IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 4, APRIL 2009

753

Variational Bayesian Sparse Kernel-Based Blind
Image Deconvolution With Student’s-t Priors
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Abstract—In this paper, we present a new Bayesian model for
the blind image deconvolution (BID) problem. The main novelty of
this model is the use of a sparse kernel-based model for the point
spread function (PSF) that allows estimation of both PSF shape and
support. In the herein proposed approach, a robust model of the
BID errors and an image prior that preserves edges of the recon-
structed image are also used. Sparseness, robustness, and preser-
vation of edges are achieved by using priors that are based on the
Student’s-t probability density function (PDF). This pdf, in addi-
tion to having heavy tails, is closely related to the Gaussian and,
thus, yields tractable inference algorithms. The approximate vari-
ational inference methodology is used to solve the corresponding
Bayesian model. Numerical experiments are presented that com-
pare this BID methodology to previous ones using both simulated
and real data.

Index Terms—Bayesian approach, blind image deconvolution
(BID), inverse problem, kernel model, sparse prior, student-t
distribution.

1. INTRODUCTION

N blind image deconvolution (BID), both the initial image
I and the point spread function (PSF) are unknown. Thus, for
this problem, the observed data are not sufficient to uniquely
specify the unknown image and PSF. In order to resolve this
ambiguity, prior knowledge (constraints) has to be used for both
the image and the PSF. Over the years, a number of methodolo-
gies have been employed to introduce constraints in BID. For an
almost ten-year-old survey paper on this problem, the reader is
referred to [1], [2]. A very recent edited book on BID methods
is [3].

One category of such methods is based on regularization
using the total variation (TV) principle. These methods define
a distance function based on the data and use smoothness
constraints on both the image and the PSF based on the TV
principle [4]. A survey of recent developments on TV methods
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in image recovery problems and a book containing a review
of the recent developments in mathematical tools for low level
image processing problems can be found in [5] and [6], respec-
tively. Methods based on anisotropic diffusion regularization
have been also proposed [7]; however, they require the choice
of the diffusion operator. There are also methods based on soft
constraints [8], [9], which are very flexible; however, the form
and the type of the used soft constraints is ad-hoc. Methods
based on sparse image representations and quasi likelihood
criteria have been also suggested [10].

Another way to apply constraints to the image and the PSF, is
through the use of the Bayesian methodology. In this approach
the unknown quantities are assumed to be random variables and
suitable prior distributions are selected to impose the desired
characteristics[11]-[16]. Unfortunately, since the BID data gen-
eration model is nonlinear, the posterior distribution of the un-
known image and PSF can not be computed analytically. Thus,
Bayesian inference using conventional methods, such as max-
imum likelihood (ML) via the expectation maximization (EM)
algorithm, cannot be applied.

These difficulties can be overcome using the variational
Bayesian methodology [17] and [18]. To our knowledge, this
methodology was first applied to the BID problem in [13].
In this paper, the PSF and the image were modeled by an
exponential and a mixture of exponential distributions, re-
spectively. Furthermore, the support of the PSF was known,
and the images were line drawings which are sparse, in the
sense that their intensity is zero at most locations. This work
was recently extended for natural scene images in [14] with
promising results. More specifically, a mixture of Gaussians
for the gradient of the image, and a mixture of exponentials for
the PSF were used. This PSF model allows only positive PSF
intensities and encourages sparsity, all of which are desirable
properties for BID. However, it does not model spatial PSF
correlations. In another line of work [15], a simultaneously
autoregressive (SAR) prior and a Gaussian prior with unknown
mean and spherical covariance have been used for the image
and PSF, respectively. This methodology was extended in [16]
to account for spatial PSF correlations using SAR models for
both PSF and the image. However, this approach fails to model
edges in the image or PSF and does not provide a mechanism
to estimate the support of the PSF.

In this paper, we propose a Bayesian model for the BID
problem that allows reconstruction of image edges, models
spatial PSF correlations and estimates the PSF support. The
main contribution of this paper, is a model that enforces PSF
smoothness and simultaneously estimates the PSF support.
Specifically, we model the PSF as a linear combination of
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kernel functions that are placed at all the pixels of the image.
Thus, the amount of smoothness can be controlled by selecting
the kernel function. The support of the PSF can be arbitrarily
large, since we placed kernel functions at all image pixels.
However, we assume that the distribution of the weights of
the kernels that models the PSF is a heavy tailed Student’s-t
distribution. This distribution favors sparse models, forcing
most of the weights to become zero and, therefore, limiting the
support of the PSF. Furthermore, in order to promote smooth
image estimates, we constrain the local image differences, by
assuming that they follow a zero-mean Student’s-t distribution
in order to allow reconstruction of edges[19]. Finally, we model
the errors of the imaging model with a Student’s-t distribution.
This is important, not only because the noise in the observed
image may not be Gaussian, but also because inaccurate PSF
estimates produce heavy tailed errors, since the BID model is
nonlinear.

In the proposed model, we use extensively the Student’s-t pdf.
This pdf can be considered as a generalization of the Gaussian
since with appropriate selection of its parameters, it can have
heavy tails and in the limit it can become either Gaussian, or
uninformative; see Fig. 1(a). Thus, when errors of a model are
assumed Student’s-t distributed, this yields robust estimators.
Furthermore, when the parameters of a model are assumed Stu-
dent’s-t distributed, this results in sparse models i.e., models
with few nonzero parameters. Such models are very attractive
and are currently a hot topic of research since they automati-
cally provide a mechanism to determine their complexity[20].
The sparsity of such models can be understood by observing
the plots of the 2-D pdfs in Fig. 1(b). Most of the mass of the
Student’s-t pdf is concentrated along the axes and the center, un-
like the Gaussian, where it is evenly distributed around ellipses,
as shown in Fig. 1(c). This observation can be generalized for
vectors of arbitrary dimension, where the Student’s t pdf assigns
large probability mass to estimations that contain a large number
of zero elements. The Laplacian pdf which has heavy tails has
also been used for encoding sparse models[21]. Another very
attractive property of the Student’s-t pdf is that it can be gener-
ated by the superposition of an infinite number of Gaussian pdfs
with common mean and precision (inverse variance) which is
Gamma distributed [17]. This allows tractable Bayesian infer-
ence for models that use this pdf [22]. Specifically, if we as-
sume a vector £ = (x1,...,xx)7 of independent random vari-
ables x; that follow a Student’s-t distribution given by p(z) =
Hf\;l St(ax;|p, A, v) and introduce the independent hidden vari-
ables 7 = (4, ...,7x5)7, with p(r) = [[, Gamma(r;|a, b)
we can write the Student’s-t pdf as p(z) = [ p(z|T)p(T)d T,
where p(z|T) = N(z|0, diag{7}). Here

