Neural Networks

Βιολογικά Νευρωνικά Δίκτυα

Artificial Neuron (generalized linear model)

- d inputs,
- input signal x_i (i=1,...,d)
- connection weights w_i, (i=1,...,d)
- bias $(w_0) \rightarrow$ weight of a connection whose input is 1

Artificial Neuron

- Two stage computation:
 - Compute activation (total input):

$$u(x) = \sum_{i=1}^{d} W_i X_i + W_0$$

- Compute output o(x) using activation function o(x)=g(u)
- inner-product neuron

Artificial Neuron

• Alternative formulation:

- Weight vector: $w = (w_1, w_2, ..., w_d)^T$

– Extended weight vector:

•
$$w_e = (w_0, w_1, w_2, ..., w_d)^T$$

- Extended input vector:
 - $x_e = (1, x_1, x_2, ..., x_d)^T$
- $u(x) = w_e^T x_e^T <==> u(x) = w^T x + w_0^T x + w_0$

Activation functions

- Step (or threshold) function):
 - if x<0 then g(x)=a and if x>0 then g(x)=b.
 Usually (a=0, b=1) or (a=-1, b=1).
 - Discontinuous for x=0.
 - Derivative equal to zero -> difficulty in training

Activation functions

 $\sigma'(x) = \sigma(x)(1 - \sigma(x))$ $\sigma''(x) = \sigma(x)(1 - \sigma(x))(1 - 2\sigma(x))$

Συναρτήσεις ενεργοποίησης

2) Υπερβολική εφαπτομένη:

$$tanh(x) = \frac{e^{ax} - e^{-ax}}{e^{ax} + e^{-ax}}$$

(a: κλίση, συνήθως a=1)
 δίνει τιμές στο (-1,1)
 tanh'(x)=1-tanh²(x)

- Γραμμική συνάρτηση g(x)=x, g'(x)=1
 - μόνο στην έξοδο του δικτύου
- Συνάρτηση RelU
 g(x)=max(0,x)

Feedfoward Neural Networks

- No feedback connections
- Computations flow from input to output.
- Implement static mapping from R^d to R^p (d inputs, p outputs).

Layered Feedforward Neural Networks

- Neuron are organized in **layers:** no connections between neurons in the same layer.
- Full connectivity between neurons in consecutive layers.
- At least on hidden layer: Neurons in hidden layers should have nonlinear activation (usually sigmoid).
- Generalized linear models with parametric basis functions φ(x;w) are special case with 1 hidden layer

MultiLayer Perceptron (MLP)

- Layered feedforward neural network.
- Inner-product units
- Non-linear activation (e.g. logistic sigmoid) in hidden units

MultiLayer Perceptron (MLP)

- Notation i^ℓ : neuron i in layer ℓ
- $u_i^{(\ell)}$: total input
- $y_i^{(\ell)}$: output
- $\delta_{i}^{(\ell)}$: error
- $w_{i0}^{(\ell)}$: bias (or $b_i^{(\ell)}$)
- g_{ℓ} : activation function in layer ℓ
- d_{ℓ} : number of neurons in layer ℓ
- $w_{ij}^{(\ell)}$: weight of connection from neuron $j^{\ell-1}$ to neuron i^{ℓ}

MultiLayer Perceptron(MLP)

- Consider MLP with d inputs, p outpus and H hidden layers.
 Input layer is zero, output layer is H+1. (d₀ = d, d_{H+1} = p)
- Forward pass (given input vector compute output vector):
- Input layer: $y_i^{(0)} = x_i$, $y_0^{(0)} = x_0 = 1$
- For h=1,...,H+1

$$u_{i}^{(h)} = \sum_{j=0}^{d_{h-1}} w_{ij}^{(h)} y_{j}^{(h-1)} < = > u_{i}^{(h)} = \sum_{j=1}^{d_{h-1}} w_{ij}^{(h)} y_{j}^{(h-1)} + w_{i0}^{(h)}, \quad i=1,...,d_{h}$$
$$y_{i}^{(h)} = g_{h}(u_{i}^{(h)}) \quad i=1,...,d_{h}, \quad y_{0}^{(h)} = 1$$

• Output vector:

$$o_i = y_i^{(H+1)}$$
 $i=1,...,p$

MLP Computational Capabilities

- MLP implements a mapping from input space to output space.
- The desired mapping is determined by training examples.
- Universal approximation property: an MLP with at least one hidden layer with non-linear hidden units is able to implement any mapping with arbitrary accuracy if the number of hidden units becomes arbitrarily large.
- Not useful in practice.
- Determining the number of hidden units is a model selection problem.

