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Abstract 

A technique is presented that is suitable for function optimization in 
high-dimensional binary domains. The method allows an efficient parallel 
implementation and is based on the combination of genetic algorithms and 
reinforcement learning schemes. More specifically, a population of 
probability vectors is considered, each member corresponding to a 
reinforcement learning optimizer. Each probability vector represents the 
adaptable parameters of a team of stochastic units whose binary outputs 
provide a point of the function state space. At each step of the proposed 
technique the population members are updated according to a reinforcement 
learning rule and then recombined in a manner analogous to traditional 
genetic algorithm operation. Special care is devoted to ensuring the 
desirable properties of sustained exploration capability and sustained popu-
lation diversity. The method has been tested on the graph partitioning 
problem in comparison with other techniques under two different types of 
fitness evaluation yielding very promising results. 

Keywords 

Genetic algorithms, reinforcement learning, hybrid technique, 
optimization, graph partitioning, parallel implementation. 

1. Introduction 

This paper presents a population-based technique for the solution of 
function optimization problems defined on high-dimensional binary 
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domains. The method does not assume any a priori knowledge regarding the 
function to be optimized. Information can be collected by generating points 
in the function domain and observing the corresponding function value. 
Therefore, the only way to proceed is through a generate and test search 
process, which at each step samples one or more points in the problem state 
space and based on the received values adjusts its state and/or the sampling 
strategy. 

The majority of search techniques of this kind are point-based, in the 
sense that at each step they consider as current state the position of one point 
in the function space and they generally select the next point to be evaluated 
from the neighbourhood of the current point. Population-based search 
techniques consider as current state the locations of many points in the state 
space and derive new points by suitably manipulating the current ones. Such 
techniques have gained much attention mainly because they are suitable for 
parallel implementation. 

A degenerate example of population-based search technique is parallel 
point-based hill-climbing, where there is a population of point-based hill-
climbers operating in parallel and independently, with no information 
exchange among them. Their exploration capability is limited by the 
capabilities of individual optimizers. The main interest is focused on re-
combinative population-based techniques which generate points for testing 
by combining information from the current population. They are 
characterized by great flexibility concerning the ways in which the current 
population members can be combined and the strategy under which the 
generated points will replace the old ones. In addition, they exhibit a high 
degree of parallelism which makes their implementation on parallel 
machines attractive. 

The most widely studied recombinative population-based optimization 
procedures are various types of genetic algorithms (Goldberg, 1989; 
Holland, 1975; 1992). An early algorithm that employed a Boltzmann-
machine-like structure of both genetic and hillclimbing principles was the 
SIGH (Stochastic Iterated Genetic Hillclimbing) (Ackley, 1987). Most other 
techniques have been developed as hybrids that extend the traditional simple 
genetic approach by incorporating more sophisticated hillclimbing 
procedures. Many attempts aim at combining features of genetic algorithms 
and simulated annealing (Boseniuk et al, 1991; Brown et al., 1989; 
Goldberg, 1990). One promising such technique is Parallel Recombinative 
Simulated Annealing (PRSA) (Mahfoud and Goldberg, 1995) which seems 

146 Brought to you by | University of Ioannina (University of Ioannina)
Authenticated | 172.16.1.226

Download Date | 4/18/12 1:12 PM



A. Likas, Κ. Blekas and A. Stafylopatis Journal of Intelligent Systems 

to improve many of the weaknesses of both genetic algorithms and simulated 
annealing. Another approach incorporating the idea of simulated annealing 
into genetic algorithms is described in (Yip and Pao, 1994; 1995). 

An interesting type of point-based optimizers has been developed from 
results in the context of reinforcement learning theory applied to connec-
tionist networks (Barto and Anandan, 1985; Gullapalli, 1990; Williams and 
Peng, 1989; 1991; Williams, 1992). A special class of such algorithms, 
called REINFORCE algorithms, has been proved to follow the stochastic 
hillclimbing property (Williams, 1988; 1992). Reinforcement learning algo-
rithms exhibit two desirable properties which are crucial for the 
effectiveness of any search technique (Ackley, 1987): learning while 
searching, i.e., guiding the search towards the more promising regions of 
the state space, and sustained exploration, i.e., gradually switching from 
local to global search in order to attain other promising regions. 

The technique presented in this paper constitutes a population-based 
method that is based on the parallel operation and combination of individual 
reinforcement learning optimizers. The approach can be considered as an 
extension of traditional genetic algorithms in that it considers vectors of 
probabilities instead of bit vectors as population members. At each step these 
members are recombined and, in addition, the components of the resulting 
vectors of probabilities are adjusted according to the reinforcement learning 
rules. The resulting scheme exhibits the properties of learning while 
searching and sustained exploration, since such properties are ensured by 
the employed reinforcement learning scheme. In addition, since we are 
dealing with a population-based method, care should be taken to maintain 
the diversity of the members so that the situation does not reduce to a popu-
lation of almost identical optimizers simultaneously searching the same 
region of the space. We call this third desirable property sustained diversity 
and the decisions made in developing our scheme were significantly affected 
by this objective. We shall denote the proposed population-based approach 
as Parallel Recombinative Reinforcement Learning (PRRL) in analogy with 
the definition of PRSA. 

The next section provides a brief description of genetic algorithms and 
reinforcement learning schemes. The proposed recombinative approach is 
described in Section 3, whereas experimental results from applying PRRL to 
test problems are reported in Section 4. Finally Section 5 summarizes the 
main conclusions and directions of further research. 
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2. Genetic Algorithms and Reinforcement Learning 

In this section the basic features of traditional genetic algorithms and 
reinforcement learning algorithms are briefly visited. This short presentation 
will facilitate the description of the characteristics of the proposed approach. 