(v+1)

: ) A\Y2 D2
—F(%) (E) (1-{—;(1—“))

L
St(z|p, A, v) =

is the Student’s-t distribution with mean y, precision A and de-
grees of freedom v

N(el. 5) = (27) M2/ exp [—%(t e u)} |
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Fig. 1. (a) Student t pdf with 0.1, 1, and 10 degrees of freedom compared to the
Gaussian pdf. Two-dimensional plot of (b) the Student’s-t pdf with 0.1 degrees
of freedom and (c) the Gaussian pdf.

is the multivariate Gaussian distribution with mean g and co-
variance matrix X, Gamma(t|a,b) = I'(a)~ b7 te™t7 is
the Gamma distribution with parameters ¢ and b and I'(z) =
Jtm e d L.

The rest of this paper is organized as follows. In Section II,
the Bayesian model is presented. In Section III, a brief introduc-
tion to the variational methodology is presented and the vari-
ational methodology is applied for inference to the proposed
model. In Section IV, we present experiments with artificially
blurred images where the ground truth is known and with real
astronomical images. In these experiments, we compare the pro-
posed methodology with Bayesian methods that use Gaussian
priors and TV based methods and the advantages of the pro-
posed methodology are demonstrated. Finally, in Section V, we
provide conclusions and directions for future work.

II. BID MODEL

We assume that the observed image g(z) is given by con-
volving an unknown image f () with an unknown PSF h(z). To
account for errors, additive, independent, identically distributed
noise n(z) is also assumed. This model is written as

g(x) = f(z) * h(z) + n(z) M

where £ = (21, 22) € Qr, Qr C R? is the support of the image
and * denotes 2-D circular convolution. Equivalently, this can
be written in vector form as

g=f*h+n 2
where g, f, h, and n are M x 1 lexicographically ordered vec-
tors (M is the number of pixels) of the intensities of the de-
graded image, observed image, PSF and additive noise respec-
tively. Here, we introduce the M x M block-circulant matrices
F and H, which implement 2-D convolution with the vectors f
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and h, respectively, so that Fh = Hf = f x h. Then, the BID
model in (2) can be written as

g=Fh+n=Hf+n. 3)

The blind image deconvolution problem is difficult because
there are too many unknown parameters that have to be esti-
mated. More specifically, the number of unknown parameters h
and f is larger than the number of observations g, and, thus,
reliable estimation of these parameters can only be achieved
by exploiting prior knowledge of the characteristics of the un-
known quantities. Following the Bayesian framework, the un-
known parameters are treated as hidden random variables and
prior knowledge is expressed by assuming that they have been
sampled from specific prior distributions.

A. PSF Kernel Model

‘We model the PSF as the linear combination of basis func-
tions

M
h(z) = wigi(x) “
=1

where ¢;(z) = R(z,z;) is a kernel function centered
at &, = (zi1,22) € Qr and w; € RN. We denote as
h = (h(z1),....h(za))" the vector of values of the PSF
h(z) at each ; and with ¢; = (¢i(z1),...,¢i(zar))" the
corresponding basis vector for ¢;(z). Then the PSF vector h is
modeled as the linear combination of the basis vectors ¢;

h= szgbz (5)

=1

We further assume that the kernel is invariant to translations,
ie., R(z,x;) = R(x — =;); thus, (5) can be written as

h=¢xw=w=W¢ 6)

where w = (w1, ..., wyr)T are the weights of the linear com-
bination and ®, W are M x M block-circulant matrices that
implement 2-D convolution with ¢ = ¢, and w respectively, so
that ®w = W¢ = w * ¢. Thus, the BID data generation model
(2) can be written as

g=Fbw+n=0Wf+mn. @)

In this paper, Gaussian kernel function of the form
R(z,zg) = exp[—(1/2ai)||z — x0||*] (RBF kernels) is
considered, which produces smooth estimates of the PSF.
However, any other type of kernel could be used as well. It
is even possible that many different types of kernels are used
simultaneously, at a small additional computational cost [23].

B. PSF Sparseness

A hierarchical prior that enforces sparsity is imposed on the
weights w([20]

p(wla) = N(w|0,A™") 8)
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Fig. 2. Histograms of (a) estimated PSF weights assuming known PSF, (b) hor-
izontal, and (c) vertical local differences of the “Lena” image and (d) model
errors of an image restoration method using incorrect PSF estimation. Solid
lines show fits by the Student’s-t pdf with parameters (a) = 2.51 x 10734,
A=9.05x10%7, v = 0.043;(b)p = 1.7x1073, A = 4.59x 103, v = 1.09;
©p=-4x10"*,A2=1.03x10*,» =1.132;and (d) t = 2.39 x 106,
A =6.68 x 105, v = 3.12.

