

removed, then
i) register the failure of the

split;
ii)continue with the next component

in C [go to step 6a)].
f) If one of the components in F has

been removed, then register the
failure of the split.

g) Set J := J 0 and fJ := fJ .
7) If all splits failed, stop; otherwise, go

to step 4).

To illustrate the details of the splitting process, assume that
component has to be split, with density . The idea
is that in order to form the new mixture, we remove component

and insert two new components with densities
and , respectively. We have selected to place the
centers of the two components along the dimension of the prin-
cipal axis of the covariance and at opposite directions with
respect to the center . The mixing coefficients of the two com-
ponents are set equal and their parameters
are set according to

(36)

(37)

(38)

(39)

where is the maximum eigenvalue of and the corre-
sponding eigenvector. It must be noted that we have selected
a simple and sensible choice for placing the centers of the
two components which has also been used in other methods
involving cluster splitting, e.g., see [24] and [25] for advanced
methods on how to specify the splitting direction. Other options

could also be tested (e.g., random direction selection [13]), as
well as multiple splitting tests with different initializations of
the two components.

An important issue in the proposed method is the specifica-
tion of the scale parameter of the prior over the
precision matrices, based on the split component. We set

(which is the minimum allowed value), and wish the mean
of the precision prior to be comparable to the precision

matrix . However, we have empirically found that when set-
ting there is a tendency to accept more splits than
necessary and better results are obtained if we specify the scale
matrix to be somewhat broader. In this spirit, we have selected
to set , where is the highest eigenvalue of . An
example of splitting and setting the prior is illustrated in Fig. 3.

Another aspect of the method deals with the order that
components are sequentially selected for the splitting test. We
have found that the method performs faster (makes fewer un-
successful splits) if we give priority to the broader components
with broadness measured by the determinant of the covariance
matrix of the component. It must be noted that, depending on
the structure of the data set, it is possible that the final result is
affected by this selection order (order effect). If the clusters are
well separated, we have empirically observed that the ordering
has no effect on the final solution. For more difficult data sets,
it is expected that the results could be sensitive to the selection
order. However, it seems very difficult to experimentally assess
the importance of this issue.

In what concerns the effect of outliers, it is possible that out-
liers could affect our estimate of the covariance matrix that is
used to specify the prior at each splitting step. This issue can be
treated only by using some preprocessing method for outlier re-
moval. Also, it is possible that, due to outliers in the data, outlier
components will exist in our final solution. However, as we pre-
viously mentioned, it is possible to remove the outlier compo-
nents after termination of the method, since they have very small
mixing coefficients. We could set equal to zero those mixing co-
efficients that are very small and check if this change increases
the variational bound.

A. Complexity Issues

In the following, we briefly discuss the time complexities of
the proposed algorithm (we refer to it as VBgmmSplit) and
VBgmm. For both algorithms, if the number of components
is fixed to , then the time complexity of the update equa-
tions is , similar to the EM case. However,
as the number of components changes, the total execution time
is affected differently by the two alternative model selection
approaches. The VBgmm algorithm benefits from the adopted
bottom-up approach, because during optimization decreases.
It is obvious that for both algorithms the execution time depends
on the estimated final number of components. If it is high, then
the VBgmmSplit algorithm has to execute a large number of
splitting tests, although each test is fast, as it is applied to two
components only. On the other hand, if the estimated number of
components is low, then the VBgmm algorithm suffers because
the mixture is initialized with a large number of components.

In order to speed up each split test, we propose to keep fixed
the estimations of the mean vectors and the covariance matrices
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Fig. 3. Four instances of the training procedure. The expected covariance with respect to the Wishart prior is depicted with a dashed line. (a) Intermediate solution
with five components. (b) One component is split into two. (c) Mixture after variational learning. (d) Another component is selected and split.

of the “fixed” components. Namely, at each iteration of step 6),
instead of the maximization of the variational bound with re-
spect to (21) and (22), we propose the following partial updates:

(40)

(41)

where and
are fixed. The values of and are set

according to the results of the previous splitting test.
As a concluding remark, we observed that VBgmm is in

general faster than VBgmmSplit. However, an advantage of
VBgmmSplit is that it suggests a deterministic initialization of
the mixture, thus we do not have to resort to multiple restarts or
similar time consuming techniques.