2.1. Genetic Algorithms 

Genetic algorithms in their simple form constitute the first population-
based optimization method (Holland, 1975). There are many variations of 
the basic approach (Davis, 1991; Goldberg, 1989; Michalewicz, 1994). In 
their traditional formulation, a population of binary strings is assumed and 
at each generation step new members are created by applying genetic 
operators to appropriately selected strings. 

The most commonly used string selection scheme follows the principle of 
'survival of the fittest', i.e., strings are selected for reproduction with proba-
bility proportional to their corresponding fitness (function value). The cross-
over operator is responsible for the recombination of the selected strings. 
The two parents can be combined in a variety of ways (sometimes depending 
on the characteristics of the function to be optimized), the single-point 
crossover and the uniform crossover being the most commonly used. In 
addition, the basic genetic algorithm employs a mutation operator which 
introduces randomness in the search process by randomly flipping some bit 
values in the population strings. 

The main problem with simple genetic algorithms is that they exhibit a 
fast convergence behaviour, mainly due to the effects of the selection scheme 
which is biased towards strings having high function values and the 
crossover operator which cannot reintroduce diversity (Mahfoud and 
Goldberg, 1995). The crossover between nearly identical strings provides 
strings similar to their parents. Population diversity can be introduced only 
through mutation but its effectiveness is rather limited. This problem of 
premature convergence has engaged the attention of many researchers 
(Whitley, 1989; Mahfoud, 1994; Oei et al, 1991), and some techniques have 
been developed which allow the formation and maintenance of stable sub-
populations. Indeed, the property of gradual decrease of diversity in the 
population limits the sustained exploration capabilities of simple genetic 
algorithms, since it inhibits continuing search which is necessary for solving 
difficult problems. 
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2.2. Optimization Using Reinforcement Learning 

In the reinforcement learning approach to function optimization 
(Kontoravdis et al, 1992; 1995; Williams and Peng, 1989; 1991), the state 
of the learning system is determined through a probability distribution. At 
each step, a point in the function space is generated according to the above 
distribution, and the corresponding function value, which is called rein-
forcement., is provided to the system. Then, the parameters of the 
distribution are updated so as to direct the search towards the generated 
point in case of a high reinforcement value. In the opposite case, the point is 
made less probable to be sampled again in the upcoming trials. In order to 
judge whether a point is 'good' or not, a standard of comparison must be 
specified which in most cases is considered as a trace (weighted average) of 
past reinforcement values. 

Reinforcement learning schemes have been applied to both continuous 
(Gullapalli, 1990) and discrete (Kontoravdis et al., 1992; 1995; Williams 
and Peng, 1989; 1991) function optimization problems. In what concerns 
the application to problems defined on binary domains, the simplest scheme 
considers that the pointy = (yi.-J'i.) 0i e {0.1}) to be evaluated at each 
step is generated by a team of Bernoulli units according to a vector Ρ = 
(p\,...,p„) of probabilities. Each Bernoulli unit j determines the component .ty 
of the output vector through a Bernoulli selection with probability p j =Awj)> 
where W = (wi,...,w„) is the vector of adjustable parameters (weights) a n d / i s 
a sigmoid function of the form 

REINFORCE algorithms (Williams, 1988; Williams and Peng, 1991) 
constitute an important class of reinforcement learning schemes. When 
applied to a team of Bernoulli units, a REINFORCE algorithm prescribes 
that at each step weights are updated according to the formula: 

where a, is the learning rate factor, r is the reinforcement signal delivered by 
the environment at each iteration step t and r is the reinforcement 
comparison: 

Pi = / K ) = 1/(1 + expi-Wj)) (1) 

ΔιOj = aj{r - r)(t/j - P j ) (2) 

r(i) = i r ( t - l ) + ( l - i ) r ( t ) (3) 
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The parameter γ is a decay rate positive and less than 1, which in all our 
experiments was set equal to 0.9. 

An important result proved in (Wilhams, 1988) and (Williams, 1992) is 
that for any REINFORCE algorithm the average update in parameter space 
W lies in a direction for which the expected value of r is increasing, i.e., the 
algorithm is characterized by the stochastic hillclimbing property. 

Since the above pure REINFORCE schemes converge, a simple 
modification has been suggested (Williams and Peng, 1989) that 
incorporates a decay term -δwj in the update Eq. (2) in order to achieve the 
sustained exploration objective: 

where 0 < δ < 1. 
As already stated, our scheme is based on manipulating the vectors of 

probabilities P, = (pn ,...,/?,„), i = 1 ,...,p, which actually constitute the 
members of the population. For this reason the weights wj have been 
discarded and the necessary updates are performed directly on the 
probability values, according to the following assignment operation which is 
derived from (1) and (4) (inserting the subscript /'): 

3. The Recombinative Scheme 

Parallel Recombinative Reinforcement Learning can be considered as a 
population-based extension of the reinforcement learning approach to 
function optimization. From a different point of view, it can be considered as 
a mutation-adaptive genetic algorithm in the sense that the mutation 
probability is adapted as the search proceeds. The mutation probability is not 
a global parameter having the same value for the entire population, but each 
component of every string has its individual probability of being 0 or 1. 

3.1. The Basic Approach 

Consider ρ population members, each member i being a vector P, of 
probabilities ρϋ (/ = Ι,.,.,ρ, j = 1 ,.,.,η) that constitute the state of a reinforce-

Awj = dj(r - r)(y, - P j ) - Swj (4) 

(5) 
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ment learning optimizer. We can say that each reinforcement optimizer /' is 
assigned one population slot where its probability state vector P, is kept. 