() (b) ©

Fig. 3. Example of the estimated local variances (a) a~" of the PSF weights
for a uniform 7 X 7 square-shaped PSF, (b) and (c) (7*) ™%, and (72) ! of the
image model residuals.

where @ = (g, ...,ay)T, A = diag{a}. Each weight is as-
signed a separate local precision parameter «;, which is treated
as a random variable that follows a Gamma distribution

M

p(a) = H Gamma(a;|a®, b%). )
=1

This hierarchical prior is equivalent to a Student’s-t pdf.
Fig. 2(a) shows a histogram of the estimated weights when
the PSF is a 7 X 7 uniform square-shaped function and it is
assumed known. It is apparent that the pdf of the weights is very
heavy tailed and that there are only few nonzero weights. For
this reason, we set a® = b* = 0 that define a very heavy tailed,
uninformative Student’s-t distribution. It is interesting that the
hidden variables «; of this Student’s-t distribution provide an
estimate of the support of the PSF. Specifically, local precision
«y; that correspond to kernels outside the support of the PSF
obtain very large values; therefore, those kernels are pruned
by setting w; = 0. This is demonstrated in Fig. 3(a) where
we show the estimated local variances for a BID problem with
a 7 x 7 uniform PSF. Notice that outside a limited area that
captures the support of this PSF these variances are zero.
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C. Image Model

The image prior that we use is based on K filtered versions
of the image: €¥ = Q" f, where Q" are M x M convolutional
operators of the filters (¢ = 1,..., K). Specifically, we use
horizontal and vertical first order local differences, by defining
K =2, Q" and Q? so that

= flz,y+1). (11

Without any changes in the method, we could also use other
convolutional operators Qk [24]. In practice, we join all opera-

tors Q" in the KM x M operator Q = (QlT./ e 7QKT)T that

produces the K M x 1 vector € = (elT, e ,eKT)T

E=Qf=(@'NT,....Q" N

We assume that ¥ is Gaussian distributed with distinct precision
k
Vi

' (z,y) =
(z,y) =

(12)

plei i) = N(ef 0, (7).

Assuming the ¢¥ independent with respect to i, induces a prior
for the image, which is given by

pe(FIY*) = N(f10,(Q* T" Q"))

with 4% = (4% .. .4k )T and T"* = diag{~*}. In order to com-
bine the information captured by each prior py, we define a com-
posite prior, which is the product of them [25]

K
H (f1r*)

with 4 = ('le, . ,'yKT)T and I = diag{#}. Unfortunately,
it is not possible to analytically compute the determinant

13)

(14)

p(FI7) = =N(f0,(Q Q)™  (15)

AT = = . . . Lo
|Q I'Q| that is required to estimate the normalization con-
stant Z since @ is not square. Instead, we approximate it as

~T ~ ~ ST <
Q@ I'Q| = |I'|Q Q|, giving

o) « [T T ()

k=1li=1

o |3 1@ Q] a6)
Notice that the approximation only affects the normalizing con-
stant of the pdf. Therefore, this is an improper pdf whose inte-
gral is not necessarily unity. Improper pdfs have been used in
many other Bayesian methods [26]. The local precision param-
eters ¥ are assumed to be independent identically distributed,
Gamma random variables

K M

p(y) = H H Gamma(yF|a”,b7).

k=1i=1

a7)

Thus, the prior on the first order local differences €* is equiva-
lent to a Student’s-t pdf. The appropriateness of the Student’s-t
to model local image differences is demonstrated in Fig. 2(b)
and (c), where a histogram of the horizontal and vertical local
differences for the “Lena” image is shown. Notice, that most
local differences, that correspond to smooth image regions, are
very close to zero. However, there is also a significant number
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of large values that correspond to image textured regions and
image edges. A heavy tailed pdf, such as the Student’s-t is nec-
essary in order to model both smooth and textured regions or
edges. At this point it is interesting to point out that the hidden
variables of this Student’s-t prior capture the image edge struc-
ture using a continuously valued model. This is demonstrated in
Fig. 3(b) and (c), where the local variances ('yk)_1 are shown.
It is interesting to notice that the variances (y*)~! and (y2)~!
provide the vertical and horizontal edge structure of the image,
respectively.

D. Noise Model

The noise n of the BID model (3) is assumed to be zero mean
Gaussian distributed, given by

p(n|B) = HN ni]0,67') = N(nl0,B™Y)  (18)
with 8 = (f1,...,u) and B = diag{B}. The local precision
parameters [31- are also assumed to be random variables with a
Gamma prior
M
= H Gammal(g;]a”, 7).

=1

19)

This two-level hierarchical prior for noise is equivalent to
a Student’s-t pdf. Since the Student’s-t distribution can have
heavy tails, this prior model does not excessively penalize large
errors of the BID model as the Gaussian does, and, thus, it pro-
duces robust estimators. This is a desirable feature in BID, be-
cause at least in the beginning of the algorithm, when the PSF
has not yet been estimated adequately, the errors of the imaging
model are heavy tailed, as shown in Fig. 2(d). This happens be-
cause an inaccurate PSF estimation introduces large errors near
edges of the image and in textured regions, but only small errors
in smooth regions of the image.

III. VARIATIONAL BAYESIAN INFERENCE

The observed variables of the proposed model are D = {g},
the hidden variables are § = {w, f, o, B,~}, and the parameters
of the model are € = {a®,b*,a”,b?, a7, b7}. The dependencies
among the random variables that define the proposed Bayesian
model are shown in the graphical model of Fig. 4.

Because the BID model is nonlinear, the posterior distribution
of the parameters p(6| D) cannot be computed. Thus, we can not
apply exact inference methods, such as maximum likelihood via
the EM algorithm. Instead, we resort to approximate inference
and specifically to the variational Bayesian methodology [18],
in which we assume a family of approximate posterior distribu-
tions ¢(#), and then seek values for the parameters 8 that best
approximate the true posterior p(8|D).

