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a b s t r a c t

This work addresses the problem of non-rigid registration between two 2D or 3D points sets as a novel

application of Relevance Vector Machines (RVM). An iterative framework is proposed which consists of

two steps: at first, correspondences between distinct points are estimated by the Hungarian algorithm

and then a regression procedure based on a Bayesian linear model (RVM) maps the two sets of points.

the form of the point sets. The proposed algorithm provides a smooth transformation even if the

correspondence between the points in the two sets contains erroneous matches. The algorithm was

successfully evaluated on sets of points with varying difficulty and favorably compared with state-of-

the-art methods in cases of noise.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Registration of two sets of points is a common step in many
applications in computer vision, pattern recognition, image proces-
sing and medical image analysis. The problem consists in determin-
ing a geometrical transformation that brings two sets of points into
alignment. This could be achieved, for instance, through the estab-
lishment of correspondences. However, the problem is not always
well-posed and becomes more complicated by the existence of noise
or outliers, making the determination of correspondences harder.
Another drawback rises from the geometric transformation itself, as
there may be an infinite number of allowed high dimensional
mappings. Also, the definition of the similarity measure is an open
issue, since one can choose from a variety of metrics.

Many methods have been proposed to solve the correspon-
dence problem. A straightforward approach is based on the
nearest neighbor criterion to establish correspondences, as in
the Iterated Closest Point (ICP) algorithm [1]. However, despite its
simplicity, this method results in many local minima, providing a
suboptimal solution, and does not guarantee that the correspon-
dence is one-to-one. Many variants of this algorithm have been
proposed improving the behavior of the method in the presence
of noise. A detailed review can be found in [2]. Nevertheless, in all
cases, ICP methods necessitate a good initialization near to the
optimal solution in order to prevent the energy function from
getting trapped in local minima.
ll rights reserved.

nis),
The Robust Point Matching (RPM) algorithm [3] relies on a
deterministic annealing scheme. The algorithm applies the soft-
assign principle [4] for matching and the thin-plate spline inter-
polation [5] for non-rigid mapping. The rationale is to transfer the
assignment problem from a hard approach to a soft one, that is to
define a probability for each assignment.

The Coherent Point Drift (CPD) algorithm was also proposed in
[6], where the registration is treated as a Maximum Likelihood
(ML) estimation problem with motion coherence constraints over
the velocity field such that one point set moves coherently in
order to be aligned with the other. In that case, transformation
parameter estimation and determination of correspondences are
simultaneously handled.

Mixture models were proposed as a framework to solve the
registration problem (GMMReg) [7]. Each set of points is repre-
sented by a mixture of Gaussians and registration is defined as a
problem of aligning the two mixtures. The L2 metric is used as a
measure of mixture alignment. An extension of the method using
robust Student’s-t modeling for the data was also proposed in [8].

Shape context was considered in [9], where an iterative
algorithm is designed to account for the shape matching, regis-
tration and detection. The problem is formulated in terms of
probabilistic inference using a generative model and the EM
algorithm. Shape features are used in a data-driven technique to
address the problem of initialization.

A technique for establishing correspondences is proposed in
[10], where features of a 2D point set which are invariant with
respect to a projective transformation are extracted. The proposed
algorithm is based on the comparison of two projective and
permutation invariants of five-tuples of the points. The best-
matched five-tuples are then used for the computation of the
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Fig. 1. A false matching simulation example, with a point set used in [3].

(a) Correct correspondences between the source and the target sets are repre-

sented by line segments. (b) Two points were falsely matched on purpose

simulating a wrong correspondence solution. The yellow box depicts the false

matched points. (c) The result of TPS [5]. Notice that large registration errors are

present. (d) The result of the proposed registration scheme was based on RVM

regression. In this case the registration is correct. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article.)
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projective transformation and the one having the maximum
number of corresponding points is used.

Moreover, in [11], a novel technique is introduced to solve the
rigid point pattern matching problem in Euclidean spaces of any
dimension. The point pattern matching is modeled as a weighted
graph, where nodes represent points and the weights of the edges
are equal to the Euclidean distances between nodes. The graph
matching is formulated as a problem of finding a maximum
probability configuration in a graphical model.

In [12], the notion of a neighborhood structure for the general
point matching problem is introduced. Then, the point matching
problem is formulated as an optimization problem to preserve
local neighborhood structures during matching. The method has a
simple graph matching interpretation, where each point is a node
in the graph, and two nodes are connected by an edge if they are
neighbors. The optimal match between two graphs is the one that
maximizes the number of matched edges.

The majority of the registration methods mentioned so far,
model the non-rigid mapping through a spline interpolation
method, and in particular with the thin-plate spline (TPS) [5]. In
this work, we consider the transformation parameter estimation
issue as a regression problem and a Bayesian model, namely
Relevance Vector Machine (RVM) [13] is used to solve this
problem. We consider here the standard RVM although the
method may employ other variants such as the twinned RVM
[14] which applies double training or the multivariate RVM [15].