At the beginning, all the components of the probability vectors are set 
equal to 0.5, i.e., no initial knowledge is provided to the learning system. At 
each step, first a reproduction procedure takes place during which the 
probability vectors are recombined and a new generation of vectors is 
created. Reproduction is followed by the sampling (based on the new 
probability vectors) and evaluation phase for the ρ population members. 
Then the reinforcement update takes place according to the learning rule of 
Eq. (5). 

At each generation step, the ρ new population members are created as 
follows: for each current member i we decide with probability pc whether 
crossover will be applied or not. If the decision is negative, the state of slot i 
does not change, otherwise, another member k is randomly selected and 
crossover is performed between the probability vectors corresponding to the 
two parents. The value of the crossover probability pc must generally be high 
(close to 1.0) so as to reinforce the genetic hypostasis of PRLL, rather than 
to switch the entire approach to a situation of independent reinforcement 
optimizers (pc close to zero). 

The recombination operator that we have adopted is a variant of single-
point crossover. The new probability vector Ρ is created in the following 
manner: 

• We randomly select the crossover point t ( \< . t<, n-1). 
• If / < L«/2_l , then we setpj = /?*, for j = 1,...,/ andpj = p,} for j = t+l,...,n. 
• If / > l « / 2 J, then we set p, = ptJ for j = Ι,.,.,ί and/>, = p^for ; = t+l,...,n. 

According to the above approach, the new vector Ρ remains as close as 
possible to the vector Pt. This child becomes the new state vector P, for slot 
/'. In this way, the characteristics of individual population members are 
preserved to some extent, thus retarding the decrease of population diversity. 

It must be noted that the above reproduction scheme is synchronous, i.e., 
all ρ children can be created simultaneously and independently based on the 
precedent generation, thus achieving a high degree of parallelism. 

In implementing the above scheme we may use either uniform selection 
or selection based on fitness value. In the latter case, members with high 
fitness value have more chances to be selected and recombined in the next 
generation, thus favouring convergence. Due to the synchronous scheme of 
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reproduction, however, even the 'bad' members of the population will take 
part in the selection operation and, thus, population diversity is maintained. 
Therefore, we adopted selection based on fitness value, which has proved 
more efficient through experimentation. 

Then a sampling procedure is performed and ρ points Y, = of 
the function space are generated with Bernoulli selection using the corres-
ponding probabilities py. The fitness r, of each point Y, is evaluated and a 
reinforcement update of the probabilities takes place using Eq. (5) so that 
the search is guided towards promising regions of the space. There are two 
main alternative ways for computing the reinforcement comparison: 

• Consider a global reinforcement comparison value r for the entire 
population, which is computed as a weighted average of prior average 
reinforcement values taken over the ρ population members, i.e., r(t) in 
Eq. (3) is taken equal to r(t) = Up ^=ιη(0 • 

• Consider a separate reinforcement comparison value η for each popula-
tion slot, i.e., compute a weighted average of prior reinforcement value r, 
concerning optimizer /. 

After experimenting with both approaches, we have adopted the second 
one. The main reason is that the employment of more detailed values for 
reinforcement comparison leads to better local exploration and better 
exploitation of the reinforcement updates. Another reason is that the first 
alternative implies a tight coupling among population members, which is 
unfavourable to parallel implementation. Moreover, the second choice 
makes our algorithm compatible with the non-recombinative approach, 
since, if the probability of crossover is set equal to zero, our scheme reduces 
exactly to the case of a population of independently running reinforcement 
optimizers. Therefore, in addition to the probability vector P„ the reinforce-
ment comparison value η is kept for each / and is updated at each step. (We 

also keep the value rt
max which is the maximum function value that has 

been sampled at slot i. This is necessary for keeping track of the best value 
found by the system up to any given instant, as well as for application of the 
apathy principle as will be described next.) 

If no decay term is used in the reinforcement update rule, as in Eq. (2), 
the search process converges, i.e., all probability vectors tend to be similar to 
each other and, in addition, their individual components tend to be 1 or 0. In 
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this case, the same point is continuously sampled by all population members 
and the corresponding differences r-η become zero not allowing any 
further updates of the probabilities pv. This convergence behaviour is due to 
the use of both the crossover mechanism and the reinforcement update rule. 
The crossover mechanism destroys population diversity and causes the 
optimizers that search regions of low fitness to be oriented towards regions 
of higher fitness already explored by other members. In this way, eventually 
all optimizers search the same region of the function space. On the other 
hand, the local search performed through the use of reinforcement updates 
eventually converges to a point of high fitness. 

If a decay term is added to the reinforcement update rule, as in Eq. (4), 
the search algorithm does not converge, in the sense that it does not con-
tinuously produce the same points. Thus, sustained exploration is achieved, 
but we still have a lack of sustained diversity due to the effects of crossover, 
since the states of the member probabilities are relatively close. 

The PRRL algorithm as formulated so far is given in Figure 1. It is clear 
that the algorithm is characterized by a high degree of parallelism since all 

• Initialize strings with all probabilities equal to 0.5. 

• Repeatedly generate a new population from the current one until a 
maximum number of generations is attained. Each new population 
is created by performing the following steps for each location i = 
1 p : 

1. With probability pc decide whether crossover will be performed 
or not. If the decision is negative proceed to Step 3. 

2. Randomly choose a member from the rest of the population. 
Combine the two parents to produce a new probability vector 
as described in the text. The new vector replaces the current 
one in location i. 

3. Based on the probability vector Pi generate a point of the state 
space and evaluate its fitness r,·. 

4- Update the probabilities of location i according to the reinforce-
ment learning rule. 

5. If rt > r{nax set r™ax = r, . 
6. Update the value of reinforcement comparison r,·. 

Fig. 1: The basic PRRL algorithm 
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operations can be performed simultaneously for all members of the 
population. 