The evidence of the model p(D) =
composed as

J p(D,0)d 8 can be de-

Inp(D) = L(#) + K L(q(0)|[p(6|D)) (20)
where
_ L P(D.8)
L(9) = /q(0)1 0 de 21
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Fig. 4. Graphical model that describes the dependencies between the random
variables of the proposed model. Circular nodes represent random variables,
while square nodes represent parameters of the model. The observed variables
are represented by double circled nodes.

is called the variational bound and

p(0|D)
q(9)

is the Kullback-Leibler divergence between the approximating
distribution ¢(#) and the exact posterior distribution p(6|D). We
find the best approximating distribution ¢(#) by maximizing the
variational bound £, which is equivalent to minimizing the KL
divergence K L(q(8)||p(8| D))

de

K L((8)||p(8|D)) = — / 2(®)In 22)

q(0) = argmax L£(#) = argmin K L(q(8)||p(0|D)).
a(8) q(8)

(23)

In order to perform the maximization of the variational bound
with respect to the approximating distribution ¢(), we can as-
sume a specific parametric form for it and then maximize with
respect to the parameters. An alternative common approach is
the mean field approximation, which assumes that the posterior
distributions of the hidden variables are independent

q(8) =] a(6"). (24)
Then, the variational bound is maximized by

" Texp[I(69)]d6

where
1(6%) = (Inp(D,8))y0) = / q(6')Inp(D,)d 0\ (26)

6\ denotes the vector of all hidden variables except #7[18] and
(f(2)) gy = [ f(x)g(x)d z denotes the expected value if f(z)
with respect to g(x).

Computation of g(#?) is not straightforward, since 1(8°) de-
pends on the approximate distribution ¢(#\*). Variational infer-
ence proceeds by assuming some initial distribution ¢(y) and
then iteratively updating ¢(#*) using (25) and (26). If the prior
distribution p(#) is defined in terms of some parameters £, then
these can be estimated by maximizing the variational bound £
with respect to &.

A. Approximate Posterior Distributions

The approximate posterior distributions of the hidden vari-
ables can be computed using (25), as shown in Appendix A.
Because we have used conjugate priors, the approximate poste-
riors have the same form as the priors. Specifically, the approxi-
mate posterior distributions of the PSF weights w and the image
f are Gaussian and the distributions of the precision parameters
«, 3, and v are Gamma

q(w) = N(w|pt, Bo) (27)
q(f) =N(flps. Xy) (28)
M
q(a) = H Gammal(ag)a®, b) (29)
z;l )
q(B) = | [ Gamma(g;|a”, b7 (30)
1;1 M .
q(y) = H HGamma(’yﬂ&V, bl ) 31
k=1i=1
where
pw =2, @ (FT)(B)g (32)
-1
2, = (<1>T<FTBF><1> + (A) ) (33)
pr =% @ (W")(B)g (34)
£ = ("W BW)e Q" (1Q) 63
i =a® + % (36)
by =b" + %(w?) (37)
a’ =a” + % (38)
bﬁ = b’H + %(nnT)” 39
' =a¥ + % (40)
o L (k) peT\ Ak
b =v+ 5 (QMAMQY) (41
The required expected values can be computed as
w) = (42)
(W) = oy, + B, (43)
(f) =ns (44)
(FF7) =memf + By (45)
&a
i) = = 46
(ai) e (46)
~3
(i) =5 (47)
i
) = = (48)
(nnT) = gg” — 20(Fw)g” + ®(Fww” FT)®". (49)
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B. Parameter Estimation

The parameters o, b” and a”, b7 of the noise and image
Gamma hyperpriors can be estimated by optimizing the vari-
ational bound £ (21), whose form is given in Appendix B. The
derivatives of £ with respect to the above parameters are

oL

8
505 = Mmnb? — My(a +Z In 3;) (50)
oL a® M
W:Mb_g_z;qu) G
or K M
o5 = MEInb — MKy(a") ; 3 (Invf) (52)
oL K M
b _MK_ B ;; ") 43

where 1)(z) is the digamma function given by P(x) =
dInl(z)/dz = I"(2)/T(z) and I'(z) = [;° " te 'dt. We
can obtain updates for these parameters by setting the above
derivatives to zero. This cannot be done analytically for the
parameters a? and a7; thus, we find a numerical solution using
a combination of bisection, secant, and inverse quadratic inter-
polation methods, as implemented by matlab’s fzero function.

C. Computational Issues

The computations in (32)—(49) involve matrix operations,
whose dimension is M x M, where M is the number of
pixels in the image. Unfortunately, computation of ¥; and
¥, involves inversion of matrices that contain both diagonal
and circulant matrices and cannot be performed explicitly for
large M. However, diagonal and circulant matrices are easy to
invert. For this reason, we approximate ¥, (33) with a diagonal
matrix and X (35) with a circulant matrix, as

S, = (diag{i)T(FTBF)@} +(A) )7 (54)
£ = (<B><I>T<WTW><I> +Q'Q) 63
with ¥ = (1/MK) Y.L, 350 Ak, 3 =(1/M)Z?i1ﬂiand
(WTW) = (WTY(W) + IZ wis) (56)
Y
(F"BF) = (F")(B)/(F)+ ¥;> (#:).  (57)

i=1

The diagonal approximation for matrix ¥, is justified be-
cause parameters «; that appear in the diagonal were found to
dominate in (33). On the other hand, X7 is approximated with a
circulant matrix because both the parameters 3; and v* obtain
values in the same range. The above approximations are used for

computation of b?, bf , and b7 in (37), (39), and (41) respec-
tively, where the elements of the matrices ¥,, and ¥ ¢ appear
directly. Furthermore, they are used for computing the expected

value (Fww” FT) that appears in (49) as

Y+ B (ww")y;.