Our work is motivated by the pioneering research presented in
[16] where correspondences are estimated using a softassign
approach. Softassign is a technique for solving an assignment
problem. As opposed to hard assignment, softassign weights each
matching to indicate the quality of the correspondence. Hard
assignment is the limit version of softassign. In the work herein,
instead of solving the assignment problem based on the smallest
distance, we utilize this distance to create a cost matrix that
describes the cost of an assignment. Then, the correspondences
are extracted with a combinatorial optimization algorithm, the
Hungarian algorithm [17]. The rationale behind this algorithm is
to assign a single task to a single worker, based on an assignment
cost matrix, such that the total cost is minimum. The temporal
complexity of the algorithm is polynomial, and in particular
Oðn3Þ. After the correspondence between points has been estab-
lished, a Bayesian regression model (RVM) is used to infer the
transformation parameters.

The Hungarian algorithm has also been used in [18], where a
feature-based registration method is demonstrated. Points are
assumed to describe a shape and a histogram (shape context) is
calculated, describing the space distribution of points. This
histogram is used to define the cost matrix of the Hungarian
algorithm. Our work differentiates from [18] in the way the
geometric transformation is treated. We estimate the transforma-
tion’s parameters (both rigid and non-rigid) through regression
(RVM) while the latter method uses thin-plate splines interpola-
tion. Another substantial difference is that in our approach points
are not considered as parts of a shape representation, since our
method is more general.

The main contribution of this work is that using a regression
framework based on RVM addresses the problem of eventual false
correspondences with respect to methods relying on interpolation
schemes, like TPS. More precisely, a single false correspondence
may lead to a totally erroneous registration if TPS is used. For
example, this is a case of the RPM [3], or the GMMReg [7]
methods. In Fig. 1(a), the correct correspondences between the
source and the target sets are represented by line segments. In
Fig. 1(b), two points were falsely matched on purpose simulating
a wrong correspondence solution. The result of TPS [5] is shown
in Fig. 1(c), where large registration errors are present. The result
of the proposed registration scheme based on RVM regression is
shown in Fig. 1(d), where the registration is correct. TPS by its
definition tries to minimize the total bending energy to provide a
smooth model, which is an approach that restricts the capability of
providing good results in areas where the correspondence is
correctly established. On the other hand, RVM considers only the
local neighborhood to extract the regression model, due to the priors
it implies on each point. The closed form solution for the transfor-
mation model provided by RVM is continuous and locally smooth
depending on the assignment solution and more importantly, it is
robust to false matches. The correspondence estimation step used in
this work is the Hungarian algorithm. Alternative methods could
also be used to solve the correspondence problem, like the standard
softassign approach [4].

The proposed method is similar in spirit with RPM [3] and CPD
[6] in the sense that it employs a framework of iteratively
updating the correspondence and the estimation of the transfor-
mation parameters. Both RPM and CPD are based on an expecta-
tion-maximization (EM) [19] framework. In RPM and CPD the
E-step estimates soft correspondences through a posterior dis-
tribution. In our method the E-step involves any correspondence
estimation algorithm, which in our case is the Hungarian algo-
rithm. A major difference in our approach with respect to RPM
and CPD is that in the M-step the transformation is estimated
using Bayesian regression (RVM). On the other hand RPM uses
TPS interpolation. Moreover, RVM provides a closed form trans-
formation both for the rigid and non-rigid cases compared to CPD,
where the two cases have to be modeled with different set of
parameters [6]. A modeling of a rigid registration case with a non-
rigid model may provide inaccuracies in the CPD result. An
example is presented in Fig. 2, where a rigid transformation by
a rotation of 251 and a translation vector ½0:2,0:1�T is applied on a
point set used in [3]. The results of CPD by modeling the



Fig. 2. A rigid registration of a point set used in [3]. See text for transformation

details. (a) The initial point sets. The CPD [6] registration result by modeling the

transformation (b) with a rigid model (c) with a non-rigid model. Notice that in

the second case huge registration errors occur. The GMMReg [7] registration result

by modeling the transformation (d) with a rigid model (e) with a non-rigid model.

The corresponding solution of our method is similar with the rigid solution in (b).
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transformation with a rigid and non-rigid model are shown in
Fig. 2(b) and (c) respectively. Notice that in the case where the
rigid transformation was modeled by a non-rigid set of para-
meters some registration errors are present, as we try to model a
simple transformation with a more complex model. The corre-
sponding solution of our method is similar with the rigid solution
in Fig. 2(b). The same also applies for the GMMReg methodology
[7] (Fig. 2(d) and (e)).

We evaluated our method by comparing it with the CPD [6],
the RPM [3] and the GMMReg [7] algorithms for both rigid and
non-rigid transformations. The results indicate that our method is
more accurate than the state-of-the-art methods compared con-
cerning the robustness against false matching during the corre-
spondence estimation step and the parametrization of the
method. The innovation of our method is that by utilizing a
robust correspondence estimation algorithm initially, we could
relax the constraints imposed in the transformation modeling
step so as to handle any erroneously matched points.

The remainder of the paper is organized as follows: In Section
2, we formulate the problem and preview the theory of the
Hungarian algorithm (Section 2.1) and the RVM (Section 2.2).
Experimental results are presented in Section 3 and conclusions
are drawn in Section 4.
2. Registration of sets of points via regression

In this section we describe the theoretical basis of the
proposed method. At first, the Hungarian algorithm and the
Relevance Vector Machines approach are reviewed and then we
describe how the regression method is integrated within a
registration framework.