3.2. Sustained Diversity 

In order to reduce the effects of crossover and avoid genetic drift 
(Goldberg and Segrest, 1987) we have chosen, as already mentioned, to 
replace each current population member by a child that is closer to it than to 
its mate, so as to avoid a serious disruption of the states of local optimizers. 
A second technique that has been proved very effective in maintaining 
population diversity is based on the notion of apathy (Ackley, 1987). 

According to the latter approach, some population members remain 
apathetic for some generations, which means that they cannot be selected for 
recombination. Apathetic members cannot change their state through cross-
over, but can be chosen for crossover by other members of the population. 
To apply this principle effectively, a criterion is needed for a member to 
become apathetic as well as a criterion for becoming active again. We have 
chosen to put a member into apathy whenever it generates a point of the 
state space yielding a higher fitness than the best value achieved so far. 
Thus, from the moment the search attains a high fitness region, the 
optimizer is allowed to explore that region following the reinforcement 
learning rule. If for a specified number of steps no better solution is obtained 
the member is brought back to the active state. Thus, an apathy step counter 
is necessary for each population member. 

Another possibility is to apply a mutation operator, which can be con-
sidered as an extension of the classical genetic operator. After creation of a 
new generation, this operator can be applied to each individual probability 
Pij, which means that with a given probability p™ the value ρ ϋ will be 
replaced by 1 -pv. As is generally the case with genetic algorithms, to sustain 
diversity the mutation probability should vary dynamically following the 
convergent or divergent behaviour of each population member. To achieve 
this we varied the mutation probability p™ depending on the quantity J, = 
\ri-rt\. Indeed, a small value of st implies that the probabilities ρϋ do not 
change enough at each step so that the optimizer i converges to a narrow 
region of the state space. To obtain a smooth variation of the mutation 
probability we have considered that p™ = l/(l+exp(s;.)), where st is a 

weighted average of previous values of s,. This approach, however, has not 
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proved very effective, as it was difficult to tune the effect of mutation so as 
not to disrupt the crossover operation. Therefore, we have not included this 
feature in the improved version of the PRRL algorithm. 

The operator of apathy described previously proposes a good exploration 
of a region of fitness function. Another operator that has proved very 
efficient in maintaining population diversity is the inversion operator. 
Inversion can be seen as a special case of mutation applied to the entire 
probability vector, and not to each component independently, so that every 
Pij is replaced by 1 -ρϋ. 

The mechanism of inversion should not be enabled in the case where the 
optimizer explores locally a region of high fitness value, since this could 
change its components dramatically and could lead the genetic search to 
another region of lower fitness. For this reason inversion cannot be applied 
in apathetic situations, but only when an optimizer has already explored a 
fitness region and the decay term of the reinforcement learning rule moves 
the search algorithm into another region of the space. An efficient criterion 
for applying the inversion operator to an optimizer i is based on the number 
ζ, of its components j that have converged and are entering a divergence 
phase, i.e., that satisfy the following condition: 

\ S \ N - * I - \ > Κ · ( Γ , - R.Xy,·; - Ρ,,)Ι ( 6 ) 
ι - Pij 

The above inequality means that the decay term is becoming dominant in 
Eq. (5). Thus, when a non-apathetic population member has a large value of 
ζ, e.g., such that ζ, > 0.75w, where η is the length of the string, the 
components of the optimizer i are inverted. After that, the inversion operator 
is not allowed to be applied again to the same member for a specific number 
of generations, and so a new counter (in addition to the apathy counter) must 
be kept for each population member. 

Based on these additional features the PRRL algorithm now takes the 
form given in Figure 2. 

4. Application to Graph Partitioning 

The test problem that was selected to evaluate the effectiveness of our 
approach is the graph bipartitioning problem: Given a graph G = (V,E) with 
\V\ = Μ and adjacency matrix A, find if there exists a partitioning of this 
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• Initialize strings with all probabilities equal to 0.5 and the two coun-
ters to zero. 

• Repeatedly generate a new population from the current one until a 
maximum number of generations is attained. Each new population 
is created by performing the following steps for each location i = 
1 

1. If member t is in apathy proceed to Step 4-

2. With probability pc decide whether crossover will be performed 
or not. If the decision is negative proceed to Step 4-

3. Randomly choose a member from the rest of the population. 
Combine the two parents to produce a new probability vector. 
The new vector replaces the current one in location i. 

4. Based on the probability vector Pi generate a point of the state 
space and evaluate its fitness r,·. 

5. Update the probabilities of location t according to the reinforce-
ment learning rule. 

6. Ifr{ > rj"" set r f " = r,·. If moreover the population member 
i is not in apathy then put it into apathy and proceed to Step 
8. 

7. If the member is in apathy increase the value of its apathy 
counter by 1. If the value of the counter is the maximum 
allowed put the member back into the active state and set the 
counter to zero. 

8. If inversion is disabled for member i increase the value of its 
inversion counter by 1. If the value of the counter is the max-
imum allowed then enable inversion and set the counter to 
zero. 

9. If member i has value ζ, > 0.75n and it is not in apathy and 
inversion is enabled, then apply the inversion operator and 
then disable inversion. 

10. Update the value of reinforcement comparison r;. 

Fig. 2: The improved PRRL algorithm 

graph into two disjoint subgraphs of equal size (M even). We shall say that 
two subgraphs are disjoint if their corresponding sets of vertices are disjoint 
and there are no edges of the original graph G that connect vertices 
belonging to the two subgraphs. 

Consider an arbitrary partitioning of the original graph G into two sub-
graphs GA = (VA, EA) and GB = (VB, EB). We shall consider two different 
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representations of the partitioning that correspond to two different ways of 
defining the fitness function. 

