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Abstract

It is widely recognized that the boosting methodology provides superior results for classification problems. In this

paper, we propose the boost-clustering algorithm which constitutes a novel clustering methodology that exploits the

general principles of boosting in order to provide a consistent partitioning of a dataset. The boost-clustering algorithm

is a multi-clustering method. At each boosting iteration, a new training set is created using weighted random sampling

from the original dataset and a simple clustering algorithm (e.g. k-means) is applied to provide a new data partitioning.

The final clustering solution is produced by aggregating the multiple clustering results through weighted voting.

Experiments on both artificial and real-world data sets indicate that boost-clustering provides solutions of improved

quality.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Unlike classification problems, there are no

established approaches that combine multiple

clusterings. This problem is more difficult than

designing a multi-classifier system: in the classifi-

cation case it is straightforward whether a basic
classifier (weak learner) performs well with respect

to a training point, while in the clustering case this

task is difficult since there is a lack of knowledge
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concerning the label of the cluster to which a

training point actually belongs. The majority of

clustering algorithms are based on the following

four most popular clustering approaches: iterative

square-error partitional clustering, hierarchical

clustering, grid-based clustering and density-based

clustering (Halkidi et al., 2001; Jain et al., 2000).
Partitional methods can be further classified

into hard clustering methods, whereby each sam-

ple is assigned to one and only one cluster, and soft

clustering methods, whereby each sample can be

associated (in some sense) with several clusters.

The most commonly used partitional clustering

algorithm is k-means, which is based on the

square-error criterion. This algorithm is compu-
tationally efficient and yields good results if the
ed.
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clusters are compact, hyper-spherical in shape and

well separated in the feature space. Numerous at-

tempts have been made to improve the perfor-

mance of the simple k-means algorithm by using

the Mahalanobis distance to detect hyper-ellip-

soidal shaped clusters (Bezdek and Pal, 1992) or by
incorporating a fuzzy criterion function resulting

in a fuzzy c-means algorithm (Bezdek, 1981). A

different partitional clustering approach is based

on probability density function (pdf) estimation

using Gaussian mixtures. The specification of the

parameters of the mixture is based on the expec-

tation–minimization algorithm (EM) (Dempster

et al., 1977). A recently proposed greedy-EM
algorithm (Vlassis and Likas, 2002) is an incre-

mental scheme that has been found to provide

better results than the conventional EM algorithm.

Hierarchical clustering methods organize data

in a nested sequence of groups which can be dis-

played in the form of a dendrogram or a tree

(Boundaillier and Hebrail, 1998). These methods

can be either agglomerative or divisive. An
agglomerative hierarchical method places each

sample in its own cluster and gradually merges

these clusters into larger clusters until all samples

are ultimately in a single cluster (the root node). A

divisive hierarchical method starts with a single

cluster containing all the data and recursively

splits parent clusters into daughters.

Grid-based clustering algorithms are mainly
proposed for spatial data mining. Their main

characteristic is that they quantise the space into a

finite number of cells and then they do all opera-

tions on the quantised space. On the other hand,

density-based clustering algorithms adopt the key

idea to group neighbouring objects of a data set

into clusters based on density conditions.

However, many of the above clustering
methods require additional user-specified para-

meters, such as the optimal number and shapes of

clusters, similarity thresholds and stopping crite-

ria. Moreover, different clustering algorithms and

even multiple replications of the same algorithm

result in different solutions due to random initial-

izations, so there is no clear indication for the best

partition result.
In (Frossyniotis et al., 2002) a multi-clustering

fusion method is presented based on combining
the results from several runs of a clustering algo-

rithm in order to specify a common partition.

Another multi-clustering approach is introduced

by Fred (2001), where multiple clusterings (using

k-means) are exploited to determine a co-associa-

tion matrix of patterns, which is used to define an
appropriate similarity measure that is subse-

quently used to extract arbitrarily shaped clusters.

Model structure selection is sometimes left as a

design parameter, while in other cases the selection

of the optimal number of clusters is incorporated

in the clustering procedure (Smyth, 1996; Fisher,

1987) using either local or global cluster validity

criteria (Halkidi et al., 2001).
For classification or regression problems, it has

been analytically shown that the gains from using

ensemble methods involving weak learners are di-

rectly related to the amount of diversity among the

individual component models. In fact, for difficult

data sets, comparative studies across multiple

clustering algorithms typically show much more

variability in results than studies comparing the
results of weak learners for classification. Thus,

there could be a potential for greater gains when

using an ensemble for the purpose of improving

clustering quality.