2.1. The Hungarian algorithm

The Hungarian algorithm is a combinatorial optimization
method which solves the assignment problem. Assume that there
are m tasks that have to be assigned to n workers. Each assign-
ment is weighted with a cost (or profit), thus a complete bipartite
weighted graph is produced, having as vertices the workers and
the tasks. The goal is to calculate that particular assignment such
that the total cost is minimum. The assignment has to be one to
one. Sometimes the algorithm is used to maximize the total profit.
In that case, we subtract the maximum entry of the cost matrix
from all its cells. In case man, the problem is called unbalanced
and the standard Hungarian algorithm may provide a false
solution. A modification of the algorithm to handle rectangular
cost matrices is introduced in [20]. Algorithm 2 presents the steps
of this modification. In Algorithms 1 and 2 the terms starred,
primed, covered and uncovered are characterizations assigned to
a zero element (stared, primed) or to rows and columns (covered,
uncovered), that guides the execution of the algorithm and
distinguish the examined elements (zeros and rows or columns).
The algorithm along with a detailed description may also be
found in [20].

Hereafter we consider that m¼n, and thus we will exploit only
variable n to indicate the dimension of the problem. The output of
the Hungarian algorithm is the optimal assignment, that mini-
mizes the total cost. The complexity of the algorithm is Oðn3Þ in
case of a balanced problem, while it may be increased in case of
unbalanced problems, as a lot of trials are made to extract the
solution of the problem.

More specifically, suppose we have a weighted undirected
bipartite graph with n nodes, with cij indicating the weight of
edge from node i to node j. The variable dij, where i,jAf1, . . . ,ng
indicates whether edge (i,j) is included in the matching. More
specifically, dij ¼ 1 means that the corresponding edge is included
in the matching, whereas dij ¼ 0 signifies that the edge (i,j) is not
part of the matching process. The following restrictions apply:
�

Pn

i ¼ 1 dij ¼ 1,P

�
 n

j ¼ 1 dij ¼ 1,

�
 dij40,8i,jAf1, . . . ,ng.
The goal of the Hungarian algorithm is the following:
Given a n�n matrix C, where Cij is the weight of assigning worker

i with task j, minimize
Pn

i ¼ 1

Pn
j ¼ 1 dijCij.

The steps of the Hungarian algorithm, or Hungarian method as
it is met regularly in the literature are described in Algorithm 1.
Details may be found in [17].

Algorithm 1. The Hungarian algorithm for square cost matrices.
1
 From each row subtract off the row min.

2
 From each column subtract off the row-column min.

3
 Use as few lines (vertical, horizontal) as possible to cover all

rows and columns containing zeros in the matrix (trial and
error). Suppose k lines are used for covering.
� if kon, let m be the minimum uncovered number. Subtract

m from every uncovered number. Add m to every number
covered with two lines. Goto step 3.
� if k¼n, goto step 4.
4
 Starting with the top row, go downwards making assignments.
An assignment can be (uniquely) made only when there is
exactly one zero in the row.

In original version, the Hungarian algorithm assumes a square
cost matrix, i.e. equal number of tasks and workers. A modifica-
tion of the algorithm to handle rectangular cost matrices is
introduced in [20], solving thus problems with different number
of workers and tasks (unbalanced problems). Algorithm 2 pre-
sents the related procedure. The reader should notice that our
goal is to propose a method that can model a registration
transformation upon an assignment between two point sets has
been determined. The Hungarian algorithm is a solution to that
problem. In order to provide a complete framework, the revised
Hungarian algorithm, that handles unbalanced sets is also
included in our work.
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Algorithm 2. The Hungarian algorithm for rectangular cost
matrices (unbalanced problems).
0
 Let k¼minðn,nÞ and l¼maxðn,mÞ for a cost matrix A, m�n.

1
 If number of rows is larger than number of columns goto 3.

2
 If number of rows is less than number of columns goto 5.

3
 Update A: For each row of A, subtract the minimum element

from each element in the row.

4
 Update A: For each column of A, subtract the minimum

element from each element in the column.

5
 Find a zero at location Z of the matrix A. If there is no starred

zero in its row nor its column then star Z.
Repeat step 5 for each zero of the matrix.
6
 Cover every column containing a 0n. If k columns are covered,
the starred zeros form the desired independent set (assign-
ment solution). STOP
7
 Choose a non-covered zero and prime it; then consider the
row containing it.
– If there is no starred zero Z in this row, go to step [9].
– If there is a starred zero Z in this row, cover this row and

uncover the column of Z.

Repeat step 8 until all zeros are covered.
8
 Go to step 11.

9
 There is a sequence of alternating starred and primed zeros

constructed as follows:
– Let Z0 denote the uncovered 00.
– Let Z1 denote the 0n in Z0’s column (if any).
– Let Z2 denote the 00 in Zl’s row.
Continue in a similar way until the sequence stops at a 00,
Z2k, which has no 0n in its column.
Unstar each starred zero of the sequence, and star each
primed zero of the sequence.
Erase all primes and uncover every line.
10
 Return to step 6.