4.1. The Direct Approach 

In a first approach, that we shall call the direct approach, the 
partitioning can be represented by a binary vector y = (yi,...jv)· This 
vector describes the state of the system where the value of y, describes the 
state of the system where the value of yt indicates whether node i belongs to 
subgraph GA or GB, i.e., if>>, = 0 node i belongs to GA, otherwise it belongs 
to GB. The number of nodes of subgraph GA is nA(y) = ^ ^ ( l - y , ) , while 

the number of nodes of GB is nB(y) = ^ yt . The solution of the problem 

can be expressed as finding the maximum of a function having two 
components. The first component is responsible for the minimization of the 
number of edges between the two subgraphs, while the second one balances 
the sizes of the two subgraphs. Hence, the fitness function to be maximized 
takes the following form: 

Μ Μ 
Μ = ~ Σ Σ M i - νj)y< - « (MS) - M y ) ) 2 (7) i=l j-i 

where κ is a coefficient which determines the relative importance of the two 
components. In our experiments an effective value of κ was 0.001. It can be 
noted that the maximum value of the above function is zero. 

The above direct approach is based on the principle of encoding the 
constraints of the problem into the fitness function in the form of a penalty 
term that takes its optimum value in the case of feasible states. The per-
formance of this type of approach is usually affected by the increased 
complexity of the fitness function and by the existence of higher-order 
correlation between variables due to constraints. In general, such dependen-
cies introduce difficulty in the exploration of the state space and constitute 
the principal cause of convergence to local optima. For the above reasons, 
the direct approach represents a hard optimization problem that constitutes a 
good test for the effectiveness of our method. Indeed, our aim is to evaluate 
the proposed technique in comparison with other methods rather than to find 
the best solution to the specific graph partitioning problem. Therefore, we 
experimented with the direct approach, as well as with the next described 
approach that provides a more effective formulation. 
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4.2. The Post-Processing Approach 

An approach that can remedy the difficulties discussed above is based on 
the idea of applying a post-processing operation to the solution vectors 
produced at each step of the algorithm. In this case, only part (possibly 
none) of the constraints are incorporated into the fitness function, so that the 
search scheme is responsible for optimizing mainly the cost part of the 
problem. Post-processing of generated solutions aims at 'amending' 
violations of constraints. Amendment is performed by mapping each 
generated state to a feasible state satisfying the entire set of constraints. The 
evaluation of this new state is used as evaluation of the original state (Figure 
3). This post-processing operation requires a constraint satisfaction scheme 
that can map arbitrary states to feasible ones. Such a deterministic constraint 
satisfaction algorithm having polynomial complexity is presented by Likas 
et al. (1995), where it is combined with a reinforcement learning algorithm 
acting as a general search procedure. An analogous idea has been considered 
by Liepins and Potter (1991) in the context of genetic algorithms and is. 
referred to as 'repairing' of chromosomes in (Orvosh and Davis, 1994). 

The second approach considered for the solution of the graph bipartition-
ing problem relies on a representation based on the idea of post-processing 
and incorporates the constraint satisfaction scheme developed in (Likas et 
al., 1995). 

The operation of the constraint satisfaction scheme is based on a general 
0-1 integer programming formulation of the constraints (either the entire set 
or part of it) that must be satisfied. This formulation must be appropriately 
defined to express a given problem in terms of a state vector ν of binary 
variables. A basic assumption concerning the scheme is that only variables 
that are 'on' may be responsible for the violation of some constraints. In this 
sense, the set of problem constraints that must be satisfied contains tuples of 

Feedback 

Fig. 3: The post-processing loop 
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binary variables that are incompatible with each other if they are 'on' simul-
taneously. This assumption constitutes no restriction to the generality of the 
approach, as any type of constraint is amenable to this encoding. The 
algorithm consists of examining the variables v* in a deterministic order and 
appropriately adjusting their values depending on constraint violation. It is 
shown in (Likas et al., 1995) that the algorithm converges to an equilibrium 
state in at most two cycles, a cycle denoting the sequential examination of 
all variables. Equilibrium states are characterized by the property that no 
constraint is violated and that the solution is maximal, which means that 
every variable that is 0 would violate at least one constraint if it were set to 1. 

To apply this approach to the graph bipartitioning problem, we consider 
that each optimizer i provides an output vector y as defined in the direct 

approach. At each step, the output vector is fed to the constraint satisfaction 
that maps y to an 'amended' representation whose evaluation is taken as 
the evaluation of y . 

The representation used by the constraint satisfaction scheme is slightly 
different. The partitioning is expressed by a binary vector ν , such that each 
node k of graph G is associated with two binary variables vw and vw, where 
v*o = 1(0) means that k e VA(k <t VA) and vk] = 1(0) means that k e VB(k <t 
VB). The number of vertices of GA is «^(v) = vjto and the number of 

vertices of GB is nB (v) = . The above formulation requiring IM 

variables is necessary for application of the constraint satisfaction scheme. 
Indeed, since constraints are violated only by variables with value 1, the 
representation using Μ variables (as for the vector y ) is not adequate in this 
case. 

Using the new representation, the problem can be stated as that of 
finding a vector ν satisfying the constraints: 

S > , = 1, k=l,...,M (8) 

i=0 

nA{v) = nB( v) (9) 

Μ Μ 
Vko Σα«'*υ«Ί + Σ a " v i 0 = °> k = l,...,M. (10) 

•yi !i<i 
The vector y obtained as the output of the reinforcement learning 

operation of each optimizer / specifies the initial value of vector ν in the 
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following manner. For each k = 1 ,...M, i f^ t = 0 we set v«> = 1 and v« = 0, 
otherwise we set v*o = 0 and v« = 1. The constraint satisfaction scheme will 
be responsible for satisfaction of the disjointness constraint (Eq. (10)), as 
well as of the constraint ^ l · which constitutes a relaxation of Eq. 