The present work, introduces a novel cluster

ensemble approach based on boosting, whereby

multiple clusterings are sequentially constructed to

deal with data points which were found hard to
cluster in previous stages. An initial version of this

multiple clustering approach was introduced by

Frossyniotis et al. (2003). Further developments

are presented here including several improvements

on the method and experimentation with different

data sets exhibiting very promising performance.

The key feature of this method relies on the gen-

eral principle of the boosting classification algo-
rithm (Freund and Schapire, 1996), which

proceeds by building weak classifiers using pat-

terns that are increasingly difficult to classify. The

very good performance of the boosting method in

classification tasks was a motivation to believe that

boosting a simple clustering algorithm (weak

learner) can lead to a multi-clustering solution

with improved performance in terms of robustness
and quality of the partitioning. Nevertheless, it

must be noted that developing a boosting algo-
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rithm for clustering is not a straightforward task,

as there exist several issues that must be addressed

such as the evaluation of a consensus clustering,

since cluster labels are symbolic and, thus, one

must also solve a correspondence problem. The

proposed method is general and any type of basic
clustering algorithm can be used as the weak

learner. An important strength of the proposed

method is that it can provide clustering solutions

of arbitrary shape although it may employ clus-

tering algorithms that provide spherical clusters.
2. The boost-clustering method

We propose a new iterative multiple clustering

approach, that we will call boost-clustering, which

iteratively recycles the training examples providing

multiple clusterings and resulting in a common

partition. At each iteration, a distribution over the

training points is computed and a new training set

is constructed using random sampling from the
original dataset. Then a basic clustering algorithm

is applied to partition the new training set. The

final clustering solution is produced by aggregat-

ing the obtained partitions using weighted voting,

where the weight of each partition is a measure of

its quality. The algorithm is summarized below.

Algorithm boost-clustering. Given: Input sequence
of N instances ðx1; . . . ; xN Þ; xi 2 Rd ; i ¼ 1; . . . ;N , a

basic clustering algorithm, the number C of clusters

to partition the data set and the maximum number

of iterations T .

1. Initialize w1
i ¼ 1=N for i ¼ 1; . . . ;N . Set t ¼ 1,

�max ¼ 0 and ic ¼ 0.

2. Iterate while t6 T
• Produce a bootstrap replicate of the original

data set according to the probability wt
i for

every instance i by resampling with replace-

ment from the original data set.

• Call the basic clustering algorithm, to parti-

tion the bootstrap training data getting the

partition Ht.

• Get the cluster hypothesis Ht
i ¼ ðhti;1; hti;2; . . . ;

hti;CÞ for all i, i ¼ 1; . . . ;N , where hi;j is the

membership degree of instance i to cluster j.
• If t > 1, renumber the cluster indexes of Ht

according to the highest matching score,

given by the fraction of shared instances with

the clusters provided by the boost-clustering

until now, using Ht�1
ag .

• Calculate the pseudoloss:

�t ¼
1

2

XN
i¼1

wt
iCQ

t
i ð1Þ

where CQt
i is a measurement index that is

used to evaluate the quality of clustering of

an instance xi for the partition Ht.

• Set bt ¼ 1��t
�t
.

• Stopping criteria:

i(i) If �t > 0:5 then

T ¼ t � 1

go to step 3
(ii) If �t < �max then
ic ¼ icþ 1

if ic ¼ 3 then

T ¼ t
go to step 3

else

ic ¼ 0

�max ¼ �t
• Update distribution W :
wtþ1
i ¼ wt

ib
CQt

i
t

Zt
ð2Þ

where Zt is a normalization constant such

that W tþ1 is a distribution, i.e.,
PN

i¼1w
tþ1
i ¼ 1.

• Compute the aggregate cluster hypothesis:

Ht
ag ¼ arg max

k¼1;...;C

Xt

s¼1

logðbsÞPt
j¼1 logðbjÞ

hsi;k

" #
ð3Þ

• t :¼ t þ 1

3. Output the number of iterations T and the final
cluster hypothesis H f ¼ HT

ag.

