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A B S T R A C T

Background and Objective: Actinic keratoses (AK) are common premalignant skin lesions that can progress to
invasive skin squamous cell carcinoma (sSCC). The subtle accumulation of multiple AK in aging individuals in-
creases the risk of sSCC development, and this underscores the need for efficient treatment and patient follow-up.
Our objectives were to develop a method based on color texture analysis of standard clinical photographs for the
discrimination of AK from healthy skin and subsequently to test the developed approach in the quantification of
field-directed treatment interventions.
Methods: AK and healthy skin in clinical photographs of 22 patients were demarcated by experts and regions of
interest (ROIs) of 50 � 50 pixels were cropped. The data set comprised 6010 and 13915 ROIs from AK and
healthy skin, respectively. Color texture features were extracted using local binary patterns (LBP) or texton fre-
quency histograms and evaluated employing a support vector machine (SVM) classifier. Classifier evaluation was
performed using a leave-one-patient-out scheme in RGB, YIQ and CIE-Lab color spaces. The best configuration of
the SVM model was tested using 157 AK and 216 healthy skin rectangular regions of arbitrary size. AK treatment
outcome was evaluated in an additional group of eight patients with 32 skin lesions.
Results: The best configuration of the discrimination model was achieved by employing LBP color texture de-
scriptors estimated from the Y and I components of the YIQ color space. The sensitivity and specificity of the SVM
model were 80.1% and 81.1% at ROI level and 89.8% and 91.7% at region level, respectively. Based on the
classifier results the quantitative AK reduction was 83.6%.
Conclusions: It is important that patients with AK seek evaluation for treatment to reduce the risk of disease
progression. Efficient patient follow-up and treatment evaluation require cost-effective and easy to use ap-
proaches. The proposed SVM discrimination model based on LBP color texture analysis renders clinical photog-
raphy a practical, widely available and cost-effective tool for the evaluation of AK burden and treatment efficacy.
1. Introduction

Actinic keratoses (AK) are common premalignant lesions of the skin,
mostly affecting individuals of European ancestry [1] and constitute a
significant workload in dermatology outpatient clinics worldwide [2].
AK result from chronic exposure to ambient ultraviolet radiation, thus
they are mostly located on the chronically sun-exposed skin of older
adults. With increasing age susceptible individuals develop multiple
clinical and subclinical AK lesions that coexist in carcinogen-exposed
skin areas (“field cancerization”) [3]. The biological behavior of an in-
dividual AK may vary: it can remain relatively stable in form and size for
a long period or spontaneously involute and ultimately disappear. On the
other hand, some lesions may evolve into a hyperplastic, hyperkeratotic
state and ultimately a minority of them (<0.1% of lesions/per year) may
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progress to skin squamous cell carcinoma (sSCC), a potentially lethal
tumor [4,5]. However, since 60%–80% of sSCCs arise in AK fields, timely
treatment of these lesions is anticipated to prevent progression [6–8].

In practice, and during the examination of a skin field, it is common
for the clinician to document the presence of multiple, unevenly
distributed, partly coalescent AK of different sizes. In these cases, eval-
uating disease burden at baseline and quantifying treatment efficacy is a
challenging, real-life problem. The latter is highlighted in corresponding
clinical studies where the use of subjective means to measure AK burden
results in suboptimal interobserver agreement [9–11].

Research on computer vision systems for the evaluation of skin dis-
eases is a continuously growing subfield of medical image analysis
[12–14]. High-quality clinical images and specialized instruments that
magnify deeper skin tissues have been coupled with automated detection
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systems to offer valuable computer-aided diagnostic tools for the
assessment of keratinocytic skin malignancies. To date, non-invasive
imaging of AK has addressed the identification and differential diag-
nosis of isolated skin lesions, employing techniques such as the cost-
effective digital dermoscopy or the more sophisticated reflectance
confocal microscopy (RCM) and high-definition optical coherence to-
mography (OCT). The diagnostic accuracy of OCT images has been
assessed using ensemble classifiers and support vector machine (SVM)
models in the differentiation of AK from basal cell carcinomas (BCC)
[15]. Recently, the in vivo optical properties of facial AK subtypes and
sSCC were quantified by high-definition OCT and a decision tree diag-
nostic algorithm for the discrimination of sun-damaged facial skin from
AK subtypes and SCC was proposed [16]. Likewise, classification trees
with morphologic RCM characteristics have been used for the discrimi-
nation of AK from normal skin [17] and to combine dermoscopic signs
that predict the relevant histopathological findings in AK diagnosis [18].
Also, a Bayesian classifier and 3D features obtained by a sophisticated
stereo image system have been used to automatically distinguish be-
tween keratinocytic malignancies [19]. In addition, rather cumbersome,
non-portable equipment employing cross-polarized light and fluores-
cence has been proposed for skin cancer screening purposes, including
the diagnosis of AK [20].