2%

(Fww"FT) = (F)(ww")(F (58)
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For the posterior image and weight means p¢ and p,,,, we do
not use the above approximations, since we can exactly obtain
them by solving the following linear systems:

Situy =@" (W) (B)g (59)

(60)

These linear systems are solved iteratively with the conjugate
gradient method, using the approximation matrices X1y and X,
as preconditioners. In these iterations, products of circulant ma-
trices are efficiently computed in the DFT domain, while prod-
ucts of diagonal matrices in the spatial domain. Specifically,
each conjugate gradient iteration requires O(M log M) itera-
tions. Theoretically, an exact solution of the linear system is ob-
tained after C = N iterations, however, we typically obtain a
good approximation after only few iterations, e.g., C' = 20. The
overall computation cost is O(C'M log M)

D. Variational Optimization Algorithm

Each iteration of the optimization algorithm proceeds as fol-
lows. First we compute the parameters of the approximate pos-
terior probabilities, as given in (32)—(41) and then we compute
the expected values using (42)—(49). Finally, we may update
the parameters of the noise and image prior distributions, using
(50)—(53). The means of the posteriors ¢(w) and ¢(f) are used
to obtain estimates of the PSF h and the image f ‘h= ®u,, and

J = ny.

IV. NUMERICAL EXPERIMENTS

Several numerical experiments have been carried out both
with artificially generated observations where the ground truth
is known and with real observations in order to demonstrate
the properties of the proposed method. We compare the pro-
posed method with previous Bayesian BID formulations based
on Gaussian PSF and image models [15], with the TV-based
blind deconvolution method in [4] and another recent variational
Bayesian method in [16].

Hereafter, we will refer to the proposed method as the StStSt
method, to imply that three Student’s-t priors are used to model
the PSF weights, the BID model errors and the image local
differences. We also considered several simpler versions of this
Bayesian model that use Gaussian distributions in place of the
Student’s-t distributions. Specifically, we consider Gaussian
distributions for the PSF weights, p(w) = N(w|0,a~1), the
additive noise, p(n) = N(n|0,371I), and the image local
differences, p(f) = N(f]0, (vQ*Q)~"). The names of these
simplified versions consist of three parts that express the dis-
tributions of the PSF weights, the additive noise and the image
local differences. For example, the method that uses Gaussian
distribution for the image local variances but Student’s-t distri-
butions for the PSF weights and noise is denoted as StStG.

The GGG is very similar to the VAR1 method described in
[15], which also assumes that the PSF weights, the imaging
model errors and the image local differences are Gaussian. The
only difference between VAR1 and GGG is that VAR does not
use a kernel model for the PSF,i.e., h = (w1, ..., was)T. Thus,
the VAR1 method is identical to the GGG, when a Gaussian
kernel of very small size is used.
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In the simplified models GGG, GStG, StGG, and StStG,
where Gaussian stationary image priors are used, we consider
the typical simultaneously autoregressive (SAR) prior that has
been used extensively in image restoration [15], [16]. This prior
assumes a pdf for the image residuals €(z, y) given by

e(w,y) = Z

(kD)ED(2,y)

(f(z,y) = f(k, 1)) (61)

where D(z,y) is the set of four neighbors of (x,¥), given by
D($7y) = {(:E + 173/)7 (:E - 1,3/)7 (:E,y - 1)7 (£E7y + 1)} The
Bayesian method in [16] uses the SAR prior for both the image
and PSF and then uses the variational methodology to achieve
inference, similarly to the proposed method.

Furthermore, we provide a detailed comparison with the
TV blind deconvolution method [4]. This method provides
estimates of the image and PSF by solving the following
minimization problem:

1
min 5||h =gl TV + V() (6

where TV (z
term.

= [|Vz(z)|d z is a total variation regularization

A. Experiments on Artificially Blurred Images

In the first experiment, we compared all the methods
using artificially degraded images. We generated a degraded
image g by blurring the true image f with a known PSF h
and then adding Gaussian noise with variance 02 = 1076.
The signal to noise ratio (SNR) of the observed image g is
SNR = 10log,, ||fl?/Mc* = 45 dB. In all methods, the
initial PSF h;, was set to a Gaussian-shaped function with vari-
ance 0,21in = 3. Since the true image is known, we can measure
the quality of a recovered image f , by computing the improved
signal to noise ratio ISNRy = 10logy, || f — gl/2/|If — fII?
which is a measure of the improvement of the quality of the
estimated image with respect to the initial degraded image.
We can also measure the quality of a PSF estimation h, by
computing ISNRy, = 101log, g ||k — hin /|| — h||*.

The PSF that was used in this experiment was a 7 X 7 uni-
form, square-shaped PSF. However, we initialized the PSF as a
Gaussian-shaped function with variance o7 = 3. The kernel
function that we used was set to a Gaussian with variance 02 =
0.1, which is flexible enough to model the boundaries of the
square. The ISNR values for the image and PSF estimates of all
methods are shown in Table I. Furthermore, the degraded image
and restored images for some of these methods are shown in
Fig. 5 along with the restoration in [19], which was obtained by
assuming that the PSF is known and a similar in spirit image
prior.

Inspection of these results reveals that, in general, improve-
ment in the accuracy of the estimated PSF implies improvement
in the quality of the recovered image. Furthermore, using a Stu-
dent’s-t distribution to model the weights of the kernel model
of the PSF gives significantly better PSF estimates as compared
to using a Gaussian distribution for the same task. This demon-
strates beyond any doubt the importance of this selection for

(a) Degraded Image (b) GGG 0.47,0.88

A\ a2

(d) [4] 3.13,5.64 (e) [16] 0.54,2.44 (f) [19] 8.63, —

Fig. 5. Comparison of the proposed methods on the (a) Lena image degraded
with a uniform, 7 x 7 square-shaped PSF. Estimated images using the (b) GGG
method, (c) StStSt method, (d) method in [4], (¢) method in [16], and (f)
Known PSF restoration method in [19]. In all cases, the PSF was initialized
as a Gaussian with 0, = 3 and the kernel was a Gaussian with variance

2 = 0.1. The numbers below each i image are the ISNR values of the image
(ISN R y) and the corresponding PSF (ISNRR,).

