Neural Networks

BloAoywka Neupwvika Alktua

Artificial Neuron
(generalized linear model)

X, Xo=1 activation function

g(u)
o (output)

d inputs,
input signal x. (i=1,...,d)
connection weights w,, (i=1,...,d)

bias (w,) = weight of a connection whose inputis 1

Artificial Neuron

 Two stage computation:
— Compute activation (total input):

d
U(X):Zizlwixi+wo

— Compute output o(x) using activation function

o(x)=g(u)
— inner—product neuron

u(x)=w'x +w,

Artificial Neuron

e Alternative formulation:
— Weight vector: w=(w,, w,, ..., wy)T

— Extended weight vector:
* W =(Wg, Wy, W, ..., Wy)T

— Extended input vector:
* X,=(1, X1, X9, vy Xg)T

* u(x)=w,'x, <====> u(x)=w'x+w,

Activation functions

» Step (or threshold) function):

—if x<0 then g(x)=a and if x>0 then g(x)=b.
Usually (a=0, b=1) or (a=-1, b=1).

— Discontinuous for x=0.

— Derivative equal to zero -> difficulty in
training

Activation functions

* Sigmoid functions
1) Logistic:
o(x)=1/(1+exp(-ax)) &

% 05f
[

k)
04r

(a: slope, usually a=1)
gives valuesin (0,1)

01

o’(x)=0(x)(1-0(x))
o”'(x)=0(x)(1-0(x))(1-20(x))

>UVOPTNOELC EVEPY

2) YnepBoAikn epamtopévn:

ax -aX

e -€
e fa X

tanh(x)=

(a: kAlon, ouvnOwc a=1)
Slvel tlpeg oto (-1,1)
tanh’(x)=1-tanh?(x)

papLKA cuvaptnon

g(x)=x, g'(x)=1
- HOvo otnVv ££€060 Tou dLlKTUOU

tanh(x)

omolnong

1

0.8

06

2uvaptnon RelU
g(x)=max(0,x)

Feedfoward Neural Networks

No feedback connections
Computations flow from input to output.

Implement static mapping from R® to RP (d inputs, p
outputs).

Layered Feedforward Neural Networks

Neuron are organized in layers: no connections between
neurons in the same layer.

Full connectivity between neurons in consecutive layers.

At least on hidden layer: Neurons in hidden layers should have
nonlinear activation (usually sigmoid).

Generalized linear models with parametric basis functions
&(x;w) are special case with 1 hidden layer

input 1° hidden 2° hidden output
layer layer layer layer

MultiLayer Perceptron (MLP)

* Layered feedforward neural network.
* Inner-product units
* Non-linear activation (e.g. logistic sigmoid) in hidden units

input 1° hidden 2°hidden output
layer layer layer layer

MultiLayer Perceptron (MLP)

Notation i’ : neuroni in layer ¢
u” : total input
y{” : output
s error
wy’ : bias (or b
9, :activation function in
layer /
d, :number of neurons in layer /

. Wi(f) - weight of connection from neuron i to
J

neuron i’

MultiLayer Perceptron(MLP)

Consider MLP with d inputs, p outpus and H hidden layers.
Input layer is zero, output layeris H+1.(d,=d, d,,,; = p)

Forward pass (given input vector compute output vector):
Input layer: y©9=x, yP=x =1
For h=1,...,H+1

u® = (D) s ™) = (h)y,(h-1) O
Zw y("™ <==>uj ZW yi"™ +w, i=1,..d,
J=1

y"W=g ") i=1,..d., y"=1

Output vector: _
o=y"? i=1,..p

MLP Computational Capabilities

MLP implements a mapping from input space to output
space.

The desired mapping is determined by training examples.

Universal approximation property: an MLP with at least
one hidden layer with non-linear hidden units is able to
implement any mapping with arbitrary accuracy if the
number of hidden units becomes arbitrarily large.

Not useful in practice.

Determining the number of hidden units is a model
selection problem.