11
 Let h denote the smallest non-covered element of the matrix;

it will be positive.
Add h to each covered row; then subtract h from each
uncovered column.
Return to step 7 without altering any asterisks, primes, or
covered lines.
2.2. Relevance Vector Machines

The RVM model can be used to solve either the problem of
classification or regression. In general, in order to use a RVM, we
have to assume that we have a set of examples of input vectors
X ¼ fxiARd

gNi ¼ 1 along with corresponding scalar targets t¼ ftig
N
i ¼ 1.

Our goal is to train a model so as to learn the functional mapping
between input vectors xi and targets ti. Since the points in a
registration problem lay in a continuous space, it is implied that
the target variable t is continuous, leading to a regression problem. A
detailed description of RVM theory may be found in [13,21].

More specifically, we seek that particular model f with parameters
w¼ fw1,w2, . . . ,wNg such that f ðxi;wÞCti,i¼ 1, . . . ,N, assuming that
xi corresponds to ti. The model f may be analyzed into a finite linear
sum of N non-linear functions fj, called kernels. Thus,

f ðxi;wÞ ¼
XN

j ¼ 1

wjfjðxiÞ ¼wTFðxiÞ, ð1Þ

where FðxiÞ ¼ ðf1ðxiÞ,f2ðxiÞ, . . . ,fNðxiÞÞ
T .

Assume now that the targets ftig
N
i ¼ 1 are samples drawn from

the model with additive noise Ei:

ti ¼ f ðxi;wÞþEi, ð2Þ
where Ei are independent samples from some noise process.
Hereafter we will assume a Gaussian distribution with zero mean
and variance s2 for Ei. Thus, a probability density model occurs:

pðti9xiÞ ¼N ðti9f ðxi;wÞ,s2Þ, ð3Þ

where N is a Gaussian distribution over ti with mean f ðxi;wÞ and
variance s2.

A second assumption concerns the statistical independence of
target variables ti. The likelihood of the target vector t is

pðt9w,s2Þ ¼ ð2ps2Þ
�N=2exp �

1

2s2
Jt�UwJ2

� �
, ð4Þ

where t¼ ðt1 . . . tNÞ
T , w¼ ðw1 . . .wNÞ

T and U¼ ðFðx1Þ . . .FðxNÞÞ.
In Bayesian methodology, a common practice to prevent over-

fitting, caused by the large number of parameters, is to impose
some additional constraints, penalizing the complexity of the
model. These hyperparameters are imposed over parameters w of
the linear model in (1). The goal is to reduce the number of
discrete functions of the sum, thus occurring a less complex
model. This is achieved by adopting a zero-mean Gaussian prior
over w, or

pðw9aÞ ¼
YN
i ¼ 1

N ðwi90,a�1
i Þ, ð5Þ

where a¼ ða1 . . . aNÞ
T with ai representing the precision of the

corresponding parameter wi. One can explain these hyperpara-
meters as selectors over each parameter wi which is the weight of
function fi participating in the total sum. If the variance of the
corresponding prior is large then the resulting probability is low,
eliminating the term in the sum. This means that the correspond-
ing basis function fiðxjÞ plays no role in the prediction made by
the model.

The posterior distribution of weights is Gaussian and takes the
form

pðw9t,X,a,bÞ ¼N ðw9m,RÞ, ð6Þ

where b is the inverse of s in (4) and

m¼ bRUT t, ð7Þ

R¼ ðAþbUTUÞ�1, ð8Þ

with A¼ diagfaig.
Eventually, an iterative learning process occurs. Initially, we

choose some values for a, b, thus evaluating the mean and
covariance of the posterior using (7) and (8). Then we iterate,
until a convergence criterion is satisfied, by re-estimating the
hyperparameters:

ai ¼
gi

m2
i

, ð9Þ

b�1
¼

Jt�UmJ2

N�
PN

i ¼ 1 gi

, ð10Þ

where mi is the ith component of the posterior mean defined by
(7) and the quantity gi is computed as

gi ¼ 1�aiSii, ð11Þ

where Sii is the ith diagonal component of the covariance matrix
R given by (8).

The result of the training process described above is learning
parameters w of Eq. (1).

2.3. Registration by regression

In a point set registration problem two sets of points are
involved. The source point set X ¼ fxiARd

g
Nx

i ¼ 1 and the target
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point set T ¼ ftiARd
g

Nt

i ¼ 1. In our experiments, we assume that
Nx ¼Nt ¼N. In case the two sets have different cardinalities, we
add extra points (as described in Section 2.1). In our method the
registration transformation is modeled by a RVM. However, one
would observe that the RVM described in Section 2.2 is defined
for univariate output vectors. In other words, the target variable
has to be a scalar. However, in our case tiARd, and thus, in order
to overcome this difficulty, we used d distinct RVMs, one for each
dimension k. Alternatively, one could use a multivariate RVM, as
described in [15] or the twinned RVM [14].

Eventually, the proposed model is a vector valued function T ,
having parameters W, representing the geometric transformation
bringing set X into alignment with set T. Thus, ideally we would
have for every point tiAT , i¼1,y,N:

ti ¼ T ðxCi
;WÞ ¼ ½T 1

ðxCi
;w1Þ, . . . ,T k

ðxCi
;wkÞ, . . . ,T d

ðxCi
;wdÞ�T , ð12Þ

where W ¼ fwkARN
gdk ¼ 1, with wk being the weight vector of

dimension N for the kth RVM, T k is a RVM as described by (1) and
Ci is the index of the point in X corresponding to the i-th point of
T. In other words, the ideal transformation is

tk
i ¼ T

k
ðxCi

;wkÞ, i¼ 1, . . . ,N, k¼ 1, . . . ,d, ð13Þ

with ti
k representing the kth component of point tiAT.