MLP computational capabilities

- The use of non-linear hidden units provides increased computational capabilities.
- MLP can solve non-linear separable problems.
- Decision regions are defined as intersections among hyperplanes.
- Usually 1 or 2 hidden layers are used. Recently there is increased interest in **deep neural networks** (more than two hidden layers).

MLP training

- Data set **D={(xⁿ,tⁿ)}**, n=1,...,N.
- $x^n = (x_{n1,...,} x_{nd})^T$, $t^n = (t_{n1,...,} t_{np})^T$ (regression problem).
- MLP with d inputs and p outputs.
- User should define the network architecture: number of hidden layers, hidden units per layer, type of activation functions.
- o(xⁿ; w): the MLP ouput vector with input xⁿ, and w=(w₁,w₂,...,w_L)^T the vector of weights and biases.
- Training: specify w.

MLP training

$$E(w) = \sum_{n=1}^{N} E^{n}(w), \quad E^{n}(w) = \frac{1}{2} ||t^{n} - o(x^{n};w)||^{2} = \frac{1}{2} \sum_{m=1}^{p} (t_{nm} - o_{m}(x^{n};w))^{2}$$

- E(w): er/or (loss) function to be minimized wrt to w (sum of squared errors for regression).
- Typically gradient descent approaches are used.
- The partial derivatives of Eⁿ wrt to w_i is needed:

error backpropagation

 Given a training example (x,t), error backpropagation computes the partial derivatives of the loss (error) function for this training example wrt to the weights, in a feedforward neural network with inner-product units and differentiable activation functions (e.g. MLP).

Backpopagation

- Forward pass: For input xⁿ we compute (and store) the output y of each unit in the network.
- Backward (reverse) pass (computes an error value δ for units in the output and hidden layers)
 - First the errors in the output layer (H+1) are computed, comparing the network outputs o_i with the targets t_{ni}.
 - The error signals are propagated back through the hidden layers to compute the error of each hidden unit.
- Partial derivative of a connection weight:

(error δ of the source unit) x (output y of the destination unit)

$$\begin{split} \mathsf{E} \xi \dot{\eta} \gamma \eta \sigma \eta \text{ backpropagation} & \Sigma \dot{\varphi} \dot{\alpha} \lambda \mu \alpha \\ & e = f(y_{q'}y_{v}; t_{1}, t_{2}) \\ & u_{n} = \theta(y_{q'}y_{v}; t_{1}, t_{1}) \\ & u_{n} = \theta(y_{1$$

Backpropagation

- Compute δ (backward pass)
 - Output units (layer H+1) (activation g_{H+1}) (for squared error loss) $\delta_i^{(H+1)} = g'_{H+1}(u_i^{(H+1)})(o_i - t_{ni}), i=1,...,p$ $\delta_i^{(H+1)} = (o_i - t_{ni}), i=1,...,p$ (linear acitvation) $\delta_i^{(H+1)} = o_i(1-o_i)(o_i - t_{ni}), i=1,...,p$ (logistic activation)
 - Hidden units: για επίπεδο h=H,...,1 (activation g_h) $\delta_i^{(h)} = g'_h(u_i^{(h)}) \sum_{j=1}^{d_{h+1}} w_{ji}^{(h+1)} \delta_j^{(h+1)}, \quad i=1,...,d_h$ $\delta_i^{(h)} = y_i^{(h)}(1-y_i^{(h)}) \sum_{j=1}^{d_{h+1}} w_{ji}^{(h+1)} \delta_j^{(h+1)}, \quad i=1,...,d_h \text{ (logistic activation)}$

Backpropagation

• Partial Derivative for connection weight:

$$\frac{\partial \mathbf{E}^{n}}{\partial \mathbf{w}_{ij}^{(h)}} = \delta_{i}^{(h)} \mathbf{y}_{j}^{(h-1)}$$

