
Neural Networks

Βιολογικά Νευρωνικά Δίκτυα

Artificial Neuron
(generalized linear model)

• d inputs,

• input signal xi (i=1,…,d)

• connection weights wi, (i=1,…,d)

• bias (w0) → weight of a connection whose input is 1

g(u)
o (output)

u

w0

w1

w2

wd

x1

x2

xd

x0=1 activation function

Artificial Neuron

• Two stage computation:

– Compute activation (total input):

– Compute output o(x) using activation function

o(x)=g(u)

– inner–product neuron

u(x)=wTx +w0

d

i i 0i=1
u(x)= w x +w

Artificial Neuron

• Alternative formulation:
– Weight vector: w=(w1, w2, …, wd)Τ

– Extended weight vector:
• we=(w0, w1, w2, …, wd)Τ

– Extended input vector:
• xe=(1, x1, x2, …, xd)Τ

• u(x)=we
Txe <====> u(x)=wTx +w0

Activation functions

• Step (or threshold) function):

– if x<0 then g(x)=a and if x>0 then g(x)=b.
Usually (a=0, b=1) or (a=-1, b=1).

–Discontinuous for x=0.

–Derivative equal to zero -> difficulty in
training

Activation functions
• Sigmoid functions

1) Logistic:

σ(x)=1/(1+exp(-ax))

(a: slope, usually a=1)

gives values in (0,1)

σ’(x)=σ(x)(1-σ(x))

σ’’(x)=σ(x)(1-σ(x))(1-2σ(x))

Συναρτήσεις ενεργοποίησης
2) Υπερβολική εφαπτομένη:

tanh(x)=

(a: κλίση, συνήθως a=1)
δίνει τιμές στο (-1,1)
tanh’(x)=1-tanh2(x)

• Γραμμική συνάρτηση
g(x)=x, g’(x)=1

- μόνο στην έξοδο του δικτύου

ax -ax

ax -ax

e -e

e +e

• Συνάρτηση RelU
g(x)=max(0,x)

Feedfoward Neural Networks

• No feedback connections

• Computations flow from input to output.

• Implement static mapping from Rd to Rp (d inputs, p
outputs).

Layered Feedforward Neural Networks
• Neuron are organized in layers: no connections between

neurons in the same layer.

• Full connectivity between neurons in consecutive layers.

• At least on hidden layer: Neurons in hidden layers should have
nonlinear activation (usually sigmoid).

• Generalized linear models with parametric basis functions
φ(x;w) are special case with 1 hidden layer

input

layer

2ο hidden

layer
output

layer
1ο hidden

layer

MultiLayer Perceptron (MLP)
• Layered feedforward neural network.

• Inner-product units

• Non-linear activation (e.g. logistic sigmoid) in hidden units

input

layer

2ο hidden

layer
output

layer
1ο hidden

layer

MultiLayer Perceptron (MLP)

• Notation : neuron i in layer

• : total input

• : output

• : error

• : bias (or)

• : activation function in

layer

• : number of neurons in layer

• : weight of connection from neuron to
neuron

i

()

iu

()

iy

()

i0w

()

i
()

ib

g

d
()

ijw

i

1j −

MultiLayer Perceptron(MLP)

• Consider MLP with d inputs, p outpus and Η hidden layers.
Input layer is zero, output layer is Η+1. (d0 = d, dH+1 = p)

• Forward pass (given input vector compute output vector):

• Input layer: ,

• For h=1,…,H+1

• Output vector:

(0)

i iy =x (0)

0 0y =x 1=

h-1 h-1d d
(h) (h) (h-1) (h) (h) (h-1) (h)

i ij j i ij j i0 h

j=0 j=1

u = w y <==> u = w y w , i=1,...d+ 

(h) (h) (h)

i h i h 0y =g (u) i=1,...,d , y 1=

(H+1)

i io =y i=1,...,p

MLP Computational Capabilities
• MLP implements a mapping from input space to output

space.

• The desired mapping is determined by training examples.

• Universal approximation property: an MLP with at least
one hidden layer with non-linear hidden units is able to
implement any mapping with arbitrary accuracy if the
number of hidden units becomes arbitrarily large.

• Not useful in practice.

• Determining the number of hidden units is a model
selection problem.

MLP computational capabilities
• The use of non-linear hidden units provides increased

computational capabilities.

• MLP can solve non-linear separable problems.

• Decision regions are defined as intersections among
hyperplanes.

• Usually 1 or 2 hidden layers are used. Recently there is
increased interest in deep neural networks (more than two
hidden layers).