The proposed method consists of an iterative scheme, that, at
each iteration alternates between the method for establishing
correspondences (e.g. Hungarian algorithm) and the method for
estimating the registration transformation (RVM training). The
corresponding objective function that is minimized has the
following form:

Jðd,WÞ ¼
XN

i ¼ 1

XN

j ¼ 1

dijCxi ,T ðxj ;WÞ þ
XN

i ¼ 1

XN

j ¼ 1

dijJti�T ðxj;WÞJ
2: ð14Þ

Its optimization involves two steps at each iteration. In the first
step, we assume a known registration transformation T (RVM)
and try to estimate the optimal correspondences dij with the
Hungarian algorithm. Thus, the objective function is minimized
with respect to dij, 8i,j. In the second step, the correspondences dij

are fixed to the values computed in the first step and a RVM
training process takes place to update the registration transfor-
mation T in order to match the estimated correspondences. Thus,
in this second step, the objective function is minimized
with respect to the set of weights W ¼ fwkARN

gdk ¼ 1. Since both
computational steps at each iteration minimize the objective
function J, the whole iterative process converges to a mini-
mum of J.

The overall procedure is presented in Algorithm 3. Each
iteration of the registration algorithm involves two steps. At first,
correspondences between points of the source set X and the
target set T are estimated by the Hungarian algorithm and then
based on these correspondences, d RVMs are trained, one per
dimension, to solve the regression problem of transforming the
source set to the target set. We initialize the registration trans-
formation as the identity mapping.

Algorithm 3. The RVM–Hungarian method for registration of sets
of points.
1
 Initialize the registration transformation as the identity
mapping and select the type of basis function fiðxÞ,
i¼1,y,N for the RVM.
2
 Determine the correspondences between sets of points
X, T.
2.1 Calculate distance matrix Cij ¼ JT ðxi;WÞ�tjJ8i¼ 1, . . .

N, j¼ 1, . . . ,N.
2.2 Solve the assignment problem with the Hungarian algo-

rithm, where C is an assignment cost matrix.
3
 Transformation parameters estimation—train one RVM
per dimension of point set X.

For each RVMk, k¼1,y,d:
3.1 Calculate mk and Rk by (7) and (8).
3.2 Calculate ak

i ,bk,gk
i by (9)–(11).

3.3 Iterate steps (3.1) and (3.2) until convergence to obtain
the new RVMk, with wk ¼mk.
4
 Iterate steps 2, 3 until convergence of the objective function
Jðd,WÞ (14).
3. Experimental results and discussion

In order to evaluate our method, several experiments were
conducted in a collection of sets of points, firstly used in [16], and
widely used in the related literature (Fig. 3). The algorithm was
tested both for its accuracy and its robustness to noise. Experi-
ments with real data were also conducted. For that purpose we
used the 2D range data from [22] (Fig. 4(a)) and the 3D face of [6]
was also used in our experiments (Fig. 4(b)).

Experiments are divided into two types, according to the
transformation type (either rigid or non-rigid). In case of non-
rigid transformation, the non-rigid deformation was followed by a
rigid one, to make the problem more challenging. In that case the
whole transformation remains non-rigid. In all cases the registra-
tion transformation was initialized to the identity mapping. The
angle of the rigid transformation varied between [01,101], while
the translation, varied between [�0.2,0.2]� [�0.2,0.2]. The regis-
tration error is defined as the Euclidean distance between the
reference point and its corresponding registered. Points of Fig. 3
range in [0,1]� [0,1], while those of Fig. 4(a) range in
[�40,10]� [�10,30] and of Fig. 4(b) in [�2,2]� [�2,2]� [�2,2].

In our implementation, different kernels were examined
(Gaussian, Student’s t-kernel and Laplacian) as described in [13]
and implemented in [23]. The Laplacian kernel, Kðx,yÞ ¼ e�9x�y9=s,
proved to be the most efficient model for the tested input data
shown in Fig. 3. However, the differences are not considerable as
the registration accuracies of the compared methods differ at
the third decimal digit. Table 1 presents the registration error
statistics of the rigid case, while Table 2 demonstrates the results
of the non-rigid case. In all cases, variable kernel widths were
used in the range between 5% and 30% of the mean variance of the
reference set. The Laplacian kernel proved to be less sensitive to
changes in the variations of the kernel width compared to the
Gaussian and Student’s t-kernels.

In order to compare our method with the state-of-the-art, our
results were compared with the CPD [6], the RPM [3] and the
GMMReg [7] algorithms. In this experimental configuration the
kernel width s was set to 20% of the variance of source point set X

for all cases of our experiments.
The code for implementing these algorithms was found in the

web pages of the corresponding authors. RPM was implemented
in Matlab environment, while CPD and GMMReg were pro-
grammed in C/Cþþ (Mex files). Therefore, this has an impact on
the different execution times of the algorithms. Our method was
partially implemented in Matlab (RVM training [13], by the
official web page of Mike Tipping [23]) and in C (Hungarian
algorithm for rectangular and square cost matrices, an imple-
mentation found in the Mathwork File Exchange web page).
Several experiments were conducted (rigid and non-rigid trans-
formations) and apart from the registration error (root mean
squared error) the execution time and convergence rate (i.e. how
many iterations were necessary for the algorithm to converge)
were also measured. A general conclusion is that the proposed
Bayesian regression framework provides better results compared



Fig. 3. The initial set of points used in our experiments [3]. (a) Sine, (b) blob, (c) fish and (d) ideogram.