Conventional skin biopsy and histopathological examination remain
the gold standard for confirming the diagnosis of AK. In general, most of
the aforementioned non-invasive imaging approaches intend to substi-
tute biopsy for the diagnosis of selected skin lesions [21]. However,
regarding AK, the fundamental limitation of all aforementioned methods
is that they are spatially elective, capable of supporting the recognition of
few selected lesions per-patient and thus unsuitable for “field” quantifi-
cation purposes. For example employing dermoscopy a relative small
skin area can be evaluated per field of view (corresponding to approxi-
mately 4 cm2 for a common commercially available digital dermato-
scope; DermLite, PhotoSystem, 3Gen, LLC, Dana Point, CA, U.S.A.).
Clinical photography on the other hand can provide morphological in-
formation of whole anatomic skin regions that in addition can harbor
multiple AK, e.g. the skin of the face or the balding scalp, a quasi ‘scan-
ning modality’ for morphological alterations of the skin surface.

The applicability of standard clinical photographs in the evaluation of
keratinocytic premalignancies has been addressed in a limited number of
studies. Using clinical photographs a hierarchical classification system
based on the k-nearest neighbors (K-NN) model for discrimination be-
tween benign and malignant skin growths has been proposed [22].
Furthermore, automatic delineation of AK areas on clinical photographs
has been elaborated using color space transforms and morphological
features for erythema detection [23].

In this study, we developed an SVM model for discrimination of AK
from normal skin, based on color texture analysis of non-standardized
clinical photographs. Our aim was to use photography to quantify AK
burden and to evaluate the outcome of treatment interventions that
target skin cancerization fields. To the best of our knowledge, the present
study is the first image analysis approach towards the quantification of
AK burden for efficient treatment evaluation and patient follow-up by
means of clinical photography.

2. Materials and methods

2.1. Acquisition of clinical photographs

Institutional approval was granted and patients with at least one
biopsy-proven AK were recruited from a dermatology outpatients clinic;
all patients gave informed consent for the photographic assessment of
their skin lesions. A total of 30 patients (24 men) were included (mean
age: 78 [range: 68–85] years). Photographs from 22 patients were used
for the model development and the rest for evaluating AK burden
reduction after treatment. Photographs were acquired using a Nikon
D610 camera with a spatial resolution of 6016 � 4016 pixels. A 60 mm
51
prime lens was adapted with two adjustable crossed polarized filters to
minimize unwanted glare and a SIGMA EM-140 Macro ring flash. Images
were rescaled to an equal final size of 50 pixels per millimeter employing
as internal standards stickers attached to the skin (MACO Round Color
Coding Labels, 0.635 cm [1/4 inch] in diameter, USA).

The same physician took all images at baseline and during follow-up
visits with the volunteers seated. A detailed description of image acqui-
sition is given in Fig. 1.

2.2. Discrimination model implementation

The automatic discrimination of facial AK lesions from healthy skin
was addressed as a two-class classification problem, using the
SVM classifier.

SVM is an advanced and extensively used classification method that
has been successfully applied to a variety of real-world data analysis
problems (text categorization, image recognition, bioinformatics and
medical decision), mostly providing improved results compared with
other techniques [24–26]. SVM is currently considered the standard
method used to build a classifier from training data, especially in prob-
lems with continuous input features, as in our case. Further details on the
SVM classifier can be found in Ref. [27].

In this study, the radial basis function (RBF) kernel was used for the
SVM implementation. The SVM classifier performance depends on the
choice of the parameter (C) which is also known as box constraint and the
scaling factor (γ) which is the inverse width of the RBF kernel. We tested
various pairs of (C, γ) values and we selected the one with the best pre-
dictive accuracy for both classes.

To train and validate the SVM classifier, AK and healthy skin 50 � 50
pixel regions of interest (ROIs) were cropped from areas demarcated by
experts in each photograph (Fig. 2). A 50 � 50 pixel ROI is about one
mm2 and is the largest ROI adequate to sample the smallest demarcated
by experts skin area. The data set comprised 6010 and 13915 ROIs of AK
and healthy skin, respectively, extracted from 22 patients (Table 1).

Two different SVM models were constructed and evaluated. In the
first model, each ROI is represented by its color local binary pattern (LBP)
histogram (SVMLBP model). In the second model, each ROI is represented
by its texton frequency histogram (SVMTextons model).