VI. EXPERIMENTAL RESULTS

We evaluated the proposed VBgmmSplit algorithm for
learning mixtures using artificial and real data sets. For com-
parison, we fitted the same data using VBgmm and two
more methods: an MML-based method [9] (we refer to it as
MMLgmm1) and the variational Bayesian mixture of factor
analyzers method [13] (we refer to it as VBmfa2). During
training with VBmfa, we set the maximum intrinsic dimension-
ality of each factor analyzer equal to the original dimension
of the data, so that it can capture sufficiently the covariance
matrix. We initialized VBgmm, VBmfa, and MMLgmm with
50 components.

The first test of VBgmmSplit was using artificial data that
form Gaussian clusters, so that the resulting mixture can be in-
terpreted as a clustering solution. The first data set (the same
that was used in Section II) consists of 208 2-D points forming

1Software available at http://www.lx.it.pt/mtf/mixturecode.zip
2Software available at http://www.cse.buffalo.edu/faculty/mbeal/software/

vbmfa/vbmfa.tar.gz
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Fig. 4. From left to right: the data clustered using VBgmmSplit, histogram of the number of components found by MMLgmm, and histogram of the number of
components found by VBmfa. (a) Artificial data forming 15 clusters. (b) Artificial data forming ten clusters.

15 Gaussian clusters. Fig. 4(a) depicts the result of VBgmm-
Split. We applied MLgmm and VBmfa 50 times each, and most
of the times they fitted the data using 14 components. Fig. 4(a)
illustrates histograms of the number of components found by
those methods. VBmfa exhibits higher variance in the results
than MMLgmm, and also two times found solutions with only
six components. For the next experiment, we used 505 ten-di-
mensional points generated from ten Gaussian clusters. Fig. 4(b)
depicts the result of VBgmmSplit projected on the two first prin-
cipal axes, and histograms of the number of components found
by MMLgmm and VBmfa for 50 runs. MMLgmm did better,
using eight or nine components, while VBmfa found four or five
components most of the times.

To test the effect of separation of the clusters on the perfor-
mance of the algorithms, we conducted a series of tests using
artificial data with varying degree of separation [26] among the
clusters. The degree of separation for a data set generated from
a Gaussian mixture (1) means that for each pair of components

it holds that

(42)

For each value of , a data set with 1000 ten-
dimensional points was created by sampling from a ten-com-
ponent Gaussian mixture with equal mixing weights. For each
covariance matrix, we constrained the ratio of the largest eigen-
value to its smallest eigenvalue to be less than ten. To check the
dependence of the training algorithms on the initial conditions,
we repeated the clustering of each data set 20 times. We present
the average estimated number of components for each data set
in Table I. During training with VBgmm, we set equal to the

TABLE I
AVERAGE ESTIMATED NUMBER OF COMPONENTS AND THE STANDARD

DEVIATION IN PARENTHESES FOR SEVERAL VALUES OF THE

DEGREE OF SEPARATION c

covariance matrix of the data set. We found this algorithm to be
the most affected by the separation of the clusters.

The performance of the algorithms was also tested on real
data. More specifically, we applied VBgmmSplit to a set of
handwritten digits [27] [see Fig. 5(a) for some examples]. Each
digit is an image of 8 8 pixels, with 256 grayscale intensities.
We created a data set using 700 cases for each of the digits 0–4,
and clustered the data with a single mixture model. The data set
was preprocessed, so that the mean was zero and the variance
unit in each dimension. The mean vectors of the components
found by VBgmmSplit are illustrated in Fig. 5(b). After fitting
a single mixture on the data with each algorithm, we compared
them in terms of the “classification” error using previously un-
seen test cases (200 for each digit). To compute this error, we
assigned each training case to the component with maximum
responsibility (posterior). After this hard clustering, we labeled
each component with the class of the majority of its data. In order
to classify a test case, its responsibilities with respect to each
component were computed, and the class label of the component
with maximum responsibility was assigned to it. VBgmmSplit
provided a solution with 14 components and classification error
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Fig. 5. (a) Some examples of the digits data set. (b) Mean vectors for each component of the mixture fitted with VBgmmSplit. Above each mean the mixing weight
of the component is displayed.