TABLE I
ISNR FOR IMAGE AND PSF FOR THE EXPERIMENTS ON THE DEGRADED LENA
IMAGE WITH A UNIFORM, 7 X 7 SQUARE-SHAPED PSF

Method ISNRy ISNRy
GGG 0.47 0.88
GGSt 0.58 0.79
GStG 0.05 1.53
GStSt 1.11 1.64
StGG 2.17 6.69
StGSt 5.87 8.12
StStG 5.57 1091
StStSt 5.29 9.44

Method in [4] 3.13 5.64
Method in [16] 0.54 2.44
Known PSF in [19] 8.63 —

the BID problem. The image estimates are also improved when
using Student’s-t distributions for either the image local differ-
ences or noise. Finally, the StStSt model seems to produce visu-
ally more pleasing restored images with “sharper”” edges than ei-
ther the StGSt and StStG models, even though the ISNR y might
be slightly lower. However, it is well known that ISNR; does
not always capture accurately the human perception of image
quality.

B. Comparison With Other BID Methods

In this subsection, we have conducted another experiment,
where we compare the method based on the StStSt model
with methods in [4] and [16]. In these experiments, we use
the 256 x 256 “Cameraman” image, degraded with several
PSFs and noise levels. Specifically, we used three different
PSFs; a Gaussian-shaped PSFs with variance 5, a uniform
square-shaped PSFs of size 7 x 7 and a rectangular nonsym-
metric, accelerated motion blur [27] given by

h(.’l? y): (u%+2a(‘r+sz))_l/27 if |x|53z and |y|§3y
’ 0, otherwise
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() (®)

Fig. 6. Degraded cameraman images with (a)-(c) SNR = 40 dB and
(d)-(H)SNR = 20 dB. The PSF was (a), (d) Gaussian-shaped with variance
o7 =5, (b), (e) uniform, square-shaped 7 x 7, and (c), (f) accelerated motion
blur.

StStSt Method in [4] Method in [16]

(b) 1.32,5.19 (c) 2.00,4.78

(e) 4.06,8.90 (f) —0.17,-0.04

(g) 6.74,9.26 (h) 0.51,0.88 (i) —0.17,0.62

Fig. 7. Comparison on cameraman image with SNR = 40 dB and
(a)—(c) Gaussian-shaped PSF with variance 07 = 5, (d)—(f) uniform,
square-shaped 7 X 7 PSF, (g)—(i) motion-blur PSF. Estimates obtained with
(b), (f), and (g): the proposed StStSt method; (c), (g), (k) method in [4]; and
(d), (h), (I) method in [16]. The numbers below each image are the ISNR values
of the image (ISNR ;) and the corresponding PSF (ISNR}, ).

with s, =4, s, = 1, u9 = 0.5 and a = 0.1. We also used two
levels of noise; low noise with SINR = 40 dB and high noise
with SNR = 20 dB. The PSF was initialized as a Gaussian-
shaped function with variance o}, = 3. For the StStSt method
we used a Gaussian-shaped kernel function with variance o2

2, in all cases except for the case of accelerated motion PSF,
where we used a Gaussian-shaped kernel with variance oi =

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 4, APRIL 2009

StStSt Method in [4]

8 8

(a) 1.57,6.03 (b) 1.17,3.92

Method in [16]

(¢c) 0.88,1.02

(d) 2.69,5.98 (e) 2.56,5.19 ) 1.05,2.19

(g) 1.51,2.34

(h) 0.52,0.12 (i) 0.04,-0.12

Fig. 8. Comparison on cameraman image with SNR = 20 dB and
(a)—(c) Gaussian-shaped PSF with variance o7 = 5, (d)—~(f) uniform,
square-shaped 7 x 7 PSF, (g)-(i) motion-blur PSF. Estimates obtained with
(b), (f), (g) the proposed StStSt method; (c), (g), (k) method in [4]; and (d), (h),
(1) method in [16]. The numbers below each image are the ISNR values of the
image (ISNR ;) and the corresponding PSF (ISNR,).

1. The degraded images are shown in Fig. 6 and the restored
images are shown in Figs. 7 and 8. The parameters of all the
methods were selected in a trial and error manner in order to
optimize the resulting images.

We can observe here that in all cases, the StStSt method out-
performs both the methods in [4] and [16], especially in the case
of low noise with SNR = 40 dB. Specifically, the method
in [4] fails to estimate the Gaussian-shaped and motion PSFs,
which is explained by the fact that the TV constraint on the PSF
has the tendency to create flat areas and discontinuities, that are
in contrast with the smooth PSFs that were used. In contrast,
the method in [16] uses the SAR constraint for the PSF, which
forces smooth PSF estimations. For this reason, it fails to esti-
mate the square and motion blurs, which have discontinuities.
Furthermore, the SAR model of the image fails to preserve the
structure of edges. On the other hand, the StStSt method es-
timates successfully all types of PSF, because it uses distinct
mechanisms to estimate the support and enforce smoothness to
the PSF, via the sparse Student’s-t prior and the kernel model,
respectively.

In terms of computational cost, the method in [16] is the most
efficient, since each iteration involves O(M log M) operations.
On the other hand, each iteration of both the proposed method
and the method in [4] require the solution of a M x M linear
system that is solved using the conjugate gradient method and
require O(C M log M) computations, where C'is the number of
conjugate gradient iterations.
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(a) (b) StGG (c) StStG

(d) StGSt (e) StStSt ) GGG

<> | >

(&) [4] (hy [16]

Fig. 9. (a) Degraded image. Estimated images using the methods (b) StGG,
(c) StStG, (d) StGSt, (e) StStSt, (f) GGG, and the methods in (g) [4] and (h)
[16]. The PSF was initialized as a Gaussian with (T]Qlin = 3 in all cases and the
kernel was a Gaussian with variance o] =

Fig. 10. One-dimensional slice of the true and estimated PSFs for the images
of Fig. 9. The true PSF has been estimated as h(r) o< (1 + r2/R?)~¢, with
6 = 3 and R = 3.4. The kernel was Gaussian with variance 02 = 1.

C. Experiments on Real Astronomical Images

We also applied the proposed methodology on a real astro-
nomical image of the Saturn planet, which has previously been
used in [16]. Astronomical measurements suggest the following
PSF model for ground based telescopes

h(r) o <1 + ;—22>_5.