Both SVM models were evaluated in terms of their sensitivity and
specificity. For this, the number of true positives (TP), false negatives
(FN), true negatives (TN) and false positives (FP) was obtained by each
model. TN is the number of healthy skin ROIs correctly identified, FN is
the number of AK ROIs incorrectly identified as healthy skin, TP is the
number of AK ROIs correctly identified and FP is the number of healthy
skin ROIs incorrectly identified as AK. Sensitivity is the probability that
the SVM model will respond positively when tested on the AK ROI:

Sensitivity ¼ TP
ðTPþ FNÞ (1)

Specificity is the probability that the SVM model will respond nega-
tively when tested on the healthy skin ROI:

Specificity ¼ TN
ðTN þ FPÞ (2)

Finally, the accuracy is defined as the probability that the SVMmodel
will correctly classify both classes:

Accuracy ¼ TPþ TN
TPþ FPþ TN þ FN

(3)

Evaluation of the discrimination models was performed using the
leave-one-patient-out scheme, meaning that ROIs from all patients but
one were used for the training and ROIs from the patient excluded for
testing the model. To avoid overtraining the model in favor of the ma-
jority class (the healthy skin class), equal numbers of healthy skin and AK
patterns were randomly selected from each patient in the training set.



Fig. 1. For facial pictures, portrait images with the camera axis perpendicular to the photographed region at 0� (a), 45�/�45� (b) and 90�/�90� (c) angles to the coronal (sagittal) plane
were acquired. The distance was adjusted to include the whole face from the chin to the top of the hair/scalp. For balding scalps three sets of landscape pictures were taken: one with the
lower frame on the eyebrows and with an angle that positioned the ears in the middle of the frame (d). With this approach images from the forehead and the anterior half of the vertex scalp
were suitable for analysis. Two additional images from both sides of the scalp were taken to include the ipsilateral vertex and forehead. For these images, the landscape frame was
positioned on the eyebrows (lower frame) and the ipsilateral ear (the lateral frame) (e). Likewise, the nuchal area and the top of the scalp were photographed from the back, both
perpendicularly to the nuchal area and at an angle that would position the lower frame on the hairline and the ears in the middle of the frame (f).
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The best configuration of the SVM model was also tested at skin re-
gion level. That is, from each patient, up to 10 arbitrarily sized (box)
regions of AK and healthy skin were selected. In total, 157 AK and 216
healthy skin regions were tested. A sliding window of 50 � 50 pixels is
moved across the image region by 10 pixels overlapping in each trans-
location. In each sliding position, the 50 � 50 window is assigned by the
SVM model as belonging to the AK class or the healthy skin class. The
SVM model has been previously trained by regions from all patients
except the patient under testing. The skin region under testing was finally
recognized as AK or healthy skin according to the majority class assigned
to the 50 � 50 windows of that region.

To visualize the results, SVM outputs were converted to posterior
probabilities in the range [0 1] [28]. In each sliding position a pseudo-
color was assigned using a color map that corresponds a probability value
of 0 to blue (healthy class) and a probability value of 1 to yellow (AK
Fig. 2. ROI selection for model implementation starting from areas demarcated by experts in a c
delimited by black and healthy regions delimited by blue borders. A round color coding label (r
pixels per mm. (b) From demarcated skin areas standardized 50 � 50 pixel ROIs were extract
classifier. The greater rectangular field delimited by the four black dots corresponds to a 25 cm
reader is referred to the web version of this article.)
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class). Explanatory examples are given in Fig. 3.
SVM models were implemented using Matlab (R2015b, The Math-

Works) and run on a personal computer with a 64-bit operating system,
2.4 GHz CPU and 12 GB memory.

2.3. Color texture analysis

The clinical diagnosis of AK relies on the recognition of certain
macromorphological characteristics. A typical AK appears as a white,
scaly lesion of variable thickness with surrounding redness [1,3]. Upon
palpation AK are detected due to their distinctive sandpaper-like texture,
supporting our strategy of using color texture analysis for the discrimi-
nation of facial AK from normal skin.

Two main approaches to feature extraction for color texture analysis
are often used and consist of:
linical photograph. (a) Patient photograph with regions demarcated by experts: AK lesions
ed) was used as the internal standard – all images were rescaled to an equal final size of 50
ed and (c) from each ROI color LBP and texton features were extracted to feed the SVM
2 treatment area. (For interpretation of the references to colour in this figure legend, the



Table 1
Number of AK and healthy ROIs (50 � 50 pixels) extracted from each patient.