MLP training
• Data set D={(xn,tn)}, n=1,…,N.

• xn=(xn1,…,xnd)T , tn=(tn1,…,tnp)T (regression problem).

• MLP with d inputs and p outputs.

• User should define the network architecture: number of
hidden layers, hidden units per layer, type of activation
functions.

• ο(xn; w): the MLP ouput vector with input xn, and
w=(w1,w2,…,wL)

T the vector of weights and biases.

• Training: specify w.

MLP training

• Ε(w): error (loss) function to be minimized wrt to w (sum of
squared errors for regression).

• Typically gradient descent approaches are used.

• The partial derivatives of Εn wrt to wi is needed:

error backpropagation

• Given a training example (x,t), error backpropagation
computes the partial derivatives of the loss (error) function
for this training example wrt to the weights, in a feedforward
neural network with inner-product units and differentiable
activation functions (e.g. MLP).

pN
n n n n 2 n 2

nm m

n=1 m=1

1 1
E(w)= E (w), E (w) ||t -o(x ;w)|| (t -o (x ;w))

2 2
= = 

Backpopagation
• Forward pass: For input xn we compute (and store) the output

y of each unit in the network.

• Backward (reverse) pass (computes an error value δ for units
in the output and hidden layers)

– First the errors in the output layer (Η+1) are computed,
comparing the network outputs oi with the targets tni.

– The error signals are propagated back through the hidden
layers to compute the error of each hidden unit.

• Partial derivative of a connection weight:

(error δ of the source unit) x (output y of the destination unit)

Εξήγηση backpropagation

up = wpiyi + wpkyk ∂up/∂yi = wpi ur = wriyi + wrkyk ∂ur/∂yi = wri

δr =∂e/∂ur

Ονομάζουμε δi = ∂e/∂ui (σφάλμα νευρώνα i)
δq = ∂e/∂yq ∂yq/∂uq = ∂e/∂yq g’(uq) (για νευρώνα εξόδου q, oμοίως για v)

Για εσωτερικό νευρώνα i:

∂e/∂ui = ∂e/∂yi ⸱ ∂yi/∂ui = g’(ui) ⸱ ∂e/∂yi (1) ∂e/∂wij = ∂e/∂ui ⸱∂ui/∂wij

⇒ ∂e/∂wij = δi⸱yj

∂e/∂yi = ∂e/∂up ⸱ ∂up/∂yi + ∂e/∂ur ⸱ ∂ur/∂yi

= δp⸱ wpi + δr⸱ wri (2)

(1),(2) ⇒ δi = g’(ui) ⸱ (δp⸱ wpi + δr⸱ wri)

g(.)ui

yi

g(.)up

yp

g(.)ur

yr

g(.)uj

yj

wij

g(.)uq

yq=o1

…

δi = ∂e/∂ui

wpi

wri

δp =∂e/∂up

⸱

g(.)uk

yk wpk

wrk

δq = ∂e/∂uq

Σφάλμα
e = f(yq,yv; t1,t2)

g(.)uv

yv=o2

δv = ∂e/∂uv

Backpropagation
• Compute δ (backward pass)

– Output units (layer Η+1) (activation gH+1) (for squared error
loss)

– Hidden units: για επίπεδο h=H,…,1 (activation gh)

(Η+1) (Η+1)

i H+1 i i niδ g (u)(o t), i=1,...,p= −

h+1d
(h) (h) (h+1) (h+1)

i h i ji j

j=1

δ g (u) w δ , i=1,...,dh
= 

(Η+1)

i i i i niδ o (1-o)(o t), i=1,...,p (logistic activation)= −

(Η+1)

i i niδ (o t), i=1,...,p (linear acitvation)= −

h+1d
(h) (h) (h) (h+1) (h+1)

i i i ji j

j=1

δ y (1 y) w δ , i=1,...,d (logistic activation)h= − 

Backpropagation

• Partial Derivative for connection weight:

• Partial derivative for bias

n
(h) (h-1)

i j(h)

ij

E
δ y

w


=



n
(h)

i(h)

i0

E
δ

w


=



MLP training with gradient descent
(batch update)

1. Weight initialization (t:=0), (random values in (-1,1)), set
learning rate ρυθμού η.

2. At each iteration t (epoch), let w(t) the weight vector

– We set:

– For n=1,…,N

• Apply backpropagation for (xn,tn) and compute

• Update derivatives:

– Update weights:

– Until termination

i

E
0, i=1,...,L

w


=



i

E
, i=1,...,L

w

n



n

i i i

E E E
:

w w w

  
= +

  

i i

i

E
w (t+1)=w (t)- , i=1,..,L

w





MLP training with gradient descent
(on-line update)

1. Initialize weights w(0) (random values in (-1,1)), set learning
rate n. Initialize iteration counter (τ:=0), epoch counter (t:=0).

