
Neural Networks



Βιολογικά Νευρωνικά Δίκτυα



Artificial Neuron 
(generalized linear model)

• d inputs, 

• input signal xi (i=1,…,d) 

• connection weights wi, (i=1,…,d)

• bias (w0 ) → weight of a connection whose input is 1
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Artificial Neuron

• Two stage computation: 

– Compute activation (total input):

– Compute output o(x) using activation function

o(x)=g(u)

– inner–product neuron

u(x)=wTx +w0

d

i i 0i=1
u(x)= w x +w



Artificial Neuron

• Alternative formulation:
– Weight vector: w=(w1, w2, …, wd)Τ

– Extended weight vector: 
• we=(w0, w1, w2, …, wd)Τ

– Extended input vector: 
• xe=(1, x1, x2, …, xd)Τ

• u(x)=we
Txe <====>   u(x)=wTx +w0



Activation functions

• Step (or threshold) function):

– if x<0 then g(x)=a and if x>0 then g(x)=b. 
Usually (a=0, b=1) or (a=-1, b=1).

–Discontinuous for x=0.

–Derivative equal to zero -> difficulty in 
training



Activation functions
• Sigmoid functions

1) Logistic:  

σ(x)=1/(1+exp(-ax))

(a: slope, usually a=1)

gives values in (0,1)

σ’(x)=σ(x)(1-σ(x))

σ’’(x)=σ(x)(1-σ(x))(1-2σ(x))



Συναρτήσεις ενεργοποίησης
2) Υπερβολική εφαπτομένη:  

tanh(x)=

(a: κλίση, συνήθως a=1)
δίνει τιμές στο (-1,1)
tanh’(x)=1-tanh2(x)

• Γραμμική συνάρτηση
g(x)=x, g’(x)=1

- μόνο στην έξοδο του δικτύου

ax -ax

ax -ax

e -e

e +e

• Συνάρτηση RelU
g(x)=max(0,x)



Feedfoward Neural Networks

• No feedback connections

• Computations flow from input to output.

• Implement static mapping from Rd to Rp (d inputs, p 
outputs).

 



Layered Feedforward Neural Networks
• Neuron are organized in layers: no connections between 

neurons in the same layer. 

• Full connectivity between neurons in consecutive layers.

• At least on hidden layer: Neurons in hidden layers should have 
nonlinear activation (usually sigmoid). 

• Generalized linear models with parametric basis functions 
φ(x;w) are special case with 1 hidden layer
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MultiLayer Perceptron (MLP)
• Layered feedforward neural network.

• Inner-product units

• Non-linear activation (e.g. logistic sigmoid) in hidden units
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MultiLayer Perceptron (MLP)

• Notation : neuron i in layer

• : total input

• : output

• : error

• : bias (or       )

• : activation function in

layer

• : number of neurons in layer

• : weight of connection from neuron to   
neuron
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MultiLayer Perceptron(MLP)

• Consider MLP with d inputs, p outpus and Η hidden layers. 
Input layer is zero, output layer is Η+1. (d0 = d, dH+1 = p)

• Forward pass (given input vector compute output vector):

• Input layer:              , 

• For h=1,…,H+1

• Output vector:
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MLP Computational Capabilities
• MLP implements a mapping from input space to output 

space. 

• The desired mapping is determined by training examples.

• Universal approximation property: an MLP with at least 
one hidden layer with non-linear hidden units is able to 
implement any mapping with arbitrary accuracy if the 
number of hidden units becomes arbitrarily large.

• Not useful in practice.

• Determining the number of hidden units is a model
selection problem.



MLP computational capabilities
• The use of non-linear hidden units provides increased 

computational capabilities.

• MLP can solve non-linear separable problems.

• Decision regions are defined as intersections among 
hyperplanes.

• Usually 1 or 2 hidden layers are used. Recently there is 
increased interest in deep neural networks (more than two 
hidden layers).



MLP training
• Data set D={(xn,tn)}, n=1,…,N.

• xn=(xn1,…,xnd)T , tn=(tn1,…,tnp)T (regression problem). 

• MLP with d inputs and p outputs. 

• User should define the network architecture: number of 
hidden layers, hidden units per layer, type of activation 
functions. 

• ο(xn; w): the MLP ouput vector with input xn, and
w=(w1,w2,…,wL)

T the vector of weights and biases.

• Training: specify w.



MLP training

• Ε(w): error (loss) function to be minimized wrt to w (sum of 
squared errors for regression).

• Typically gradient descent approaches are used.