Patient AK ROIs Normal skin ROIs

1 147 216
2 425 1275
3 87 340
4 230 880
5 250 375
6 546 1835
7 225 60
8 537 193
9 66 193
10 536 332
11 197 47
12 698 1217
13 459 1660
14 87 563
15 12 18
16 330 658
17 194 1359
18 72 108
19 586 1595
20 168 683
21 66 48
22 92 260

Total 6010 13915

Fig. 3. Examples of application of the discrimination model to visualize and quantify AK
burden in selected skin regions. Top: (a) A tested AK skin region of 250 � 200 pixels (left
side) was separated into 336 50 � 50 pixel windows (10 pixel overlap of adjacent win-
dows). (b) In each window SVM posterior probability was color-mapped to better visualize
the automatic skin recognition results. The majority of the windows were positives (309/
336; 92%) and the whole skin region was recognized as an AK lesion. Bottom: (a) A tested
healthy skin region of 200 � 200 pixels was separated into 256 50 � 50 pixel windows (10
pixel overlap). (b) Color-mapped SVM posterior probabilities. The majority of the win-
dows were negatives (231/256; 90.2%) and the whole skin region was recognized as
healthy. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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i. Applying gray-level texture analysis techniques to each color channel
separately

ii. Extracting textural information from the luminance plane along with
pure chrominance features.

Both methods have resulted in substantial improvement in the per-
formance of standard gray-level texture analysis techniques [29].

In the present study, we adopted the first method of extending the
gray-level texture to channel-wise color texture analysis. More specif-
ically, we considered channel-wise color LBP and raw pixel representa-
tion textons. Both LBP and texton-based approaches have exhibited
excellent texture classification performance on standard texture data-
bases [30,31].

RGB color space is the standard format for displaying color digital
images. A problem with this color representation is that it is device-
dependent. Moreover, RGB values are very sensitive to illumination in-
tensity and color changes because of the high correlation among the R, G
and B components. Thus, although RGB is suitable for color display, it is
not preferred for color analysis. RGB space can achieve satisfactory color
discrimination accuracy under controlled illumination, however, this is
not retained under variable illumination conditions. Additionally, AK
appear with variable colors. Thus absolute color evaluation is not useful
in image analysis. For improved color processing RGB is commonly
transformed to alternative spaces [29,32–34]. In this paper, along with
RGB, YIQ and CIE-Lab color spaces were also investigated.

In the YIQ color model, the Y component is a measure of color
luminance. The I component represents the hue and the Q component
represents the saturation of the image. The YIQ space can partly reduce
the correlation of the red, green and blue components in an image.

In the CIE-Lab color space, the L defines the lightness or the intensity
of a color whereas a and b are the chromaticity components. Lab space
can also control color and intensity information more independently.

YIQ has been proved to be an effective color space transformation for
facial image analysis applications whereas CIE-Lab color space associates
well with human vision systems [33].
2.4. Review of LBP features

Assuming a local circular region of a radius R consisting of P neigh-
bors, the LBP operator is estimated by taking the difference of the center
pixel with respect to its neighbors:
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LBPP;R ¼
XP�1

p¼0

s
�
gp � gc

�
2p (4)

s
�
gp � gc

� ¼
�
1 gp � gc
0 gp < gc

(5)

where gc and gp denote the values of the central pixel and its neighbor,
respectively, and p is the index of the neighbor. The values of neighbors
that are not in the center of grids are estimated by interpolation.

The U value of an LBP pattern is defined as the number of spatial
transitions (bitwise 0/1 changes):

UðLBPP;RÞ ¼ jsðgP�1 � gcÞ � sðg0 � gcÞj þ
XP�1

p¼1

��s�gp � gc
�� s

�
gp�1

� gc
���

(6)

It has been shown that only “uniform” patterns (U � 2) are essential
patterns of local image texture [35]. For example, bit strings 00000000
(0 transitions) and 01111000 (two transitions) are uniform while
10001001 (four transitions) and 01010110 (six transitions) are not. Non-
uniform patterns (U>2) are grouped under the “miscellaneous” label.
The mapping from LBPP;R to LBPu2

P;R reduces the different output values
from 2p to P� ðP� 1Þþ 3 (superscript u2 means that the uniform pat-
terns have U � 2).

Further, to extract rotation-invariant LBP descriptors, the locally
rotation-invariant pattern was adopted. This is defined as follows [36]:
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LBPriu2
P;R ¼

8<
:

PP�1

p¼0
s
�
gp � gc

�
if UðLBPP;RÞ � 2

Pþ 1 otherwise
(7)

The mapping from LBPP;R to LPBriu2
P;R results in P þ 2 different

output values.
After estimating the LBPriu2P;R pattern in each pixel (i, j), the texture of

an ROI of 50 � 50 pixels is represented by building a histogram:

HðkÞ ¼
X50
i¼1

X50
j¼1

f
�
LBPriu2

P;R ði; jÞ; k
�
; kε ½0;K� (8)

f ðx; yÞ ¼
�
1; x ¼ y
0; otherwise

(9)

The aforementioned LBP operations (Eqs. (7)–(9)) are applied to each
component of the YIQ (or CIE-Lab) color space. The final color LBP his-
togram of each ROI is obtained by concatenating the d individual channel
LBP histograms into a single column vector with d� ðPþ 2Þ elements,
where d is the number of color channels used from the YIQ (or CIE-Lab)
color space.
2.5. Review of textons using image patch exemplars

There are two main approaches proposed in the literature for texton-
based texture description, filter banks [37] or raw pixel representation
[31]. Raw pixel representation has recently gained ground, exhibiting
similar or even superior classification results compared with multi-scale,
multi-orientation filter banks [31,38].