2. At the beginning of epoch t, let w(τ) the weight vector

– Start of epoch t. For n=1,…,N

• Apply backpropagation (xn,tn) to compute

• Update weights:

• τ:=τ+1

– End of epoch t, test for termination (error difference,
number of epochs, early stopping)

i

E
, i=1,...,L

w

n



i i

i

E
w (τ+1)=w (τ)-n , i=1,..,L

w

n



MLP training

• Alternative gradient-based approaches (gradient is computed
through back-propagation)

– Variants of gradient descent (e.g. use momentum term)

– Mini-batch approach

– Scaled conjugate gradients (commonly used)

– Second-order methods (only for small networks and
datasets)

• BFGS

• Levenberg–Marquardt

• All gradient-based methods converge to a local minimum of
the loss function (multiple random restarts could be used)

MLP for classification

• 1-out of-p encoding for p classes C1,…,Cp

– Every target vector has p components (t1,…,tp)

– The target for class Ck : tk=1 and ti=0 for i≠k.

– An input is classified to the class corresponding to
maximum output

• It possible to use output units with sigmoid activations and
train using least squares error

• It is preferable to use softmax activation and train using cross-
entropy (analogous to multi-class logistic regression) (what is
the error δ of the output units?)

• In the case of two classes we use one logistic output with
targets t=1 and t=0.

• Train using cross-entropy for two classes (analogous to
logistic regression). Decision threshold could be set to 0.5.

Learning and Generalization

Generalization
• Generalization: successful predictions on unseen examples

• Occam’s razor:

– Prefer the simplest model that fits well to the data.

• Alternatively: Bias variance dilemma

– generalization error = bias + variance

– Bias: how well the model fits the training data (small for
large models)

– Variance: how small perturbations in the training set affect
the training results (large for large models)

x

t

Generalization

• Small network: possibility for undertraining.

• Large network: possibility for overtraining

• We seek for networks with ‘optimal’ complexity

• We need to have an estimate of the generalization error of a
network.

– Use of a test set (not used for training) (holdout)

– K-fold Cross-validation

– Leave-one-out (K=number of examples)

Cross-Validation
• K-fold cross-validation (K-CV):

– Split dataset D into Κ disjoint subsets (folds) D1 ,…, DΚ (usually
Κ=10).

– For each subset Di (i=1 ,…, K), train a model using D-Di as
training set and compute generalization error (gei) using Di as
test set.

– Compute ge = average(gei)

– Depends (somehow) on initial splitting

• Leave-one-out (K=N): deterministic, more reliable, but
computationally expensive

• We use cross-validation to select the best model (e.g. network
architecture) .

• The final solution is obtained by training the selected model on
the whole dataset.

Εxample
Dataset (theoretical generalization: 89%)

Example
Optimum at Μ=5, gen=100-12=88%

Μ

Generalization

Error(10-CV)

2 28%

3 18%

4 13%

5 12%

6 15%

7 15%

Overtraining
• In case we train a model more flexible than necessary, it is

possible to achieve overtraining.

• Overtraining: low error in training examples, large error on
unseen examples (poor generalization)

• There are several techniques to avoid overtraining:

– Regularization (weight decay)

– Early stopping

– Weight sharing

– Model Averaging

– Dropout

Weight Decay
• Use a regularization (penalty term):

• Forces weights to obtain low values during training.

• The error function for training is:

E(w) is the usual error function.

• parameter r determines the regularization strength.

• Weight updates:

L
2

i

i=1

R(w)= w

L
2

R i

i=1

E (w)=E(w)+rR(w)=E(w)+r w

i i i

i

E
w (t+1)=w (t)-η 2rw (t)

w

 
+ 

 

Weight Decay

• MLP with 1 hidden layer (20 hidden neurons)

Early stopping
• Use of validation set (different from training and test set)

• We train a (large) MLP (weight updates) using the training set

• At regular intervals (e.g. 10 epochs) we ‘freeze’ training and using
the current weights we compute the error in the validation set
(validation error).

• In the beginning of training, validation error drops along with
training error.

• There may be a time point when the validation error starts to
increase. This is an indication of overtraining and a suggestion to
stop training.