It is clear that the approach has been developed

following the steps of the boosting algorithm for

classification. We assume a given set X of N d-
dimensional instances xi, a basic clustering algo-

rithm (weak learner) and the required number of

clusters C. The maximum number of iterations T
of boost-clustering will be considered fixed, al-

though this parameter is meaningless considering
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the early stopping of the algorithm by the defini-

tion of two stopping criteria that we will discuss

later on. The clustering obtained at iteration t will
be denoted as Ht, while Ht

ag will denote the

aggregate partitioning obtained using clusterings

H s for s ¼ 1; . . . ; t. Consequently, for the final
partitioning H f produced by the clustering

ensemble it will hold that H f ¼ HT
ag. The basic

feature of the method is that, at each iteration t, a
weight wt

i is computed for each instance xi such
that the higher the weight the more difficult is for

xi to be clustered. In accordance with the boosting

methodology, the weight wt
i constitutes the prob-

ability of including xi in the training set con-
structed at iteration t þ 1. At the beginning, the

weights of all instances are equally initialized, i.e.

w1
i ¼ 1=N .

At each iteration t ¼ 1; . . . ; T , first a dataset X t

is constructed by sampling from X using the dis-

tribution W t ¼ fwt
ig and then a partitioning result

Ht is produced using the basic clustering algorithm

on the dataset X t. For each instance xi,
i ¼ 1; . . . ;N , we get a cluster hypothesis Ht

i ¼
ðhti;1; hti;2; . . . ; hti;CÞ where hti;j denotes the member-

ship degree of instance i to cluster j (we assume

that
PC

j¼1 h
t
i;j ¼ 1, for all i). It must be emphasized

that, although the basic clustering method may be

parametric, the boost-clustering method is non-

parametric in the sense that the final partitioning is

specified in terms of the membership degrees hi;j
and not through the specification of some model

parameters (e.g. cluster centers). This fact gives the

flexibility to define arbitrarily shaped data parti-

tions and makes necessary the use of non-para-

metric cluster-validity measures, as described in

the next section.

In the above methodology the most critical

issue to be addressed is how to evaluate the clus-
tering quality of an instance xi for the partition Ht.

We have defined an index CQt
i such that the higher

the value of CQt
i the worse the clustering quality of

instance xi. In our implementation, we considered

two ways for computing index CQ.
For the first type, we computed hti;good as the

maximum membership degree of xi to a cluster and

hti;bad as the minimum membership degree to a
cluster. The CQ index, that will be referred to as

minmax-CQ, is defined as:
CQt
i ¼ 1� hti;good þ hti;bad ð4Þ

As a second type of CQ index, we propose to use

an entropy-based measure which takes high values

when the membership degree hti;j of a data point xi
is comparable for all clusters j, i.e. the point xi has
not been well-clustered:

CQt
i ¼ �

XC
j¼1

hti;j logðhti;jÞ ð5Þ

Based on the CQ index, at each iteration t the

pseudoloss �t is computed using (1). Then, in

analogy with the classification case, the weight

distribution wtþ1
i for the next iteration is computed

using (2). Using this formula, we reduce the weight

of a well-clustered data point (i.e. that belongs to a

cluster with a high membership degree) and favour
the sampling of badly clustered data points. Thus,

in analogy with the general principle of the

boosting classification algorithm (where special-

ized classifiers are serially constructed to deal with

data points misclassified in previous stages), in

each iteration the boost-clustering algorithm clus-

ters data points that were hard to cluster in pre-

vious iterations.
A second important issue to be addressed is

related to the cluster correspondence problem. This

means that, in order to define the partition Ht at

iteration t, we have to assign an index

l 2 f1; . . . ;Cg to each of the C partitions and this

indexing must be consistent with those in previous

iterations. In particular, we have to decide the one-

to-one correspondence between a cluster in parti-
tioning Ht and a cluster in the partition Ht�1

ag . This

correspondence is specified by computing the

common patterns between a cluster in Ht and the

clusters in Ht�1
ag . Then, according to the highest

matching score, given by the fraction of common

samples, the cluster indexes of Ht are renumbered.