Irrespective of the approach used to describe texture information,
implementing textons consists of the following processing steps:
initially, a codebook (dictionary) of textons is created using a clus-
tering algorithm such as k-means. To construct the texton codebook
using the raw pixel representation approach, small-sized N � N
(3 � 3 in the present case) local patches are extracted from each ROI in
the training set and the raw pixel intensities of these square neigh-
borhoods are column-reordered to form a d� N2 dimensional vector
where d is the number of color channels used from the YIQ (or CIE-
Lab) color space. All the patches from the training ROIs are aggre-
gated and clustered. The set of cluster centers comprises the texton
dictionary. Next, a texton histogram is computed for each ROI in the
training set. For this, small patches (3 � 3) are extracted by sliding a
window over each training ROI. Then, a histogram of textons is
computed by comparing every patch representation in that ROI with
Fig. 4. Overview of texton-based feature extraction and classificat
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all textons in the dictionary using the Euclidean distance. A schematic
overview of the herein applied texton feature extraction and classifi-
cation procedures is given in Fig. 4.
2.6. Treatment evaluation of AK

Photographs at baseline and during follow-up were acquired from
eight patients. Treatment approaches were individually adapted ac-
cording to good clinical practice and patients' needs. For thin or slightly
hyperkeratotic AK either of two modalities was employed: ingenol
mebutate 0.015% gel (Picato®, Leo) once daily for 3 consecutive days to
treat 25 cm2 skin areas with AK or a modified daylight PDT method for
“field” treatment (2 h closed application of methyl aminolevulinate 16%
cream [Metvix®, Galderma] followed by 30 min exposure to daylight)
[39,40]. Cryosurgery (open spray, liquid N2, two cycles of 10 s each) was
applied in solitary, hyperkeratotic AK, or in combination with topical
application of imiquimod 5% cream (immunocryosurgery) when field
treatment was indicated [41].

During image acquisition attention was given to capture almost the
same field before and after treatment. For AK quantification, an internal
point was selected manually as a reference point in the baseline image,
and the examined region was evaluated by the discrimination model.
The polar coordinates of the upper left corner of the region to the
reference point were estimated (Fig. 5, top). In the follow-up image, the
same internal point was manually selected, and the corresponding re-
gion was autoselected based on the same polar coordinates used in the
previous baseline image for the upper left corner of the region box
(Fig. 5, bottom).

3. Results

3.1. ROI-level evaluation of the SVMLBP model

Table 2 summarizes the performance of the SVMLBP model in three
color spaces, namely RGB, YIQ and CIE-Lab. Employing the leave-one-
patient-out method, YIQ and CIE-Lab color spaces exhibited similar
discrimination accuracy, and generally both outperformed RGB. To select
the most informative color components of a color space, we tested all
possible color combinations within each space in one, two and three-
dimensional configurations. Results for YIQ and CIE-Lab spaces are
given in Table 2.2 and 2.3. The combination of Y and I components from
the YIQ color space yielded the highest discrimination rates with sensi-
tivity and specificity of 80.2% and 80.1%, respectively (Table 2.2).

The best configuration of the color texture operator LBPriu2
P;R was

achieved with circular neighborhood P ¼ 8 and radius R ¼ 1.
ion. Dashed paths signify the classifier evaluation procedure.



Fig. 5. Application of the model to quantify treatment effects (example from patient 1, Table 4). Top: Finding at baseline. (a) A tested region box of 450 � 350 pixels was selected and the
polar coordinates of the upper left corner were estimated using an internal reference point (green point). (b) The selected region was separated into 1271 50 � 50 pixel windows (10 pixel
overlap) and was model-evaluated and quantified; 43.2% (549/1271) of the windows are positive. Bottom: The same area at a follow-up appointment 4 months post-treatment. (a) The
tested region box was re-identified and autoselected (red points) using the polar coordinates of the upper left corner to the reference point (green point). (b) The region was model-
evaluated and quantified; only 9.8% of the windows (25/1271) were now positive, corresponding to a 77.3% improvement in AK burden. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Finally, the SVMLBP classification model was implemented using an
RBF kernel parameter γ equal to 10 and box constraint parameter C equal
to 1.