TABLE II
EXPECTED NUMBER OF COMPONENTS AND CLASSIFICATION ERROR (STANDARD

DEVIATION IN PARENTHESIS) OF THE VBGMM METHOD FOR THE DIGITS DATA.
THE RESULTS OBTAINED USING A WISHART PRIOR WITH SCALE MATRIX �I

1.9%. The VBgmm method was also tested using a Wishart prior
with various scale matrices, and the results are summarized in
Table II. The expectations were computed after five trials for
each scale matrix. We trained a mixture with 50 components
initially, and the best solution had average classification error
2.0% and the average number of components was 17.

Due to the high dimensionality and sparsity of the data set,
the MMLgmm was able to provide acceptable results under the
assumption of a common full covariance for all mixture compo-
nents. For five trials, the average classification error was 11.9%
and the average number of components was 19.8. When a sepa-
rate diagonal covariance for each component was assumed, the
average error on five runs was 35.9% and the average number of
components was 7. In both experiments, the initial mixture had
50 components.

VBmfa was also used to fit a mixture of factor analyzers. It
must be noted that in this data set the VBmfa method exhibited
sensitivity on the value of maximum intrinsic dimensionality
that had to be specified in advance. To obtain results compa-
rable with VBgmmSplit in terms of execution time and number
of components, the maximum intrinsic dimensionality of each
component was set to ten after experimentation. For five trials,
the average error was 11.4% and the average number of com-
ponents was 14. The result was not satisfactory, as some of the
components were responsible for data of more than one class.
The error could be further improved if we decreased the max-
imum intrinsic dimensionality of the factor analyzers, although
in this way the number of components and the execution time
would increase.

VII. CONCLUSION

We have proposed an incremental approach for model selec-
tion and learning of Gaussian mixtures. The method improves
the Bayesian approach proposed in [19], which provides an
elegant mechanism to allow for the competition among com-
ponents residing in the same region of the data space and the
elimination of the redundant ones. However, apart from the
initialization problem, this approach exhibits sensitivity on the
parameters of the prior of the precision (inverse covariance)
matrix. As we have shown, it is difficult to specify appropriate
values for these parameters, especially in the case of problems
containing clusters of different sizes.

The proposed method ameliorates these difficulties by se-
quentially adding components to the mixture using a Bayesian
splitting test procedure where a component is split into two com-
ponents and then variational update equations are applied only
to the parameters of the two components. As a result, either both
components are retained in the model or one of them is found
to be redundant and is eliminated. Our approach allows for the
specification of a different local precision prior for each split-
ting test, whose parameters can be specified by taking into ac-
count the characteristics of the precision matrix of the compo-
nent that is tested for splitting. In addition, the proposed method
is deterministic and does not depend on parameter initializa-
tion as it happens with the other methods. As indicated by the
experimental results and comparisons with two other powerful
methods, the proposed approach seems to adequately address
the model selection problem in Gaussian mixtures.

Future work will focus on refining the method by elaborating
on and testing two issues. The first is to explore alternative ways
to specify the local precision prior. Apart from this, it is pos-
sible to perform multiple splitting tests for the same component,
with the scale matrix gradually increasing in order to obtain a
measure of robustness for the splitting test. The second issue is
to consider alternative ways to initialize the means of the two
subcomponents during split (e.g., in [13] split direction is se-
lected randomly). Also, it is possible to perform multiple split-
ting tests for a specific component with different subcomponent
initializations each time. Finally, other issues to be considered
are the scalability of the method, the possibility to concurrently
perform splitting tests for many components, and its use in sev-
eral application domains (e.g., image segmentation). It is also
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possible to examine the applicability of this approach for super-
vised training using mixture models [28].
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