In the proposed method, the aggregate cluster-

ing result at iteration t is obtained by applying for
every instance xi a weighted voting scheme over the

cluster subhypotheses hsi;k, k ¼ 1; . . . ;C, s ¼
1; . . . ; t, using (3), where in analogy with the clas-

sification case, the weight of a subhypothesis hsi;k is
defined so that a greater weight is assigned to

subhypotheses with lower error �s. For the early

stopping (identification of the optimal value of
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iterations T ) of the algorithm two different stop-

ping criteria were used. In particular, the algo-

rithm terminates if a learner (basic clustering

algorithm) has a pseudoloss �t greater than 1/2 (in

which case the partitioning result of the last iter-

ation is not taken into account) or the pseudoloss
does not further increase in a number of consec-

utive iterations (counted by the variable ic).
Experimentally we found that three iterations is a

good choice.
3. Experimental results

In studying the boost-clustering method, we

considered two types of basic clustering algo-

rithms, namely the k-means and the fuzzy c-means

algorithm. In our implementation, the member-

ship degree hi;j for every instance xi to cluster j, for
both k-means and fuzzy c-means, is produced

based on the Euclidean distance d

hi;j ¼
1PC

k¼1

dðxi ;ljÞ
dðxi ;lkÞ

ð6Þ

where lj 2 Rd corresponds to a cluster center. The

resulting boost-clustering method using the min-

max-CQ index (see Eq. (4)) and with k-means as

the basic clustering algorithm will be referred to as

boost-k-means-minmax and the one with fuzzy c-
means as boost-FCM-minmax, respectively. Simi-

larly, the resulting boost-clustering method using

the entropy-CQ index (see Eq. (5)) and with k-
means as the basic clustering algorithm will be

referred to as boost-k-means-entropy and the one

with fuzzy c-means as boost-FCM-entropy,

respectively. In the experimental study, we com-

pare boost-k-means-minmax (or boost-k-means-
entropy) with the simple k-means algorithm and

boost-FCM-minmax (or boost-FCM-entropy)

with the simple FCM algorithm. To accomplish

that, non-parametric cluster-validity measures

must be specified as noted in the previous section.

3.1. Non-parametric cluster-validity measures

Since clustering is an unsupervised process and

there is no a priori indication for the actual num-
ber of clusters present in a dataset, there is need for

measures evaluating the quality of a partition. In

this spirit, numerous cluster-validity measures

have been proposed in the literature. Some of the

most commonly used measures are the root-mean-

square standard deviation (RMSSTD) and R-
squared (RS) introduced by Sharma (1996), the

intra-over inter-variation quotient, the BD-index

introduced by Jain and Dubes (1988) and the SD

validity index (Halkidi et al., 2000) which is based

on the concepts of average scattering for clusters

and total separation between clusters. However, all

of these measurements are basically variations on

the same theme in that they compare inter-cluster
versus intra-cluster variability and tend to favour

configurations with bell-shaped well-separated

clusters. In our experiments, we considered two

non-parametric indices, isolation and connectivity

(Pauwels and Frederix, 1999), which can be used

for measuring the validity of arbitrarily shaped

clusters.

Isolation is measured by the k-nearest neighbour
norm (NN-norm). In particular, for fixed k (whose

specific value is not very critical), the k-nearest
neighbour norm vkðxÞ of an instance x is defined as

the fraction of the k nearest neighbours of x that

have the same cluster label as x. A measure of the

homogeneity of the total clustering is computed by

averaging over all N points in the data set:

IS ¼ 1

N

X
x

vkðxÞ ð7Þ

In our experiments we used k ¼ 0:01N .

Connectivity relates to the fact that, for any two

points in the same cluster, a path should always

exist connecting the two points, along which the

density of the data remains relatively high. In our

implementation, connectivity is quantified as fol-

lows: we randomly select K pairs of points ðai; biÞ,
i ¼ 1; . . . ;K, called anchor-points, such that the

points of the same pair belong to the same cluster.

Then, for each pair ðai; biÞ, we consider the middle

point li ¼ ðai þ biÞ=2 and compute the local den-

sity f ðliÞ by convolving the dataset with a uni-

modal density-kernel of width r:

f ðxÞ ¼ 1

N

XN
i¼1

1

2pr2

� �d=2

e�jjx�xijj2=2r2 ð8Þ
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Then, the connectivity measure CN (also called C-
norm) is computed as

CN ¼ 1

K

XK
i¼1

f ðliÞ ð9Þ

In our experiments we chose K ¼ 0:05N .