• The partial derivatives of Εn wrt to wi is needed:

error backpropagation

• Given a training example (x,t), error backpropagation
computes the partial derivatives of the loss (error) function 
for this training example wrt to the weights, in a feedforward
neural network with inner-product units and differentiable 
activation functions (e.g. MLP).

pN
n n n n 2 n 2

nm m

n=1 m=1

1 1
E(w)= E (w),   E (w) ||t -o(x ;w)|| (t -o (x ;w))

2 2
= = 



Backpopagation
• Forward pass: For input xn we compute (and store) the output 

y of each unit in the network. 

• Backward (reverse) pass (computes an error value δ for units 
in the output and hidden layers)

– First the errors in the output layer (Η+1) are computed, 
comparing the network outputs oi with the targets tni. 

– The error signals are propagated back through the hidden 
layers to compute the error of each hidden unit. 

• Partial derivative of a connection weight: 

(error δ of the source unit) x (output y of the destination unit)



Εξήγηση backpropagation

up = wpiyi + wpkyk ∂up/∂yi = wpi ur = wriyi + wrkyk ∂ur/∂yi = wri

δr =∂e/∂ur

Ονομάζουμε δi = ∂e/∂ui (σφάλμα νευρώνα i)
δq = ∂e/∂yq ∂yq/∂uq = ∂e/∂yq g’(uq) (για νευρώνα εξόδου q, oμοίως για v)

Για εσωτερικό νευρώνα i:

∂e/∂ui = ∂e/∂yi ⸱ ∂yi/∂ui = g’(ui) ⸱ ∂e/∂yi (1) ∂e/∂wij = ∂e/∂ui ⸱∂ui/∂wij

⇒ ∂e/∂wij = δi⸱yj

∂e/∂yi = ∂e/∂up ⸱ ∂up/∂yi + ∂e/∂ur ⸱ ∂ur/∂yi

= δp⸱ wpi + δr⸱ wri (2)

(1),(2) ⇒ δi = g’(ui) ⸱ (δp⸱ wpi + δr⸱ wri )
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Backpropagation
• Compute δ (backward pass)

– Output units (layer Η+1) (activation gH+1 ) (for squared error 
loss)

– Hidden units: για επίπεδο h=H,…,1 (activation gh)

(Η+1) (Η+1)

i H+1 i i niδ g (u )(o t ), i=1,...,p= −
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Backpropagation

• Partial Derivative for connection weight: 

• Partial derivative for bias
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MLP training with gradient descent 
(batch update)

1. Weight initialization (t:=0), (random values in (-1,1)), set 
learning rate ρυθμού η.

2. At each iteration t (epoch), let w(t) the weight vector

– We set:

– For n=1,…,N 

• Apply backpropagation for (xn,tn) and compute

• Update derivatives:

– Update weights:

– Until termination
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MLP training with gradient descent 
(on-line update)

1. Initialize weights w(0) (random values in (-1,1)), set learning 
rate n. Initialize iteration counter (τ:=0), epoch counter (t:=0).

2. At the beginning of epoch t, let w(τ) the weight vector

– Start of epoch t. For n=1,…,N 

• Apply backpropagation (xn,tn) to compute

• Update weights:

• τ:=τ+1

– End of epoch t, test for termination (error difference, 
number of epochs, early stopping)
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MLP training

• Alternative gradient-based approaches (gradient is computed 
through back-propagation)

– Variants of gradient descent (e.g. use momentum term) 

– Mini-batch approach

– Scaled conjugate gradients (commonly used)

– Second-order methods (only for small networks and 
datasets)

• BFGS

• Levenberg–Marquardt

• All gradient-based methods converge to a local minimum of 
the loss function (multiple random restarts could be used)



MLP for classification

• 1-out of-p encoding for p classes C1,…,Cp

– Every target vector has p components (t1,…,tp) 

– The target for class Ck : tk=1 and ti=0 for i≠k.

– An input is classified to the class corresponding to 
maximum output

• It possible to use output units with sigmoid activations and 
train using least squares error

• It is preferable to use softmax activation and train using cross-
entropy (analogous to multi-class logistic regression) (what is 
the error δ of the output units?) 

• In the case of two classes we use one logistic output with 
targets t=1 and t=0. 

• Train using cross-entropy for two classes (analogous to 
logistic regression).  Decision threshold could be set to 0.5.



Learning and Generalization



Generalization
• Generalization: successful predictions on unseen examples

• Occam’s razor:

– Prefer the simplest model that fits well to the data.

• Alternatively: Bias variance dilemma 

– generalization error = bias + variance

– Bias: how well the model fits the training data (small for 
large models)

– Variance: how small perturbations in the training set affect 
the training results (large for large models)

x

t



Generalization

• Small network: possibility for undertraining. 