Fig. 4. (a) The 2D range data used in our experiments [22]. (b) The 3D set of points

representing a face used in our experiments (3D face) [6].

Table 1
Registration error statistics for rigid transformations using different kernels on the

shapes of Fig. 3. The kernel width varies between 5% and 30% of the mean variance

of the reference set.

Kernel Mean Std Median Min Max

Gaussian 0.0021 0.0019 0.0013 0.0009 0.0049

Student’s t 0.0007 0.0012 0.0001 0.0000 0.0026

Laplacian 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2
Registration error statistics for non-rigid transformations using different kernels

on the shapes of Fig. 3. The kernel width varies between 5% and 30% of the mean

variance of the reference set.

Kernel Mean Std Median Min Max

Gaussian 0.0029 0.0022 0.0020 0.0013 0.0061

Student’s t 0.0009 0.0015 0.0002 0.0001 0.0031

Laplacian 0.0001 0.0001 0.0000 0.0000 0.0002

Table 3
Mean registration error for rigid transformations.

Point set Hungarian-RVM CPD [6] RPM [3] GMMReg [7]

Sine 0.00 0.00 14.62 0.00

Blob 0.00 0.00 11.53 0.00

Fish 0.00 0.00 22.60 0.00

Ideogram 0.00 0.00 23.62 0.00

2D range 0.01 0.04 Fail 0.00
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to RPM, where this algorithm either demands an extra post
processing refinement step (e.g. registration of the centroids,
Fig. 7(c)) or completely fails (e.g. Tables 3, 4, 7, 8).
Each experiment was run 20 times and error statistics were
calculated. In each configuration, a different registration trans-
formation parameter set was used. The execution times are
presented in Table 5, along with the convergence rate in Table 6
for experiments with noise free data and points in presence of
noise. The initial sets of points, with representative results are
demonstrated in Fig. 5 for the rigid case and in Figs. 6 and 7 for
the non-rigid case. Also, to investigate the robustness of the



Table 4
Mean registration error for non-rigid transformations.

Point set Hungarian-RVM CPD [6] RPM [3] GMMReg [7]

Sine 0.00 0.00 13.45 0.00

Blob 0.00 0.00 11.19 0.00

Fish 0.00 0.00 21.87 0.00

Ideogram 0.00 0.00 23.50 0.00

3D face 0.00 0.08 Fail 0.00

Table 5
Mean execution time (s) of the compared methods for the whole set of experi-

ments presented in Section 3. The Hungarian-RVM is partially implemented in

Matlab (RVM training) and C (Hungarian algorithm). RPM is totally implemented

in Matlab while both CPD and GMMReg are totally implemented in C.

Point set Hungarian-RVM CPD [6] RPM [3] GMMReg [7]

Pure data 0.43 0.08 1.97 0.19

Gaussian noise 0.30 0.08 2.53 0.49

Table 6
Average number of iterations of the compared methods for the whole set of

experiments presented in Section 3.

Point set Hungarian-RVM CPD [6] RPM [3] GMMReg [7]

Pure data 2 21 97 55

Gaussian noise 2 20 87 56

Fig. 5. Rigid transformation experiment with 2D points of a range scan [22].

(a) Reference set of points (red) and deformed set of points (black) of a 3D face.

(b) Registration result for the proposed method. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article.)

Fig. 6. Non-rigid transformation experiment. (a) Reference set of points (red) and

deformed set of points (black). Registration result for (b) CPD, (c) RPM,

(d) GMMReg and (e) the proposed method. The difference is better highlighted

in color. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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algorithm to noise, the points were corrupted by Gaussian noise
(with zero mean and small variance so as the shape does not
change significantly) (Fig. 8). The initial sets of points, with the
estimated results are demonstrated in Figs. 9–12, while the
statistics are presented in Tables 3 (rigid case) and 4 (non-rigid
case) for noise free points and in Tables 7 (rigid case) and 8 (non-
rigid case) for points corrupted by Gaussian noise with zero mean
value. To further support the statistical presentation of the
registration error results, the p-value was computed, so as to
verify the statistical significance of the analysis. Notice that in
case of uncorrupted data, the deviations between real and
computed values are too small for all the studied methods, and
thus the p-value was not computed. In the case of data corrupted
by Gaussian noise, there are differences between the results
provided by each method. As it may be observed in the last row
of Tables 7 and 8, in all cases, the computed p-value is less than a
threshold of significance level of 5%, which is usually employed.
One can observe that the proposed method, provides better
results in general compared to CPD, RPM and GMMReg. Observe
for example the concentration of estimated target points in an
erroneous space (no underlying corresponding source points) in
Fig. 7(b) and (d), even in the case of noise free data. The same also
applies in case of points corrupted by noise, where CPD and
GMMReg provided results that describe the shape of the target set
quite well but there are points with no underlying correspon-
dences, e.g. Fig. 10(c) and (e) or Fig. 11(c) and (e). On the other
hand, RPM computed a good matching between the registered
shapes but a refinement step is needed to achieve perfect
registration, e.g. Fig. 7(c). In general, RPM proved too difficult to
be tuned, and therefore provided a high rate of failures.