(8). The remaining requirements are incorporated in the fitness function. 
The constraint satisfaction algorithm converges to an equilibrium state 

ν that corresponds to a partially feasible problem solution, in the sense that 
it provides a maximal subgraph G' of G that can be divided into two disjoint 
subgraphs G'A and G'B. This means that the third constraint (Eq. (10)) is 
satisfied. We say that G' is maximal in the sense that no other node can be 
added to either G'A or G'B because the two subgraphs will not remain 
disjoint. 

The constraint satisfaction scheme does not guarantee satisfaction of the 
second constraint (Eq. (9)), or of the first constraint (Eq. (8)) (since for 
some k we may have that vw = vtl = 0, i.e., node k £ G'). Satisfaction of 
these constraints is achieved by the reinforcement learning part through 
evaluation of the fitness function. If we let K(v) = +ν*.,), then 
the evaluation of the output y of the reinforcement learning part is 
performed by sending a reinforcement signal r given by 

( Κ ( ν ) - Μ ) - κ ( η Α ( ν ) - η Β ( ν ) ) 2 (11) 

where the parameter κ in this case was taken equal to 0.005. It is obvious 
that the value corresponding to a feasible problem solution is equal to zero 
and constitutes the maximum value of the fitness function. 

4.3. Experimental Results 

In our experiments we have considered multilevel graphs (Ackley, 1987) 
having a particular hierarchical structure. Multilevel graphs contain sets of 
nodes (clumps), such that the nodes of each set are fully connected among 
themselves but have only a few connections to the remaining nodes of the 
graph. Experiments have been conducted with specific multilevel graphs 
containing 8, 16 or 32 clumps, each clump consisting of 4 or 6 nodes. In 
particular, we have used five types of graphs which are denoted 8 x 4 , 16 χ 
4, 16 χ 6, 32 χ 4 and 32 χ 6. Figure 4 represents the 8 χ 4 multilevel graph. 
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Fig. 4: The 8 x 4 multilevel graph 

In all cases, it is possible to produce a partition of the graph into two disjoint 
subgraphs of equal size. The main difficulty with multilevel graphs arises 
from the existence of clumps, since it is difficult to move a clump across the 
partition one node at a time. The selected multilevel graphs are useful in 
order to gain insight into the behaviour of the algorithm when dealing with 
difficult problem instances. 

Experiments were conducted for the two formulations of the graph par-
titioning problem presented previously. In all experiments the algorithm was 
terminated when the global maximum was found or when 5000 generations 
had been performed. In the latter case the result was the best solution found 
during the search. 

All the experiments for the proposed PRRL method were carried out on a 
Silicon Graphics Power Challenge machine with 14 R8000 processors 
considering the five multilevel graph instances mentioned above. We have 
used the random number generator provided by the C library of Silicon 
Graphics (a multiplicative congruential random number generator with 
period 232). For each graph 30 experiments were performed using different 
seed values for the random number generator. The population size was 
nearly double the size of each graph. The values of the parameters were α = 
0.05 and δ = 0.02, whereas the crossover probability was pc = 1 and the 
maximum allowed values for the apathy and the inversion counter were both 
set equal to 150. 

Our aim has been to study experimentally the performance of PRRL in 
comparison with other significant methods, in order to assess its advantage 
over genetic techniques with enhanced features and over reinforcement 
learning schemes. For this reason, we have considered three methods for our 
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experiments: the Parallel Recombinative Simulated Annealing (PRSA), a 
reinforcement learning scheme and a simple genetic algorithm (GA). 
Comparison with the last method, which has less enhanced features than the 
other two, has been included for reasons of completeness. 

Combining the benefits of both genetic algorithms and simulated 
annealing, the PRSA approach (Mahfoud and Goldberg, 1995) generates a 
population of simulated annealing optimizers using crossover and mutation, 
as well as a cooling schedule. Starting with an initial value Ts = 14.0, the 
temperature of each optimizer was decreased every 20 generations with a 
rate of 4% during a first cooling stage, and with a rate of 1.5% after the 
temperature had reached a certain value Tx = 4.0 and down to the final 
temperature 7} = 0.4. The variation of the mutation probability was 
analogous to the behaviour of cooling. Starting with a large value (0.4), it 
was decremented every 40 generations until it reached a value of 0.001. The 
probability of crossover was equal to 1.0. 

The reinforcement learning scheme employed was the REINFORCE 
algorithm described in Section 2.2 (Williams and Peng, 1991; Kontoravdis 
et al, 1995), expressed by Eqs. (1), (3) and (4). The values selected for the 
parameters of learning rate and decay term were α = 0.2 and δ = 0.01. 

The GA algorithm follows the traditional genetic approach (Goldberg, 
1989) applying the selection, crossover, and mutation operators to the 
current population. The selection scheme used is based on the principle of 
'survival of the fittest', while the crossover is the single-point crossover: two 
selected parents are combined producing two new strings with probabilities 
of crossover and mutation being 0.6 and 0.01 respectively. 

The same experiments as in the case of PRRL were carried out using the 
other three optimization methods. The results are summarized in Tables 1 
and 2 respectively for the two formulations considered. The displayed results 
represent the percentage of cases in which the global maximum was found, 
as well as the average number of iteration (generation) steps required to find 
it. The superiority of PRRL is apparent as far as both the success rate and 
the required number of generations are concerned. As was expected 
following the earlier discussion, PRRL performs better under the post-
processing approach than under the direct approach. 