The parameters ¢ and R can be measured [16] and 6 =~ 3 and
R = 3.4. The recovered images by the different methods are
shown in Fig. 9 and the resulting PSFs in Fig. 10.

From these images, it is clear again that the models with two
or more Student’s-t priors give visually superior results. In these
images, there is less ringing at the edges, noise in flat areas and
the Saturn bands are better separated. Furthermore, the StStSt
model produces again “sharper” images. It is interesting to no-
tice that the StGG model does not yield good recovered images
although it estimates well the measured PSF. This demonstrates
the inappropriateness of the Gaussian to model the errors of the
BID model and the image model. Notice also, that again, the
TV-based methodology fails to estimate the smooth PSF and
creates edges in areas where they do not exist in the original
PSF; see Fig. 10.

(63)

D. Selecting the Kernel Width and Initial Values for the
Parameters

The proposed method uses a sparse kernel model to estimate
the PSF. The significance of the kernel model is that it favors

TABLE II
ISNR FOR IMAGE AND PSF FOR VARIOUS VALUES OF THE KERNEL WIDTH
FOR THE CASE OF GAUSSIAN-SHAPED PSF WITH 02 = §

2 _ 2 _ 2 _ 2 _

0'¢701 O'¢71 %fz 04573
“ < “ < “ < “ <
32 i oS o & & oS o oS
£ Z 2 Z Z Z 2 2 2
= n n n n n n n n
~ ~ ~ ~ ~ ~ ~ ~
GGG 1.62 -0.57 192 047 257 262 290 5.12
StGG  3.53 6.58  3.53 749 347 795 239 1.78
StStG 3.19 7.15 321 740 377 1055 233 036
StGSt  3.69 886 396 1033 424 1230 155 2.88
StStSt - 400  11.32 398 1136 394 1231 248 0.71

TABLE III

ISNR FOR IMAGE AND PSF FOR VARIOUS VALUES OF THE KERNEL WIDTH
FOR THE CASE OF UNIFORM, 7 X 7 SQUARE-SHAPED PSF

2 _ 2 _ 2 _ 2 _
0'¢—01 U¢—1 0'¢—2 U¢—3
~ = o~ < o~ < o~ <

32 ~ ~ o ~ ~ & ~ o
£ =z =z =z =z = =z =z =z
w w w w w w n w

= ~ ~ ~ ~ ~ ~ ~ ~
GGG 0.70 -471 0.64 -3.41 0.12 -0.64 0.13 -3.87
StGG  2.17 6.69 1.20 9.09 -0.37 1.67 -231 -043
StStG - 5.57 1091 545 927 -0.29 1.87 -2.12  -0.20
StGSt  5.87 8.12 562 7.80 4.22 6.72 020 -0.12
StStSt - 5.29 9.44  4.56 8.17 -0.51 201 -1.58 0.09

smooth estimations of the PSF, by forcing neighboring pixels
to have similar values. This is important in order to enforce
PSF smoothness and prevent the noise in the observed image
to corrupt the PSF estimate. However, selecting an appropriate
kernel is not straightforward. Here, we have considered several
Gaussian kernels of different widths in order to determine how
the proposed method is affected by the width of the Gaussian
kernel. We have applied the proposed method on the artificially
blurred images of the first experiment and considered degra-
dation with Gaussian PSF or uniform-square shaped PSF. Ta-
bles II and III show the ISNRs of the image and PSF for several
values of the kernel width, for the case where the true PSF is
Gaussian-shaped and square-shaped, respectively. Notice that
in all cases, selecting a very large kernel leads to very smooth
estimates of the PSF that provide poor results. In case of uni-
form square true PSF (Table III) the best results are obtained
when using a very small kernel. This is because the square PSF
is not smooth at the edges of the rectangle. On the other hand, in
the case of Gaussian-shaped true PSF (Table II), it is favorable
to select a kernel that produces smooth PSF estimation.

It must be also noted that the performance of all the varia-
tional algorithms generally depends on the initialization of the
parameters. This happens because the variational bound is a
nonconvex function and, therefore, depending on the initializa-
tion, a different local maximum may be attained. In order to
apply the proposed method, the following parameters have to
be initialized:

1) Weights w of the Kernel Model That Define the PSF: In
BID, having a good estimate of the PSF is usually very impor-
tant and many BID methods fail when they are badly initialized.
This is a significant limitation, because in many situations there
is no available estimate of the PSF. The proposed method does
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not rely on a good initial PSF estimation. Instead, the sparse
kernel based PSF model, can successfully estimate the PSF from
the observed image. This is demonstrated in the previous ex-
periments, where we successfully estimated Gaussian-shaped,
square-shaped and accelerated motion PSFs using an initial PSF
that was Gaussian-shaped with variance o, = 3. The weights
w were initialized by solving the PSF model given i{l (6), which
gives w = fE,®"h with £, = (/3<I>T<I> + aI) .

2) Weight Normalization Parameters «; of the PSF Model
and the Hyperparameters a®, b*: Initially, we set all these pa-
rameters to very small values, e.g., a; = 10~16, which corre-
sponds to a very flexible linear model. This is desirable in order
to obtain an initial estimate of the support of the PSF using all
the available kernels. The hyperparameters ¢ and b“ are set to
zero, thus assuming a uninformative distribution for the param-
eters . During inference, the parameters «; for most kernels
tend to infinity; thus, the support of the PSF is limited.

3) Noise Precision [3 and the Hyperparameters a”, b®: The
noise precision f3 is initially set to 3 = 103. The hyperparam-
eters a”, b are initially set to values that define a Gamma dis-
tribution with mean 10 and variance 102, which is a flat and
rather uninformative distribution. Their values are then updated
using (50) and (51).