• Large network: possibility for overtraining

• We seek for networks with ‘optimal’ complexity

• We need to have an estimate of the generalization error of a 
network.

– Use of a test set (not used for training) (holdout)

– K-fold Cross-validation

– Leave-one-out (K=number of examples)



Cross-Validation
• K-fold cross-validation (K-CV): 

– Split dataset D into Κ disjoint subsets (folds) D1 ,…, DΚ (usually
Κ=10). 

– For each subset Di (i=1 ,…, K), train a model using D-Di as 
training set and compute generalization error (gei) using Di as 
test set.

– Compute ge = average(gei)

– Depends (somehow) on initial splitting

• Leave-one-out (K=N): deterministic, more reliable, but 
computationally expensive

• We use cross-validation to select the best model (e.g. network 
architecture) .

• The final solution is obtained by training the selected model on 
the whole dataset.



Εxample
Dataset (theoretical generalization: 89%)



Example
Optimum at Μ=5, gen=100-12=88%

Μ

Generalization 

Error(10-CV)

2 28%

3 18%

4 13%

5 12%

6 15%

7 15%











Overtraining
• In case we train a model more flexible than necessary, it is 

possible to achieve overtraining.

• Overtraining: low error in training examples, large error on 
unseen examples (poor generalization)

• There are several techniques to avoid overtraining:

– Regularization (weight decay)

– Early stopping

– Weight sharing

– Model Averaging

– Dropout



Weight Decay
• Use a regularization (penalty term):

• Forces weights to obtain low values during training.

• The error function for training is:

E(w) is the usual error function.

• parameter r determines the regularization strength.

• Weight updates:
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Weight Decay

• MLP with 1 hidden layer (20 hidden neurons)



Early stopping
• Use of validation set (different from training and test set)

• We train a (large) MLP (weight updates) using the training set

• At regular intervals (e.g. 10 epochs) we ‘freeze’ training and using 
the current weights we compute the error in the validation set 
(validation error).

• In the beginning of training, validation error drops along with 
training error. 

• There may be a time point when the validation error starts to 
increase. This is an indication of overtraining and a suggestion to 
stop training. 

• Possible disadvantage: we must remove examples from the 
training set, to use them in the validation set.

• Training, validation and test sets should not contain common 
examples.



Early stopping

Training error

Validation error

Early

stopping

epochs



Weight Sharing

• One or more connections have (share) the same weight value w.

• The shared connections are usually in the same connection layer.

• In this way the number of network parameters (adjustable 
weights) is reduced, thus the model flexibility is reduced.

• The gradient of the error with respect to the shared weight 
parameter w is equal to the sum of the gradients with respect to 
the individual connection weights that share the parameter w. 

• Successfully used in convolutional neural networks to achieve 
translation invariance in computer vision problems.



Model Averaging
• Averaging reduces variance

• Train several networks
– Same or different architecture

– Same dataset or random bootstraps of the dataset

• To predict for an example
– Use the example as input to all trained models

– Average the outputs (regression) or perform voting (classification)

– Each model may also have weight for his decision

• Bagging and boosting are successful methodologies (same model 
trained on different datasets obtained by sampling with 
replacement from the original dataset).

• Model averaging is expensive for large models (e.g. deep neural 
networks)



Dropout

• Dropout is a regularization technique for reducing overfitting in 
neural networks.

• It is a very efficient way of performing model averaging with 
neural networks.

• Drop out a node: temporarily remove it from the network (along 
with its connections)

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf


Dropout

• Typically each node is removed with probability p (dropout 
probability) independent of the other nodes (e.g. p=0.5)

• Training using on-line gradient descent. For each training example, 
we sample a ‘thinned’ network by dropping out units and perform 
backpropagation training on the ‘thinned’ network.

• At test time all nodes are present. The weights of each node are 
p*w, instead of w (p is the dropout probability). In this way, it is like 
performing averaging over all ‘thinned’ networks.

• Possible to use dropout at connection level (instead of node level).

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf


RBF Neural Network



RBF Network
• RBF (radial basis function) networks. 

• Feedforward neural network

• MLP alternative.

• Only one hidden layer with RBF hidden units

• Output units similar to MLP
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RBF functions
• RBF hidden unit j: 

• wj=(wj1,…, wjd)T center, σj radius

d
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j 2 2

j j

(x -w )
||x-w ||

h (x)=exp =exp
2σ 2σ
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 
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RBF network

• RBF is a universal approximator (as MLP)

• Trained by minimizing a loss function (e.g. using gradient 
descent)

• Gradient computation is easy (only one hidden layer)

• Initialization of RBF centers is difficult (clustering may be 
used)

• Number of RBF hidden units may be determined using model 
selection techniques (e.g. cross-validation)
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