• Partial derivative for bias

$$\frac{\partial \mathbf{E}^{n}}{\partial \mathbf{w}_{i0}^{(h)}} = \delta_{i}^{(h)}$$

MLP training with gradient descent (batch update)

- Weight initialization (t:=0), (random values in (-1,1)), set learning rate ρυθμού η.
- 2. At each iteration t (epoch), let w(t) the weight vector
 - We set: $\frac{\partial E}{\partial w_i} = 0, i=1,...,L$
 - For n=1,...,N
 - Apply backpropagation for (xⁿ,tⁿ) and compute $\frac{\partial E^n}{\partial w_i}, \ i{=}1,...,L$

• Update derivatives:
$$\frac{\partial E}{\partial w_i} := \frac{\partial E}{\partial w_i} + \frac{\partial E^n}{\partial w_i}$$

- Update weights:
$$w_i(t+1)=w_i(t)-\eta \frac{\partial E}{\partial w_i}$$
, i=1,...,L

Until termination

MLP training with gradient descent (on-line update)

- Initialize weights w(0) (random values in (-1,1)), set learning rate n. Initialize iteration counter (τ:=0), epoch counter (t:=0).
- 2. At the beginning of epoch t, let $w(\tau)$ the weight vector
 - <u>Start of epoch t</u>. For n=1,...,N
 - Apply backpropagation (xⁿ,tⁿ) to compute $\frac{\partial E^n}{\partial W_i}$, i=1,...,L
 - Update weights: $w_i(\tau+1)=w_i(\tau)-n\frac{\partial E^n}{\partial w_i}$, i=1,..,L
 - τ:=τ+1
 - <u>End of epoch t</u>, test for termination (error difference, number of epochs, early stopping)

MLP training

- Alternative gradient-based approaches (gradient is computed through back-propagation)
 - Variants of gradient descent (e.g. use momentum term)
 - Mini-batch approach
 - Scaled conjugate gradients (commonly used)
 - Second-order methods (only for small networks and datasets)
 - BFGS
 - Levenberg–Marquardt
- All gradient-based methods converge to a local minimum of the loss function (multiple random restarts could be used)

MLP for classification

- **1-out of-p encoding** for p classes C₁,...,C_p
 - Every target vector has p components $(t_1,...,t_p)$
 - The target for class $C_k : t_k=1$ and $t_i=0$ for $i \neq k$.
 - An input is classified to the class corresponding to maximum output
- It possible to use output units with sigmoid activations and train using least squares error
- It is preferable to use softmax activation and train using crossentropy (analogous to multi-class logistic regression) (what is the error δ of the output units?)
- In the case of two classes we use one logistic output with targets t=1 and t=0.
 - Train using cross-entropy for two classes (analogous to logistic regression). Decision threshold could be set to 0.5.

Learning and Generalization

Generalization

- Generalization: successful predictions on unseen examples
- Occam's razor:
 - Prefer the simplest model that fits well to the data.
- Alternatively: Bias variance dilemma
 - generalization error = bias + variance
 - Bias: how well the model fits the training data (small for large models)
 - Variance: how small perturbations in the training set affect the training results (large for large models)

Generalization

- Small network: possibility for undertraining.
- Large network: possibility for overtraining
- We seek for networks with 'optimal' complexity
- We need to have an estimate of the generalization error of a network.
 - Use of a test set (not used for training) (holdout)
 - K-fold Cross-validation
 - Leave-one-out (K=number of examples)

Cross-Validation

- K-fold cross-validation (K-CV):
 - Split dataset D into K *disjoint* subsets (folds) D₁,..., D_K (usually K=10).
 - For each subset D_i (i=1 ,..., K), train a model using D-D_i as training set and compute generalization error (ge_i) using D_i as test set.
 - Compute ge = average(ge_i)
 - Depends (somehow) on initial splitting
- Leave-one-out (K=N): deterministic, more reliable, but computationally expensive
- We use cross-validation to select the best model (e.g. network architecture).
- The final solution is obtained by training the selected model on the whole dataset.