4) Strength of the Image Prior v and the Hyperparameters
a”, b7: The parameter 7y that defines the strength of the image
prior is initially set to v = 102. The hyperparameters a” and bY
are set to values that define a Gamma distribution with mean 102
and variance 10*. Updating ¢ and b (Section III-B), usually
improves the performance of the algorithm, at least in the first
few iterations. However, we have empirically found that at con-
vergence, these hyperparameters attain very small values, thus
defining an uninformative distribution. This leads to very noisy
image estimates and for this reason we do not update the hyperpa-
rameters a”, b but keep them fixed to their initial values. An ex-
planation for the failure to estimate these parameters is that we use
an improper prior for the image (16). Although selecting values
for these parameters may seem arbitrary they actually depend on
the characteristics of the image. Specifically, small values of the
parameter b” lead to very smooth solutions, while small values of
the parameter a” allow few hard edges by defining a heavy tailed
distribution for the image local differences.

V. CONCLUSIONS AND FUTURE WORK

We presented a Bayesian approach to the BID problem where
the PSF is modeled as a superposition of kernel functions. We
assumed a suitable heavy tailed prior distribution on this kernel
model, in order to obtain a sparse estimate of the support and
shape of the PSF. We also used a heavy tailed pdf both for the
noise, in order to achieve robustness to BID model errors and for
the local image differences, in order to allow the reconstruction
of edges. The Student’s-t pdf was our choice as a heavy tailed
pdf, due to its close relationship with the Gaussian. Because
of the complexity of this model, the variational framework was
used for approximate Bayesian inference.

Several experiments were carried out, to test the proposed
methodology. These experiments indicated beyond doubt that
the use of a Student’s-t pdf to model the weights of the PSF

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 4, APRIL 2009

kernel-based model is crucial to the success of this approach.
Furthermore, Bayesian BID models that use at least two Stu-
dent’s-t priors, one for the PSF, are clearly superior to BID
models that use two or more Gaussian priors. Furthermore, it is
interesting to notice that the StStSt model that uses only Stu-
dent’s-t priors seems to produce visually superior images as
compared to models that use a combination of two Student’s-t
and Gaussian priors.

We also compared this methodology with TV-based and
Bayesian as implemented in [16] BID in a number of different
scenarios. From these comparisons it is clear that the proposed
methodology is always superior to the Gaussian model based
methodology in [16]. As far as TV-based BID is concerned the
proposed method is clearly superior for scenarios with small
sized PSFs and low noise. In the case of large PSFs and high noise
the two methods produce different in nature results. The pro-
posed methodology produces image where image details were
better preserved. It also yields better ISNR values. However, it
produces “ringing” artifacts in image edges. TV-based BID gave
no “ringing,” however, many image details were eliminated.

In the future, we plan to explore the possibility of learning the
filters Q* in a manner analogous to [25]. Furthermore, we plan
to explore extending the constrained variational methodology
in [24] to BID to avoid using the approximation of the partition
function in (16).

APPENDIX A
COMPUTATION OF THE POSTERIOR PARAMETER DISTRIBUTIONS

Using the mean field approximation (24), the posterior dis-
tribution of the parameters is given by (25) and (26). In order
to find the posterior distribution ¢(w), we start from (26) and
compute only the terms of I(w) that depend on w

I(w) = (Inp(g|B,w, .f)p('w|a)>q(_f)q(a)q(g)q(-y)
M

= _ %(nTBn) — %E(m)w?
- %wT (8" (F"BF)® + (4)) w

—w'®" (FTB)g + const

where n = g— ®w and B is diagonal and, therefore, symmetric.
Then, from (25) we see that ¢(w) is proportional to exp[l(w)],
and, thus, it is a Gaussian distribution given by (27). Similarly,
we can obtain the posterior ¢(f) which is also a Gaussian dis-
tribution given by (28).

The posterior g(e) is similarly obtained by computing the
terms of I(a) that depend on

I{a) = (1np(w|a)p(a)>q(f)q(w)q(ﬂ)q(“/)

LM M
== Ina; — i (w?
D S
- ]\/;Z1 M
+ (a® — 1)2111(11- - baZai
i=1 i=1

N\ M Mo
_ «@ L - 2 [eY
_(a —§>;lnaz Z<2<wi)+b )—I—const.

i=1
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M 1 1 .
(Inp(glw, B, ) = = 5 n(2m) + 53 () = 5{(g — FOw)" B(g ~ Fow))
M M
(nplwla)) = — 5 In2) + 3 > (n ) = 5 > {ai)(w?)
712(1 M - K M
(Inp(flv)) = — — In(2) ZZ In ;) ZZ YR F):
k 1i=1 k 1:=1

(lnp(a)) = Ma®1In b + (a® — )Z (ln ;) — b Z a;) — MInT(a%)

M
(Inp(B)) = Ma’Inb’ + (a” —1) Y

i=

(IngB;) —v° Z(ﬁ» — M1nT(a”)
1 =1

(Inp(y)) = MKa" Inb” + — MKInT(a")
(In g(w) = %an(%) +1)- ;m S|

(ng(f) = = 5 ((2m) +1) - 5[5y

(Ing(a)) = i[aﬂ In b + (a® — 1)(Ina;) — b (a;) — InT(a*)]

(Ing(B)) = i[aﬂ b + @ — 1)(In i) — b (8:) — InT(@")]

(Inq(y)) = ij A b] + (@ — 1){nak) =07 () ~ InT(a)]

This is the exponent of a Gamma distribution, and, therefore,
q(a) is a Gamma distribution given by (29). The posterior dis-
tributions ¢(3) and ¢(y) are also Gamma distributions given by
(30) and (31) and their computation is very similar.

APPENDIX B
COMPUTATION OF THE VARIATIONAL BOUND

The variational bound is given by

L(0) = (lnp(glw, B, f)) + (lnp(w|a)) + (lnp(flv))
+ (Inp(@)) + (Inp(B)) + (Inp(7y)) — (In g(w))
— (Ing(f)) — (Ing(a)) — (Ing(B)) — (Ing(y))

and the required expected values can be computed as the equa-
tions shown at the top of the page.
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