Since the number of healthy skin patterns was selected equal to that of
AK patterns, the prior probabilities and classification costs were set equal
for both classes.
3.2. ROI-level evaluation of the SVMTextons model

To construct the codebook of textons, small local patches of 3 � 3
pixels were randomly extracted from each ROI in the training set. Each
3 � 3 color patch forms a vector in a d � 9 dimensional feature space
where d is the number of color channels used from the YIQ color model.
These patch vectors were clustered using the k-means algorithm with
k ¼ 35 codewords.

Comparative recognition results of AK lesions using texton de-
scriptors are given in Table 2.4. The best accuracy levels were achieved
using all components of the YIQ color space, reaching 79.6% and 73.8%
for AK and healthy skin, correspondingly.
3.3. Region-level evaluation of the SVMLBP model

The SVMLBPriu28;1
discrimination model, using as inputs concatenated

individual Y and I color channel LBP histograms from 50 � 50 sliding
windows, was tested for correctly recognizing skin regions from each
patient; 141 out of 157 AK regions (89.8%) and 198 out of 216 healthy
skin regions (91.7%) were correctly recognized. Results are summarized
in Table 3. Representative examples of misrecognized skin regions are
depicted in Fig. 6.
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3.4. Evaluation of AK treatment outcome: a preliminary study

Photographs at baseline and during follow-up were acquired from
eight patients who were not included in the training set of the
model (Table 4).

In six out of the eight patients, multiple lesion fields were evaluated
resulting in a total of 32 skin areas selected for the evaluation of treat-
ment outcomes. Fig. 5 depicts the evaluation outcome of selected skin
regions, before and after treatment (patient 1: multiple lesions; patient 2:
a single lesion). Based on the classifier results, individualized, best
practice, minimally invasive interventions yielded an average AK burden
reduction of 83.6% (Table 4).

4. Discussion

Clinical photography is widely available and is currently considered
essential for the documentation of dermatologic conditions. In conjunc-
tion with computer vision techniques it could be upgraded to a funda-
mental and cost-effective tool for the evaluation of various skin lesions,
monitoring disease progression as well as quantifying treatment in-
terventions [22,23,42–47].

In the present study, we explored the utility of clinical photographs in
the assessment of AK, a frequent cutaneous premalignancy. We employed
an SVM classifier and color texture features to discriminate between AK
lesions and healthy skin and to quantify field-directed treatment
interventions.

In a different, computer-aided diagnosis approach, Boone et al. [16]
have quantified OCT images of facial AK/sSCC lesions. Applying receiver
operating curves to determine the cut-off values of the optical charac-
teristics of lesions, they proposed a decision tree diagnostic algorithm for



Table 2
SVMLBP and SVMTextons model performance in color spaces. 2.1 Classification rates using
color operator LBPriu2

8;1 in different color spaces. 2.2 Classification results using color
operator LBPriu2

8;1 and color channel combinations in the YIQ color space. 2.3 Classification

results using color operator LBPriu2
8;1 and color channel combinations in CIE-Lab color. 2.4

Classification results using color texton operator and color channel combinations in the
CIE-Lab color space. The approach with the best discriminating performance is depicted in
bold.

Sensitivity (%) Specificity (%)

2.1 LBPriu2
8;1

RGB 75.5 78.3
YIQ 79 82.3
CIE-Lab 78 82

2.2 LBPriu2
8;1

YIQ-Y 79 75.8
YIQ-I 73 66.7
YIQ-Q 68.5 68.40
YIQ-IQ 71.7 75.3
YIQ-YI 80.2 80.1
YIQ-YQ 75.8 79

2.3 LBPriu2
8;1

LAB-L 79.3 76.1
LAB-A 76.3 73.20
LAB-B 73.2 65.6
LAB-AB 78 79
LAB-LA 78.3 80.3
LAB-LB 77.3 78.7

2.4 Textons

YIQ-Y 68.6 79.2
YIQ-I 63.7 72.1
YIQ-Q 73.3 67.2
YIQ-IQ 73 71.4
YIQ-YI 69.7 76.9
YIQ-YQ 70.5 73.3
YIQ-YIQ 79.6 73.8

Table 3
Confusion matrix for АΚ versus healthy skin regions; 141/157 AK regions (89.8%) and
198/216 healthy regions (91.7%) were correctly recognized.