A major drawback of the isolation index, is that

it does not notice whenever two clusters are

merged, even if they are well-separated (Pauwels

and Frederix, 1999). In fact, grouping all samples

together in one big cluster, will result in an optimal

score for this criterion. For this reason connec-

tivity must be considered as a second criterion to
penalize solutions that erroneously lump together

widely separated clusters. In order for satisfactory

clustering results to be obtained one has to try to

maximize both indices simultaneously. However,

since there is a trade-off between connectivity and

isolation, the two validity indices should be com-

bined to provide a single cluster-validity index, as

described in Section 3.3.

3.2. Experimental methodology

In order to demonstrate the performance of the

boost-clustering algorithm we considered both

artificial and real-world datasets. In the follow-

ing, we describe the experimental methodology

used to compare the boost-k-means-minmax (or
boost-k-means-entropy) with the simple k-means

algorithm. Note that the same methodology is

followed to compare boost-FCM-minmax (or

boost-FCM-entropy) with simple FCM. In par-

ticular, for each data set and for a specific number

of clusters C (the number of clusters for each

problem varied from three to six), we applied the

following steps:

(1) Split the data set into training and testing set

of fixed size.

(2) Run the simple k-means algorithm 20 times,

each time with different initialization, to parti-

tion the training set into C clusters.

(3) For the 20 runs of k-means compute the values

of isolation (ISbest) and connectivity (CNbest) in-
dexes corresponding to the best of the 20 runs

of the k-means, i.e. the one yielding the small-

est clustering error on the training set.
(4) Apply the boost-k-means-minmax and the

boost-k-means-entropy algorithms on the

same training set (using T ¼ 20) and compute

the corresponding values of isolation (ISint
and ISentr) and connectivity (CNint and CNentr)
on the test set, respectively.

3.3. Combination of cluster-validity measures

In order to make direct use of the two cluster-

validity measures, we compute their Z-scores
(Pauwels and Frederix, 1999). The Z-score of an

observation ni in a sample n1; . . . ; nl is defined as:

ZðniÞ ¼
ni �medianðnÞ

MADðnÞ ð10Þ

where n ¼ fn1; . . . ; nlg represents the whole sample

and MAD stands for median absolute deviation:

MADðnÞ ¼medianfjni �medianðnÞj : i ¼ 1; . . . ; lg:
ð11Þ

Now, let us consider IS ¼ fISbest; ISint; ISentrg to

be the sample of isolation values and

CN ¼ fCNbest;CNint;CNentrg the sample of con-

nectivity values for the methods we want to com-
pare: (1) best simple clustering algorithm, (2)

boost-clustering using the minmax-CQ index and

(3) boost-clustering using the entropy-CQ index,

respectively. Then, the (robust) Z-score for the ith
method is defined as:

Zi ¼ ZðISfigÞ þ ZðCNfigÞ; i ¼ 1; 2; 3 ð12Þ

and we consider as the best clustering result the

one which maximizes this robust Z-score on the

test set.

3.4. Results and discussion

Four data sets, as shown in Table 1, were used
to demonstrate the performance of boost-cluster-

ing: the Clouds (see Fig. 1) and Phoneme data sets

from the ELENA project (ELENA, 1995), the

Page-blocks from the the UCI data set repository

(UCI, 1998) and the Banana data set (see Fig. 2)

which is an artificial two-dimensional data set

consisting of two banana shaped clusters. Table 1

also gives the number of examples used for train-



Table 1

Summary of the data sets

Dataset Cases Features Training set size Testing set size

Continuous Discrete

Clouds 5000 2 – 2500 2500

Phoneme 5404 5 – 3000 2404

Page-blocks 5473 4 6 3000 2473

Banana 2000 2 – 1000 1000

Fig. 1. The Clouds data set.

Fig. 2. The Banana data set.
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ing and testing respectively, for each data set in the

experiments.

Table 2 contains the test set experimental results

using the simple k-means and the boost-k-means
algorithm. The Z-score (Eq. (12)) index is provided
for each of the three compared cases. In each row

of Table 2, the best Z-score (maximum value) is

highlighted indicating the best partition result.