As can be observed in the two tables, in may cases no results are reported 
for the three methods being compared with PRRL, especially under the 
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direct approach, because they were not successful in finding the optimum 
within the 5000 generation limit. This is not surprising since the solution of 
graph partitioning is a very hard task for simple genetic algorithms and, to 
some extent, for reinforcement learning. In the case of PRSA it can be seen 
that, while its results under the post-processing approach are nearly as 
successful as those of PRRL, its performance under the direct approach is 
not analogous and PRSA fails to retrieve efficiently the optimal solution. As 
a matter of fact, the high dimensional graphs are too hard to be partitioned 
using the direct form of fitness function. On the other hand, it seems that 
post-processing provides a fitness evaluation mechanism that greatly facili-
tates the searching task, hence all methods yield results of comparable good 
quality in a reduced number of steps. 

Our results show that the proposed PRRL method offers clear advantages 
over the techniques that have been used for comparison. This illustrates the 
improvement due to the combined use of features such as recombination, 
reinforcement learning, sustained exploration and sustained diversity, which 
lead to a more effective exploration of the state space. 

4.4. Parallel Implementation 

The PRRL algorithm as described in the previous section features fully 
parallelizable characteristics, which are well adapted to shared memory 
architectures. The vectors of each generation can be accessed by a number of 
processors which are able to apply all the genetic operators (steps 1 to 10) of 
the algorithm to population members independently and in parallel, thus 
ensuring a high degree of parallelism. In our parallel code development on 
the Silicon Graphics Power Challenge machine we have used the Power C 
language which provides very rich programming facilities. 

Two series of experiments were performed for the measurement of 
speedup using PRRL for the solution of the graph partitioning problem. First 
we considered the behaviour of speedup for the five graph instances as a 
function of the number of processors, using up to eight R8000 processors of 
the Silicon Graphics Power Challenge. The measured speedup values for the 
32 χ 6 graph are represented in Figure 5, while the performance was 
analogous in the case of the remaining graphs. The speedup achieved for the 
32 χ 6 graph using 8 processors was 6.2 and 7.1 for the two methods used 
for the solution of the graph partitioning problem (direct and post-
processing approach respectively). As can be observed, the post-processing 
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Fig. 5: Speedup for the 32 χ 6 graph using (a) the direct and (b) the post-
processing approach 

Speedup 
8 

Speedup 

approach yields almost linear speedup and attains higher speedup values 
than the direct approach. This is due to the fact that the computational 
complexity of the function evaluations performed by each processor is higher 
in the case of post-processing. 

The second set of results concerns the variation of speedup as a function 
of the size of the graph. In Figure 6 the speedup is displayed for the five 
multilevel graphs using eight processors for the direct and the post-
processing approach. It can be observed that, as the size of the graph grows, 
speedup also increases obtaining its largest value for the 32 χ 6 multilevel 
graph. Analogous is the behaviour of speedup if less processors are used. 
Since the processing time grows in analogy to the problem size, parallelism 
is beneficial for large scale problems. Again, the speedup in the case of the 
post-processing method is higher than in the direct approach. It can be said, 
in conclusion, that PRRL exhibits ideal behaviour under parallelism for the 
post-processing approach and quite satisfactory behaviour for the direct 
approach. 

165 Brought to you by | University of Ioannina (University of Ioannina)
Authenticated | 172.16.1.226

Download Date | 4/18/12 1:12 PM



Vol. 6, No. 2, 1996 Parallel Recombinative Reinforcement Learning: 
A Genetic Approach 

Speedup 
β, 

Speedup 
8r 

5 

7 

6 

4 4 

8*4 16*4 16*6 32*4 32*6 8*4 16*4 16*6 32*4 32*6 

Fig. 6: Speedup using 8 processors for (a) the direct and (b) the post-
processing approach 

5. Conclusions 

We have introduced Parallel Recombinative Reinforcement Learning 
(PRRL), a genetic technique for function optimization on high-dimensional 
binary domains. The method borrows from genetic algorithms and rein-
forcement learning and aims to retain useful characteristics of both 
approaches. Indeed, the benefits from recombination are enhanced by the 
exploration capabilities of reinforcement learning algorithms, while the 
method is able to avoid the weaknesses of its constituents. Comparison with 
other methods such as Parallel Recombinative Simulated Annealing, 
reinforcement learning, as well as a traditional genetic algorithm, has 
illustrated the superiority of the proposed technique in terms of solution 
quality. The methods have been tested on the graph bipartitioning problem, 
which is a hard optimization problem, under two different formulations of 
the fitness function, a direct formulation containing penalty terms for 
problem constraints and an approach involving post-processing of generated 
solutions for constraint satisfaction. 

As the PRRL method is directly amenable to parallel implementation, we 
have investigated its performance on a shared-memory parallel architecture 
(Silicon Graphics Power Challenge) obtaining very good results in terms of 
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speedup, which attains linear behaviour. Further work on PRRL includes 
application to other hard optimization problems of large size and evaluation 
of the performance obtained through parallel implementation. 

As the proposed approach is quite general, another line of research 
concerns the use of other reinforcement learning algorithms, as well as the 
incorporation of other techniques for enhancing the exploration capabilities 
of the method. Also, a topic of theoretical interest concerns the investigation 
of the effects of recombination on the convergence properties of reinforce-
ment learning algorithms. 

References 

1. Ackley, D.H. A Connectionist Machine for Genetic Hillclimbing, 
Boston, Kluwer Academic Publishers, 1987. 

2. Barto, A.G., Anandan, P. Pattern recognizing stochastic learning 
automata, IEEE Transactions on Systems, Man and Cybernetics, 15, 
360-375, 1985. 