Clinically diagnosed regions Model-recognized regions Total

AK Healthy skin

AK 141 (89.8%) 16 157
Healthy skin 18 198 (91.7%) 216
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the discrimination of sun-damaged facial skin from AK subtypes and
sSCC. The diagnostic accuracy was high (>90%), yet these optimum
outcomes were acquired only in the training set. Horn et al. [17] have
studied RCM criteria for the discrimination of AK from normal skin. Two
observers visually assessed the presence or absence of selected RCM
features and classification trees were used to differentiate AK from
normal skin. Thus with a single RCM feature (“irregular keratinocyte cell
borders”) sensitivity and specificity of 86.67% and 85%, respectively, in
the discrimination of AK from healthy skin were achieved. With the
integration of additional features into the model, specificity increased up
to 90%. However, when considered separately, none of the evaluated
RCM criteria were more than moderately reliable for the recognition of
AK (interobserver agreement; kappa statistic). Huerta-Brogeras et al.
[18] have proposed a diagnostic algorithm that combines the dermo-
scopic signs “follicular openings” and “erythematous pseudo network”
for the diagnosis of AK with 95.6% sensitivity and 95% specificity
compared to histopathology. However, evaluation of dermoscopic im-
ages was subjective, based exclusively on clinical assessments by experts,
and interobserver variability was not reported. McDonagh et al. [19]
have used a dimensional imaging dense stereo capture system to obtain
3D shape features to distinguish between neoplastic non-melanoma skin
lesions automatically. Feeding depth and color image features into a
Bayesian classifier, they demonstrated improved classification rates for
five common classes of skin lesions: AK, sSCC, BCC, seborrhoeic keratosis
and melanocytic nevus. They reported an overall method accuracy of
83%. Regarding the AK class, the recognition rate was 100% with,
however, the restriction that only 11 samples were analyzed.

The application of standard clinical photography in the evaluation of
keratinocytic premalignancies has been previously investigated by Bal-
lerini et al. [22]. A K-NN hierarchical scheme, using color and texture
information from clinical photographs, attained an overall classification
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accuracy of 74% over the five most common benign and malignant skin
growths (malignant melanoma, AK, BCC, melanocytic nevus/mole, sSCC
and seborrhoeic keratosis). Regarding AK, most test images were mis-
classified as BCC. In a more recent study, Hames et al. [23] proposed a
method for automatic AK border delineation on clinical photographs
using color space transformations and morphological operations. Auto-
matic segmentation was compared with expert annotation of the pic-
tures, also taking into account intraobserver variability. Correlation
between automatic and manual AK identification was 0.62 for face and
0.51 for arm lesions. The sensitivity of automatic detection was 39.5%
and 53.1% and the positive predictive values 13.9% and 39.8% for facial
and arm AK, respectively.

AK arise multifocally in the initiated epidermis of photo-damaged
skin as small clusters of mutated cells [48] that may expand horizontal-
ly and vertically within the epidermis for various periods until they
become clinically evident [49]. Consequently, the affected skin harbors
multiple subclinical disease foci, in addition to clinically recognizable AK
[50]. Thus, in most cases, the presence of overt AK in a skin area indicates
the presence of an underlying skin cancerization field [51]. “Field ther-
apies” such as PDT and topical ingenol mebutate are principally designed
to target exactly these skin areas as a whole, addressing obvious as well as
subclinical premalignant lesions [52]. For these reasons, in the present
work, we did not attempt to strictly define the borders of individual,
clinically demarcated AK lesions but rather addressed the discrimination
of AK-affected areas from healthy skin and quantification of the cumu-
lative AK burden within selected skin areas.

The proposed SVM classification model employing LBP color texture
features exhibited sensitivity and specificity over 80% at both ROI- and
region-based levels (Tables 2.2 and 3) and was also validated in eight
patients not included in the training set (Table 4, Fig. 7). In this latter
group the model adequately enabled the quantification of treatment ef-
ficacy and recorded an averaged 83.6% AK reduction.

Commenting misclassification, the primary source of false negatives
were lesions with subtle texture sub-areas interposed by smoothed areas
with erythema (Fig. 6, top). However, this “pattern” of lesions appeared
only in one patient (out of 22), and possibly our model was insufficiently
trained to recognize these lesions. Following, the majority of false posi-
tives (Fig. 6, bottom) was mainly recorded from patients with severe
photodamage and field carcinogenesis with multiple concurrent kerati-
nocytic carcinomas. Though, this clinical background also challenges the
capability of experts to delineate lesions from healthy areas.

Herein, color LBP descriptors have been employed for the identifi-
cation of morphological alterations of AK lesions. LBPriu2

8;1 color texture
features extracted from the Y and I components of the YIQ color space
resulted in the best feature vector to use in the discrimination model.
Color LBP and texton descriptors outperformed the conventional gray-
scale texture analysis (Tables 2.2 and 2.4). Notably, the luminance
component Y of the YIQ color space represents grayscale information.