Similarly, Table 3 contains the test set experi-
mental results comparing the simple fuzzy c-means

with the boost-FCM algorithm. Running a basic

clustering algorithm (such as k-means or FCM)

many times, the best one can do is get the best

clustering solution, e.g. the one yielding the

smallest clustering error on the training set. So, it

makes sense to compare the boost-clustering result

with the best clustering result produced by many
applications of the basic clustering algorithm.

Some experiment examples are displayed only

for the boost-k-means-minmax algorithm. Fig. 5

show how the data distribution changes for the

Banana data set respectively, after some iterations

of boost-k-means-mixmax. The figures on the left

hand side show the data points used for training

and the figures on the right hand side display the
data points that were not sampled in a specific

iteration of boost-k-means-mixmax. Examining all

figures and considering the general principle of the

proposed boost-clustering algorithm, we observe

that, as the iterations of boost-k-means-minmax

progress, the corresponding training sets contain

data points that were hard to cluster in previous

iterations. Fig. 3 displays the resulting partition of
the Clouds test set in three clusters using the boost-

k-means-minmax algorithm and Fig. 4 shows the

resulting partition produced from the best simple

k-means algorithm. Similarly, Fig. 6 provides the

resulting partition of the Banana test set into four

clusters using the boost-k-means-minmax algo-

rithm, while Fig. 7 shows the resulting partition

produced from the best simple k-means algo-
rithm. It is clear that the boost-k-means-minmax



Table 2

Experimental results for simple k-means and boost-k-means

Dataset C Best k-means Boost-k-means-minmax Boost-k-means-entropy

Clouds 3 0.501 0.548 )1.550
4 )2.875 1.605 1.146

5 0.626 )1.126 0.500

6 )0.364 0.500 0.864

Phoneme 3 0.233 )0.162 )0.071
4 1.373 0.500 )0.873
5 2.077 )2.750 0.923

6 1.445 )3.000 1.555

Page-blocks 3 )2.353 1.331 0.980

4 )0.604 0.002 0.637

5 0.490 0.000 0.099

6 )1.232 )0.277 1.508

Banana 3 )2.676 )0.394 2.900

4 )1.946 2.900 )0.955
5 )2.500 2.500 )0.500
6 )2.100 0.361 1.739

Table 3

Experimental results for simple fuzzy c-means and boost-FCM

Dataset C Best FCM Boost-FCM-minmax Boost-FCM-entropy

Clouds 3 2.124 )3.502 0.373

4 )2.902 2.564 0.336

5 )1.366 2.927 )1.562
6 0.500 0.924 )1.758

Phoneme 3 )1.728 )0.028 1.757

4 0.707 )1.207 0.500

5 )1.602 2.973 )1.398
6 )1.869 3.100 )1.030

Page-blocks 3 )2.375 2.438 )0.188
4 )0.104 0.000 0.174

5 )2.044 0.544 1.000

6 )2.929 3.000 )1.320

Banana 3 )3.038 1.970 0.992

4 )3.005 2.509 0.985

5 )1.463 2.929 )1.608
6 )0.790 )1.900 2.890
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algorithm exhibits a better clustering performance

for these cases and is able to provide clustering

solutions that are not spherically shaped (this is

more clear in the Banana dataset), although it

employs weak learners providing solutions with
spherical clusters.

The experimental results in Table 2 indicate that

boost-k-means-minmax outperforms the best k-
means in 10 out of 16 experiments. Also, boost-k-
means-entropy outperforms the best k-means in 10

out of 16 cases. Overall, the boost-k-means algo-

rithm yielded the best partitioning result in 11 out

of 16 cases in comparison with the best k-means
which overtopped in five cases. Similarly, the re-

sults in Table 3 indicate that boost-FCM-minmax

outperforms the best FCM in 13 out of 16 exper-



Fig. 3. The resulting partition of Clouds test set into three

clusters by the boost-k-means-minmax algorithm.

Fig. 4. The best partitioning of Clouds test set into three

clusters with the simple k-means algorithm.
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iments. Also, boost-FCM-entropy outperforms

the best FCM in 11 cases. Overall, the boost-FCM

algorithm yielded the best partitioning result in 14

out of 16 cases in comparison with the best FCM

which overtopped in only two cases.
The results above indicate that the best way to

evaluate the clustering quality index CQi of an

instance xi can be very data specific. This suggests

that there is no clear reason why the minmax-CQ
index is better than the entropy-CQ index. We

believe that the entropy-CQ index is more robust

and may be beneficial with some large data sets, as

in the case of Page-blocks.
An important conclusion that can be drawn is

that, in most cases, the boost-clustering algorithm

provides better partition results (in 25 of total 32

experiments) than a simple clustering algorithm.