Concerning the CPD and the GMMReg methods, the time
complexity of these algorithms are lower than ours which is
partially implemented in Matlab (Table 5). The fact that under
similar comparison conditions our algorithm may provide similar
results is justified by the convergence comparison (Table 6),
where one may observe that our technique converges quite faster
than CPD and GMMReg. A general conclusion regarding the
comparison of our method and CPD/GMMReg is, that, taking into
account the registration error, the implementation and parameter
tuning (e.g. selecting the type of transformation rigid or non-
rigid) along with the time complexity our method may provide
better registration results, under the condition that a good
assignment solution is provided.

Another issue studied in our experiments is the integration of
an annealing scheme, either in the correspondence establishment
(step 1 of Algorithm 3) or in the RVM training (step 2 of Algorithm
3). One approach was to embed softassign [4], as solution to the



Fig. 8. Non-rigid transformation experiment with 3D points [6]. (a) Reference set

of points (red) and deformed set of points (black) of a 3D face. (b) Registration

result for the proposed method. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Rigid transformation experiment in presence of noise. (a) Reference 2D

range set of points (red) and deformed set of points (black), [22] corrupted with

zero mean additive Gaussian noise. (b) Registration result for the proposed

method. The difference is better highlighted in color. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 10. Non-rigid transformation experiment in presence of noise. (a) Reference

set of points (red) and deformed set of points (black) corrupted with zero mean

additive Gaussian noise. Registration result for (b) CPD, (c) RPM, (d) GMMReg and

(e) the proposed method. The difference is better highlighted in color. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 7. Non-rigid transformation experiment. (a) Reference set of points (red) and

deformed set of points (black). Registration result for (b) CPD, (c) RPM,

(d) GMMReg and (e) the proposed method. The difference is better highlighted

in color. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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correspondence establishment instead of the Hungarian algo-
rithm. The annealing temperature was initialized to 10% of the
maximum pairwise distance between the points. After each
iteration, the annealing temperature was reduced to 0.9 of its
previous value. The results for the various combinations are
presented in Tables 9 and 10. As it can be observed, all the
matching variants provide similar accuracy, regarding the mean
squared error. However, considering the complexity of the model,
direct application of the Hungarian algorithm appeared to be the
most efficient approach. A few parameters have to be estimated
while the execution time is considerably smaller. A straightfor-
ward implementation of the Hungarian algorithm demands less
than one third of the softassign execution time. Based on the
aforementioned remarks, we prefer the combination of the
Hungarian algorithm (for solving the correspondence problem)
with RVMs (for estimating the transformation) without any
annealing scheme.

More experiments were conducted to investigate the robust-
ness of RVM regression with respect to TPS interpolation in the
registration of point sets. For that purpose, we fixed the corre-
spondences between the reference and the target sets in order to
contain a number of false matches. Two types of experiments
were performed. In the first type, the false matches preserved the
one-to-one correspondence, that is, one point of the source set
corresponds to exactly one point in the target set (one to one). In
the other type of experiments, one point of the source set may
correspond to one or more points in the target set (one to many).
Then, we applied the transformation (TPS or RVM) and we
counted the number of correct alignments. An alignment of two
points was considered to be correct if the Euclidean distance



Fig. 12. Non-rigid transformation experiment in presence of noise. (a) Reference

3D set of a face points (red) and deformed set of points (black), [6] corrupted with

zero mean additive Gaussian noise. (b) Registration result for the proposed

method. The difference is better highlighted in color. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

Table 7
Mean registration error for rigid transformations in presence of noise.

Point set Hungarian-RVM CPD [6] RPM [3] GMMReg [7]

Sine 0.00 0.01 14.62 0.01

Blob 0.00 0.01 11.53 0.01

Fish 0.00 0.01 22.61 0.01

Ideogram 0.00 0.01 23.86 0.01

2D range 0.01 0.51 Fail 0.48

p-Value – 0.00 10�15 0.00

Table 8
Mean registration error for non-rigid transformations in presence of noise.

Point set Hungarian-RVM CPD [6] RPM [3] GMMReg [7]

Sine 0.00 0.01 14.68 0.01

Blob 0.00 0.01 11.47 0.01

Fish 0.00 0.01 22.48 0.01

Ideogram 0.00 0.01 23.72 0.01

3D face 0.00 0.01 Fail 0.00

p-Value – 10�4 0.05 0.03

Table 9
Registration error statistics for non-rigid transformations.

Point set Hungarian-RVM

Mean Std Median Max Min

Sine 0.00 0.00 0.00 0.00 0.00

Blob 0.00 0.00 0.00 0.00 0.00

Fish 0.00 0.00 0.00 0.00 0.00

Ideogram 0.00 0.00 0.00 0.00 0.00

Table 10
Registration error statistics for non-rigid transformations.