Example

Dataset (theoretical generalization: 89%)

Example

Optimum at M=5, gen=100-12=88%

	Generalization
M	Error(10-CV)
2	28%
3	18%
4	13%
5	12%
6	15%
7	15%

Overtraining

- In case we train a model more flexible than necessary, it is possible to achieve overtraining.
- Overtraining: low error in training examples, large error on unseen examples (poor generalization)
- There are several techniques to **avoid overtraining**:
 - Regularization (weight decay)
 - Early stopping
 - Weight sharing
 - Model Averaging
 - Dropout

Weight Decay

• Use a regularization (penalty term):

$$\mathbf{R}(\mathbf{w}) = \sum_{i=1}^{L} \mathbf{w}_{i}^{2}$$

- Forces weights to obtain low values during training.
- The error function for training is:

$$E_{R}(w) = E(w) + rR(w) = E(w) + r\sum_{i=1}^{L} w_{i}^{2}$$

E(w) is the usual error function.

• parameter r determines the regularization strength.

• Weight updates:
$$w_i(t+1)=w_i(t)-\eta\left(\frac{\partial E}{\partial w_i}+2rw_i(t)\right)$$

Weight Decay

• MLP with 1 hidden layer (20 hidden neurons)

Early stopping

- Use of **validation set** (different from training and test set)
- We train a (large) MLP (weight updates) using the training set
- At regular intervals (e.g. 10 epochs) we 'freeze' training and using the current weights we compute the error in the validation set (validation error).
- In the beginning of training, validation error drops along with training error.
- There may be a time point when the validation error starts to increase. This is an indication of overtraining and a suggestion to stop training.
- Possible disadvantage: we must remove examples from the training set, to use them in the validation set.
- **Training**, validation and test sets should not contain common examples.

Early stopping

Weight Sharing

- One or more connections have (share) the same weight value w.
- The shared connections are usually in the same connection layer.
- In this way the number of network parameters (adjustable weights) is reduced, thus the model flexibility is reduced.
- The gradient of the error with respect to the shared weight parameter w is equal to the sum of the gradients with respect to the individual connection weights that share the parameter w.
- Successfully used in convolutional neural networks to achieve translation invariance in computer vision problems.

Model Averaging

- Averaging reduces variance
- Train several networks
 - Same or different architecture
 - Same dataset or random bootstraps of the dataset
- To predict for an example
 - Use the example as input to all trained models
 - Average the outputs (regression) or perform voting (classification)
 - Each model may also have weight for his decision
- Bagging and boosting are successful methodologies (same model trained on different datasets obtained by sampling with replacement from the original dataset).
- Model averaging is expensive for large models (e.g. deep neural networks)

<u>Dropout</u>

(b) After applying dropout.

- **Dropout** is a **regularization** technique for reducing overfitting in neural networks.
- It is a very efficient way of performing **model averaging** with neural networks.
- Drop out a node: temporarily remove it from the network (along with its connections)

- Typically each node is removed with probability p (dropout probability) independent of the other nodes (e.g. p=0.5)
- Training using on-line gradient descent. For each training example, we sample a 'thinned' network by dropping out units and perform backpropagation training on the 'thinned' network.
- At test time all nodes are present. The weights of each node are p*w, instead of w (p is the dropout probability). In this way, it is like performing averaging over all 'thinned' networks.
- Possible to use dropout at connection level (instead of node level).

RBF Neural Network

RBF Network

- RBF (radial basis function) networks.
- Feedforward neural network
- MLP alternative.
- Only one hidden layer with RBF hidden units
- Output units similar to MLP

RBF functions

• RBF hidden unit j:

$$h_{j}(x) = \exp\left(-\frac{\|x - w_{j}\|^{2}}{2\sigma_{j}^{2}}\right) = \exp\left(-\frac{\sum_{l=1}^{d}(x_{l} - w_{jl})^{2}}{2\sigma_{j}^{2}}\right)$$

• $w_j = (w_{j1}, ..., w_{jd})^T$ center, σ_j radius

RBF network

- RBF is a universal approximator (as MLP)
- Trained by minimizing a loss function (e.g. using gradient descent)
- Gradient computation is easy (only one hidden layer)
- Initialization of RBF centers is difficult (clustering may be used)
- Number of RBF hidden units may be determined using model selection techniques (e.g. cross-validation)