Also, we must note here that the boost-clustering

algorithm never reached the maximum number of
iterations (T ¼ 20), in particular the average

number of boost-clustering iterations in our

experiments was 10. This strongly indicates that

boosting a basic clustering algorithm for a small

number of iterations can give better results than

running the basic clustering algorithm many times

and selecting the partition of best run. The per-

formance degradation of boost-clustering, that
sometimes occurs when increasing the number of

iterations, is in accordance with analogous results

reported in the literature concerning the boosting

method when applied to classification problems

(Freund and Schapire, 1996; Wickramaratna

et al., 2001). In the case of the boost-clustering

algorithm, overtraining may be observed after

many iterations, especially for data sets with
noisy patterns or outliers which are hard to

cluster. Another reason for performance degra-

dation is the distortion of the overall structure of

the original data set due to resampling, hence the

early stopping criterion of boost-clustering is

critical.

A critical issue relevant to the effectiveness of

the proposed method concerns the problem of
inferring the optimal number of clusters. Indeed,

there is no well-established method to describe the

structure of arbitrary shaped clusters, as defined

by the proposed boost-clustering algorithm. It is

well known that the k-means (or fuzzy c-means)

algorithm, based on a minimum square error cri-

terium, identifies hyper-spherical clusters, spread

around prototype vectors representing cluster
centers. Techniques for selecting the number of

clusters according to this optimality criterium

basically identify an optimal number of cluster

centers on the data that splits it into the same

number of hyper-spherical clusters. When the data

exhibits clusters with arbitrary shape, this type of

decomposition is not always satisfactory. Inade-

quate data partitions, such as the partitions plot-
ted in Figs. 4 and 7, can be obtained even when the

correct number of clusters is known a priori. These



Fig. 5. Banana data set: The resampled data points used for training (a, c and e) and the data points that were not sampled (b, d and f)

by the boost-k-means-minmax algorithm (with C ¼ 4), after 2, 4 and 7 iterations respectively. (a) Sampled data points after two

iterations. (b) Non-sampled data points after two iterations. (c) Sampled data points after four iterations. (d) Non-sampled data points

after four iterations. (e) Sampled data points after seven iterations. (f) Non-sampled data points after seven iterations.
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Fig. 6. The resulting partition of Banana test set into four

clusters by the boost-k-means-minmax algorithm.

Fig. 7. The best partitioning of Banana test set into four clus-

ters with the simple k-means algorithm.

Fig. 8. The data set that we used in our experiments.
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misclassifications of patterns are however over-
come by using the proposed boost-clustering

methodology, setting C to the known number of

clusters.

The complexity and scaling behaviour of the

proposed clustering approach depends on the

complexity of the basic clustering algorithm since

we have set an upper bound on the number of

boosting iterations. For example, the complexity
of k-means is OðknÞ, where k is the number of

clusters and n is the size of the dataset. It must be

noted that in none of the experiments the algo-

rithm reached this upper bound.
3.5. Comparative results with a Bagging clustering

approach

Both the Bagging (Breiman, 1994) and boosting

techniques are competitive in classification tasks,
so it could be interesting to test the comparative

performance of the proposed boost-clustering

technique with respect to a Bagging clustering

approach. Therefore, we implemented another

ensemble clustering approach (Bagg-clustering)

inspired from Bagging. Actually, the method is

similar to the boost-clustering algorithm, with a

major difference being that at each iteration the
sampling distribution is uniform for all data

points. The resulting Bagg-clustering method with

k-means as the basic clustering algorithm will be

referred to as Bagg-k-means and the one with fuzzy

c-means as Bagg-FCM, respectively.