• Possible disadvantage: we must remove examples from the
training set, to use them in the validation set.

• Training, validation and test sets should not contain common
examples.

Early stopping

Training error

Validation error

Early

stopping

epochs

Weight Sharing

• One or more connections have (share) the same weight value w.

• The shared connections are usually in the same connection layer.

• In this way the number of network parameters (adjustable
weights) is reduced, thus the model flexibility is reduced.

• The gradient of the error with respect to the shared weight
parameter w is equal to the sum of the gradients with respect to
the individual connection weights that share the parameter w.

• Successfully used in convolutional neural networks to achieve
translation invariance in computer vision problems.

Model Averaging
• Averaging reduces variance

• Train several networks
– Same or different architecture

– Same dataset or random bootstraps of the dataset

• To predict for an example
– Use the example as input to all trained models

– Average the outputs (regression) or perform voting (classification)

– Each model may also have weight for his decision

• Bagging and boosting are successful methodologies (same model
trained on different datasets obtained by sampling with
replacement from the original dataset).

• Model averaging is expensive for large models (e.g. deep neural
networks)

Dropout

• Dropout is a regularization technique for reducing overfitting in
neural networks.

• It is a very efficient way of performing model averaging with
neural networks.

• Drop out a node: temporarily remove it from the network (along
with its connections)

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout

• Typically each node is removed with probability p (dropout
probability) independent of the other nodes (e.g. p=0.5)

• Training using on-line gradient descent. For each training example,
we sample a ‘thinned’ network by dropping out units and perform
backpropagation training on the ‘thinned’ network.

• At test time all nodes are present. The weights of each node are
p*w, instead of w (p is the dropout probability). In this way, it is like
performing averaging over all ‘thinned’ networks.

• Possible to use dropout at connection level (instead of node level).

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

RBF Neural Network

RBF Network
• RBF (radial basis function) networks.

• Feedforward neural network

• MLP alternative.

• Only one hidden layer with RBF hidden units

• Output units similar to MLP

Input

layer

Output

layer
Hidden

layer

x1

x2

xd

x0=1

x0=1

o1

op

h1

hM

RBF functions
• RBF hidden unit j:

• wj=(wj1,…, wjd)T center, σj radius

d
2

2 l jl
j l=1

j 2 2

j j

(x -w)
||x-w ||

h (x)=exp =exp
2σ 2σ

 
  
 − −     
 
 



RBF network

• RBF is a universal approximator (as MLP)

• Trained by minimizing a loss function (e.g. using gradient
descent)

• Gradient computation is easy (only one hidden layer)

• Initialization of RBF centers is difficult (clustering may be
used)

• Number of RBF hidden units may be determined using model
selection techniques (e.g. cross-validation)

	Slide 1: Neural Networks
	Slide 2: Βιολογικά Νευρωνικά Δίκτυα
	Slide 3: Artificial Neuron (generalized linear model)
	Slide 4: Artificial Neuron
	Slide 5: Artificial Neuron
	Slide 6: Activation functions
	Slide 7: Activation functions
	Slide 8: Συναρτήσεις ενεργοποίησης
	Slide 9: Feedfoward Neural Networks
	Slide 10: Layered Feedforward Neural Networks
	Slide 11: MultiLayer Perceptron (MLP)
	Slide 12: MultiLayer Perceptron (MLP)
	Slide 13: MultiLayer Perceptron(MLP)
	Slide 14: MLP Computational Capabilities
	Slide 15: MLP computational capabilities
	Slide 16: MLP training
	Slide 17: MLP training
	Slide 18: Backpopagation
	Slide 19: Εξήγηση backpropagation
	Slide 20: Backpropagation
	Slide 21: Backpropagation
	Slide 22: MLP training with gradient descent (batch update)
	Slide 23: MLP training with gradient descent (on-line update)
	Slide 24: MLP training
	Slide 25: MLP for classification
	Slide 26: Learning and Generalization
	Slide 27: Generalization
	Slide 28: Generalization
	Slide 29: Cross-Validation
	Slide 30: Εxample
	Slide 31: Example
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Overtraining
	Slide 37: Weight Decay
	Slide 38: Weight Decay
	Slide 39: Early stopping
	Slide 40: Early stopping
	Slide 41: Weight Sharing
	Slide 42: Model Averaging
	Slide 43: Dropout
	Slide 44: Dropout
	Slide 45: RBF Neural Network
	Slide 46: RBF Network
	Slide 47: RBF functions
	Slide 48: RBF network