Our results are in line with the current findings indicating that color
information plays an important role in texture analysis and can be used to
improve recognition performance considerably [29,53]. Compared to
textons, the LBP approach exhibited better identification performance in
addition to shorter computation times. A possible drawback of this
approach is that patch exemplars are not rotationally invariant. However,
it has been demonstrated that incorporating rotation-invariant textons,
improves, even slightly, their classification performance [31]. Further-
more, LBP descriptors have distinctive robustness against monotonic



Fig. 6. Examples of misrecognized skin regions. Top: (a) A tested AK skin region of 220 � 222 pixels was separated into 256 50 � 50 pixel windows (10 pixel overlap). (b) The majority of
the windows were negatively misclassified (161/256; 62.9%), and the whole skin region was misrecognized as healthy skin (False negative). Bottom: (a) A tested healthy skin region of
316 � 368 pixels was separated into 806 50 � 50 pixel windows (10 pixel overlap). (b) The majority of the windows were positively misclassified (687/806; 85.2%), and the whole region
was misrecognized as AK lesion (False positive).

Table 4
Quantitative evaluation of AK lesions before and after treatment using the SVMLBP discrimination model.

Patient Sex Age Treatment AK localization Follow-up (months) AK burden in %a

Before treatment After treatment AK reduction Mean AK
reduction

1 M 85 Daylight PDTb, imiquimod,
cryosurgery

Left mandible-preauricular area 4 43.2 9.8 77.3 71.8
57.2 16.9 70.5
24.2 7.8 67.8

Forehead (left half) 4 72.9 37.1 49.1 74.6
43.3 0 100.0

Forehead (right half) 7 43.4 0 100.0 95.9
66.7 5.5 91.8

2 M 75 Cryosurgery Right cheek 10 95.7 21.5 77.5 77.5
3 M 79 Ingenol mebutate Left cheek 2 96 28 70.8 82.2

71 6.5 90.8
93 14 84.9

Right cheek 2 64 32 50.0 74.2
63 1 98.4

Forehead 2 61 0 100.0 99.0
100 2 98.0

4 M 82 Imiquimod, cryosurgery Right cheek 4 45.2 5.5 87.8 87.8
5 M 79 Ingenol mebutate Occipital 12 49.4 23.2 53.0 82.5

56 2.7 95.2
40.6 13.5 66.7
66.6 1.5 97.7
72.2 0 100.0

6 M 78 Ingenol mebutate Right cheek 2 98 20 79.6 73.6
95.5 44 53.9
92 11.7 87.3

7 M 89 Cryosurgery, ingenol mebutate Forehead (left half) 2 18.7 2 89.3 92.5
29.6 2.8 90.5
62.5 10.7 82.9
68.3 0 100.0
64.5 0 100.0

8 M 84 Cryosurgery, ingenol mebutate Temporoparietal region (left) 2 66.7 7.1 89.4 89.4
Occipital 2 66 11.6 82.4 85.9

63.4 6.7 89.4
Mean 64.1 10.8 83.5 83.6

a % skin area recognized as AK.
b Photodynamic therapy.
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Fig. 7. Monitoring skin regions before (a) and after treatment (b). The first five examples
from the top were from patient 1 and the last ones from patient 2 (Table 4). In each pair of
figures, the left one is the selected region of the clinical photograph and the right one
depicts the AK burden in this field. (c) Employed color bar: a pseudocolor was assigned
using a color map that corresponds the probability value of 0 (healthy class) to blue and
the probability value of 1 to yellow (AK class). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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illumination changes and this applies in clinical practice where images
are captured under varying illumination conditions. However, by
assuming that the illumination in a small ROI of 50 � 50 pixels is
approximately uniform (monotonic), we can suggest that LBP descriptors
could accommodate potential local intensity fluctuations.

Regarding time efficiency, the computation time of an LBP histogram
in a 50 � 50 pixel ROI was 0.02 s, whereas the corresponding time of an
equivalent texton histogram was 0.08 s. To give a concrete example
comparing the time efficiency of LBP- and texton-based feature extrac-
tion we assumed the assessment of a skin region of 250 � 200 pixels
which is a skin area of 50 � 40 mm2 (e.g. Fig. 3, top). This region was
separated into 336 50 � 50 pixel windows. Consequently, the estimation
time of the AK burden for this example was about 6 s using LBP and about
36 s using the texton approach.

In conclusion, clinical photography combined with relevant image
analysis algorithms is a promising non-invasive, cost-effective moni-
toring tool for the evaluation of field-directed treatment interventions for
AK. Moreover, the discrimination power and the fast computation of
color LBP features render the herein proposed SVMLBP model a viable and
real-time method for evaluating treatment outcomes.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
doi.org/10.1016/j.compbiomed.2017.07.001.
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