The data set used in our experiments is two-

dimensional with 4000 patterns, containing several

arbitrarily shaped clusters, as shown in Fig. 8. We
followed the same experimental methodology

using 2000 patterns for training and 2000 for

testing, considering the two non-parametric indi-

ces, isolation and connectivity, for measuring the

validity of arbitrarily shaped clusters. Table 4

contains the test set experimental results using the

simple k-means, the boost-k-means and the Bagg-

k-means algorithm. Similarly, Table 5 contains the
test set experimental results comparing the simple

fuzzy c-means with the boost-FCM and the Bagg-

FCM algorithm. We must note here that, in each



Table 5

Experimental results for simple fuzzy c-means, boost-FCM and Bagg-FCM

C Best FCM Boost-FCM-minmax Boost-FCM-entropy Bagg-FCM

5 )0.144 )0.989 0.655 )0.190
6 )2.333 1.901 1.566 )2.000
7 )1.134 0.250 1.045 )0.160
8 )2.348 0.656 2.508 )0.566

Table 4

Experimental results for simple k-means, boost-k-means and Bagg-k-means

C Best k-means Boost-k-means-minmax Boost-k-means-entropy Bagg-k-means

5 )1.617 5.000 )1.648 )0.734
6 )1.768 1.200 0.550 )0.233
7 )0.870 )0.141 1.120 )0.108
8 )3.500 1.534 1.910 0.055
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case, the Bagg-clustering algorithm was run for the
same number of iterations as boost-clustering. Fig.

9 displays the resulting partition of the data set in

seven clusters using the boost-k-means-entropy

algorithm and Fig. 10 shows the resulting partition

produced from the best simple k-means algorithm

(the lines indicate the cluster borders).

Although, the experimental results indicate that

Bagg-clustering outperforms the best simple clus-
tering algorithm in 7 out of 8 experiments, overall,

the boost-clustering algorithm yielded the best

partitioning result in all the cases. The key future
Fig. 9. The resulting partition of the data set into seven clusters

by the boost-k-means-entropy algorithm.

Fig. 10. The best partitioning of the data set into seven clusters

with the simple k-means algorithm.
behind the good performance of Bagg-clustering is

the reduction of variability in the partitioning re-

sults via averaging, but, as in the classification

case, since boosting uses a more efficient way of

sampling the data, it provides better clustering

solutions.
4. Conclusions

In this work a new clustering methodology has

been introduced based on the principle of boost-

ing. The proposed method is a multiple clustering
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method based on the iterative application of a

basic clustering algorithm and the appropriate

aggregation of the multiple clustering results

through weighted voting. The proposed algorithm

treats the problem of local minima of clustering

algorithms by iteratively running a basic clustering
algorithm, however its performance is not influ-

enced by the randomness of initialization or by the

specific type of the basic clustering algorithm used.

In addition, it has the great advantage of provid-

ing clustering solutions of arbitrary shape though

using weak learning algorithms that provide

spherical clusters, such as the k-means. For the

quality measurement of data partitioning we con-
sidered a cluster-validity index resulting from the

combination of two non-parametric indices, iso-

lation and connectivity.

We conducted experiments using several data

sets, to illustrate that boost-clustering can lead to

improved quality and robustness of performance.

The method is very promising, as the experimental

study has shown that boosting a basic clustering
algorithm (even for a few iterations) can lead to

better clustering results compared to the best

solution obtained from several independent runs

of the basic algorithm. We have also carried out an

experimental study comparing the proposed

boost-clustering algorithm with a Bagging clus-

tering approach. Both ensemble methods lead to

improvements in clustering performance, but, in
general, the adaptive resampling scheme used in

boost-clustering provides better solutions com-

pared to Bagging.

There exist several directions for future work

with the boost-clustering algorithm. The most

important direction is to determine the optimal

number of clusters existing in the data set. The

desired number of clusters is often not known in
advance. In fact, the right number of clusters in a

data-set often depends on the scale at which the

data is inspected, and sometimes equally valid (but

substantially different) answers can be obtained for

the same data. Moreover, the selection of the

optimal number of clusters can be incorporated in

the clustering procedure, either using local or

global cluster validity criteria. On the other hand,
in order to determine an adequate value or range

of C, one should use some a priori information
(for instance, by applying a mixture decomposi-

tion method for determining the number of com-

ponents in the mixture). Otherwise, several values

of C should be tested, the final number of clusters

being the most stable solution found. Other

interesting future research issues concern the
specification of alternative ways for evaluating

how well a data point has been clustered, as well as

the experimentation with other types of basic

clustering algorithms.
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