3. Boseniuk, T., Ebeling, W. Boltzmann-, Darwin- and Haeckel-strategies 
in optimization problems, Lecture Notes in Computer Science: Parallel 
Problem Solving from Nature, 496, 430-444, 1991. 

4. Brown, D.E., Huntley, C.L., Spillane, A.R A parallel genetic heuristic 
for the quadratic assignment problem, Proc. Third Inter. Conf On 
Genetic Algorithms, 1989; pp. 406-415. 

5. Davis, L. Handbook of Genetic Algorithms, New York, Van Nostrand 
Reinhold, 1991. 

6. Goldberg, D.E., Segrest, P. Finite Markov chain analysis of genetic 
algorithms, in: Genetic Algorithms and their Applications: Proc. of the 
Second Inter. Conf. on genetic Algorithms, 1987; pp. 1-8. 

7. Goldberg, D.E. Genetic Algorithms in Search, Optimization and 
Machine Learning, Reading, MA, Addison-Wesley, 1989. 

8. Goldberg, D.E. A note on Boltzmann tournament selection for genetic 
algorithms and population-oriented simulated annealing, Complex 
Systems, 4, 445-460, 1990. 

9. Gullapalli, V. A stochastic reinforcement learning algorithm for 
learning real-valued functions, Neural Networks, 3, 671-692, 1990. 

10. Holland, J.H. Adaptation in Natural and Artificial Systems, Ann Arbor, 
University of Michigan Press, 1975. 

167 
Brought to you by | University of Ioannina (University of Ioannina)

Authenticated | 172.16.1.226
Download Date | 4/18/12 1:12 PM



Vol. 6, No. 2, 1996 Parallel Recombinative Reinforcement Learning: 
A Genetic Approach 

11. Holland, J.H. Adaptation in Natural and Artificial Systems, 
Cambridge, ΜΓΓ Press, 1992. 

12. Kontoravdis, D., Likas, Α., Stafylopatis, A. A reinforcement learning 
algorithm for networks of units with two stochastic levels, in: Proc. 
1CANN-92, Brighton, United Kingdom, I, 143-146, 1992. 

13. Kontoravdis, D., Likas, Α., Stafylopatis, A. Enhancing stochasticity in 
reinforcement learning schemes: Application to the exploration of 
binary domains, Journal of Intelligent Systems, 5 (1), 49-77, 1995. 

14. Liepins, G.E., Potter, W.D. A genetic algorithm approach to multiple-
fault diagnosis, in: Handbook of Genetic Algorithms, Davis, L. (Ed.), 
New York, Van Nostrand Reinhold, 1991; pp. 227-250. 

15. Likas, Α., Kontoravdis, D., Stafylopatis, A. Discrete optimization 
based on the combined use of reinforcement and constraint satisfaction 
schemes, Neural Computing and Applications, 3, 101-112, 1995. 

16. Mahfoud, S.W. Genetic drift in sharing methods, in: Proc. First IEEE 
Conference on Evolutionary Computation (ICEC'94), Orlando, 
Florida, 1, 67-72, 1994. 

17. Mahfoud, S.W., Goldberg, D.E. Parallel recombinative simulated 
annealing: A genetic algorithm, Parallel Computing, 21, 1-28, 1995. 

18. Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution 
Programs, Springer-Verlag, 1994. 

19. Oei, C.K., Goldberg, D.E., Chang, S.J. Tournament selection, niching 
and the preservation of diversity, IlliGAL Rep. 91011, University of 
Illinois, Urbana, 1991. 

20. Orvosh, D., Davis, L. Using a genetic algorithm to optimize problems 
with feasibility constraints, in: Proc. First IEEE Conference on 
Evolutionary Computation, Orlando, FL, 548-553, 1994. 

21. Whitley, D. The GENITOR algorithm and selection pressure: Why 
rank-based allocation of reproductive trials is best, in: Proc. Third 
Inter. Conf. on Genetic Algorithms, Los Altos, CA, Morgan 
Kaufmann, 116-121, 1989. 

22. Williams, R.J. Toward a theory of reinforcement learning connectionist 
systems, Technical Report NU-CCS-88-3, Boston, MA, 1988. 

23. Williams, R.J., Peng, J. Reinforcement learning algorithms as function 
optimizers, in: Proc. Inter. Joint Conf. on Neural Networks, 
Washington, DC, Π, 89-95, 1989. 

168 Brought to you by | University of Ioannina (University of Ioannina)
Authenticated | 172.16.1.226

Download Date | 4/18/12 1:12 PM



A. Likas, Κ. Blekas and A. Stafylopatis Journal of Intelligent Systems 

24. Williams, R.J., Peng, J. Function optimization using connectionist 
reinforcement learning networks, Connection Science, 3, 241-268, 
1991. 

25. Williams, R.J. Simple statistical gradient-following algorithms for 
connectionist reinforcement learning, Machine Learning, 8, 229-256. 

26. Yip, P.P.C., Pao, Y.-H. A guided evolutionary simulated annealing 
approach to the quadratic assignment problem, IEEE Transactions on 
Systems, Man and Cybernetics, 24 (9), 1383-1387, 1994. 

27. Yip, P.P.C., Pao, Y.-H. Combinatorial optimization with use of guided 
evolutionary simulated annealing, IEEE Transactions on Neural 
Networks, 6 (2), 290-295, 1995. 

169 Brought to you by | University of Ioannina (University of Ioannina)
Authenticated | 172.16.1.226

Download Date | 4/18/12 1:12 PM



Brought to you by | University of Ioannina (University of Ioannina)
Authenticated | 172.16.1.226

Download Date | 4/18/12 1:12 PM