Point set Softassign-RVM

Mean Std Median Max min

Sine 0.02 0.02 0.02 0.01 0.04

Blob 0.02 0.02 0.02 0.00 0.04

Fish 0.01 0.01 0.01 0.01 0.02

Ideogram 0.01 0.00 0.01 0.00 0.01

Fig. 11. Non-rigid transformation experiment in presence of noise. (a) Reference

set of points (red) and deformed set of points (black) corrupted with zero mean

additive Gaussian noise. Registration result for (b) CPD, (c) RPM, (d) GMMReg and

(e) the proposed method. The difference is better highlighted in color. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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between a transformed point and its corresponding was less than
a predefined threshold. By varying the threshold we may plot a
curve demonstrating the performance of the compared methods.
These curves are shown in Fig. 13 for various cases of false
matches on a set of 60 2D points. The curves correspond to a
rigid transformation on the set of Fig. 3(a). The translation
parameters were fixed to ½0:2,0:3�T and the rotation angle varied
in the interval [01,801] with a step of 101. The curves in Fig. 13
show the average values between all angles examined per thresh-
old. Notice that the RVM regression always provides an accurate
result and justifies our claim that it can model better a registra-
tion transformation. In case of one to one correspondence, the
target and the transformed sets almost coincide, while in the case
of one to many correspondences, the registration result is close to
the target set, and the shape is generally preserved. On the other
hand, TPS completely fails to model the registration transforma-
tion even with few false matches. This behavior is justified by the
fact that RVM does not consider the whole set for extracting the
regression model. A representative example is also shown in
Fig. 1.

In the same spirit, we examined the smoothness of the
resulting transformation of RVM with respect to TPS. Following
the same procedure, the number of false correspondences was
gradually increased and the smoothness of the transformation
was computed. We define the smoothness of a transformation T
that registers set X to Y as

SðT Þ ¼
X

x A X
x0 AN ðxÞ

ðdðx,x0Þ�dðT ðxÞ�T ðx0ÞÞÞ2, ð15Þ

where N ðxÞ is the set of nearest neighbors of x in X, dðp,tÞ ¼ Jp�tJ
is the Euclidean distance between points p and t, while T is either
the RVM or the TPS transformation. The quantity given by (15)
has a high value (indicating non-smoothness) when a point and
its neighbors in the source set have counterparts located at
distant points in the target set. In other words, if the distance of
the points to its neighbors in the source set is relatively different



Fig. 13. Curves representing the number of points correctly transformed with respect to a threshold determining the correct transformation using RVM (top row) and TPS

(bottom row) when a number of initial false matches is established in source and target sets. A point in the source set is correctly transformed if, after transformation, its

distance with respect to its correct counterpart is below the threshold. The left column shows results with false assignments that preserve the one-to-one matching. In that

case the RVM provides a consistent behavior and its curves are all at 100% correct transformation. The right column shows results with false assignments that do not

preserve the one-to-one matching.
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with respect to the distance of their counterparts in the target set
a high penalty is added in the smoothness quantity. The curve in
Fig. 14 presents the smoothness of the transformation by varying
the number of false matches, and the number of neighbors in
N ðxÞ. Notice that RVM provides a quite smoother transformation
although it may result to foldings if the number of false matches
is increased.
4. Conclusion

In this paper, we introduced a Bayesian regression method to
solve the rigid registration problem between two 2D sets. An
iterative framework is proposed alternating between correspon-
dence establishment and registration transformation estimation.
Correspondences between distinct points are estimated by the
Hungarian algorithm which solves the assignment problem for a
given cost matrix, determined by the Euclidean distances
between points. Then, a regression procedure based on a Bayesian
linear model (Relevance Vector Machine—RVM) maps the two
sets of points. The algorithm was successfully evaluated on
examples with varying difficulty and favorably compared with
state-of-the-art methods both in cases of noise and outliers. The
contribution of our work is that it proposes and justifies the claim,
that in case a good assignment algorithm is used, that provides
few false matches, it is better to embody a regression technique
(RVM) to model the registration transformation, instead of using
the spline interpolation (TPS), as the result may be more accurate.

Concerning future work, more sophisticated features may be
adopted, like the shape context information proposed in [18].
Also, the introduction of multivariate RVMs may be considered. In
our method we trained a distinct RVM for each component of the
output vector. A multivariate RVM could provide smoother
results, as it imposes an implicit constraint to the estimated
solution. Finally, the adoption of a set of control points to speed
up the computation steps could also be introduced in the method,
as the rationale of an RVM is to extract the most salient points
that participate in the determination of the final regression



Fig. 14. Smoothness (15) of the RVM (top row) and TPS (bottom row) under various number of false matches. The left column shows results with false assignments that

preserve the one-to-one matching. Notice that the scale of vertical axis at the top-left plot is 10�5 indicating a very smooth transformation. The right column show results

with false assignments that do not preserve the one-to-one matching.
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model. In that sense, during the correspondence estimation step,
only those points could be taken into account to define the
assignment cost matrix in order to establish correspondences.
This approach not only could reduce the complexity but it could
also increase the robustness of the matching result, as it would
provide a more sparse neighborhood preventing, thus, false
correspondences. Finally, the employment of a twinned RVM, as
suggested in [14] could improve the efficiency of the herein
proposed method.
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