MLP computational capabilities

The use of non-linear hidden units provides increased
computational capabilities.

MLP can solve non-linear separable problems.

Decision regions are defined as intersections among
hyperplanes.

Usually 1 or 2 hidden layers are used. Recently there is

increased interest in deep neural networks (more than two
hidden layers).

MLP training

Data set D={(x",t")}, n=1,...,N.
MLP with d inputs and p outputs.

User should define the network architecture: number of
hidden layers, hidden units per layer, type of activation
functions.

o(x"; w): the MLP ouput vector with input x", and
w=(w,,W,,...,w,)T the vector of weights and biases.

Training: specify w.

MLP training
EW)=Y E" (W), E"(W) = ZI-00 M = (10, (")’

E(w): er/or (loss) function to be minimized wrt to w (sum of
squared errors for regression).

Typically gradient descent approaches are used.
The partial derivatives of E" wrt to w; is needed:
error backpropagation

Given a training example (x,t), error backpropagation
computes the partial derivatives of the loss (error) function
for this training example wrt to the weights, in a feedforward
neural network with inner-product units and differentiable
activation functions (e.g. MLP).

Backpopagation
* Forward pass: For input x" we compute (and store) the output

y of each unit in the network.

* Backward (reverse) pass (computes an error value 6 for units
in the output and hidden layers)

— First the errors in the output layer (H+1) are computed,
comparing the network outputs o, with the targets t...

— The error signals are propagated back through the hidden
layers to compute the error of each hidden unit.

* Partial derivative of a connection weight:
(error &6 of the source unit) x (output y of the destination unit)

E¢nynon backpropagation 5 baApa
€= f(yq,yv; t,t,)

6p =6e/dup
Y Wok Yo Jans
Y, Woi | =
J " s 5q_ de/du,
Yi Yr Yv=0
Wri
6, = 0e/du, 8, =0e/du, §,=0e/du

up = Wpiyi i kayk aup/ayi = Wpi U, = WyYi + WYk aur/oyi = Wi
Ovoudfouvpe 6, = 0e/du. (cpalpa veupwva i)
04 = 0e/dy, dy./du,= 0e/dy, g'(u,) (yio vevpdva e£650v g, Opoing yia v)

[Lol ECWTEPLKO VEUPWVA i:
de/du, = de/dy, - dy,/du. = g’(u.) - de/dy; (1) de/dw;; = de/0u; -0u;/dw;
= de/0w;; = 6;"Y;
0e/dy; = de/0u, - du /dy;+ de/du, - du,/dy,
=0, Wy, + 6wy (2)

(1.02)=8;=8"(u) - (8y" wp; + 3 wy)

Backpropagation

 Compute 6 (backward pass)
— Output units (layer H+1) (activation g,,,,) (for squared error

058) 50 gl)0, ~), =1p

M = (0. —t), i=1,...,p (lifear acitvation)

8 = 0.(1-0,)(0, —t), i=1,...,p (logisfic activation)

— Hidden units: yia enineéo h=H,...,1 (activation g,)
50 = gh(u(h))Zw“‘”)S(h”) i=1,...,d.

5" =y (- h))z (h+1)8(h+1) i=1,...,d, (logistic activation)

Backpropagation

e Partial Derivative for connection weight:

— 5, (D
(h) ! J
8Wij
 Partial derivative for bias
n

MLP training with gradient descent
(batch update)

. Weight initialization (t:=0), (random values in (-1,1)), set
learning rate puBuou n.
. At each iteration t (epoch), let w(t) the weight vector
— We set: a—E=O, 1=1,....L
&M
— For n=1,...,,N

* Apply backpropagation for (x",t") and compute

oE oE OE"
I

* Update derivatives: m:: OW. OW.

— Update weights: Wi(t+1)=Wi(t)-77§W—E, i=1,..L

— Until termination

MLP training with gradient descent
(on-line update)

Initialize weights w(0) (random values in (-1,1)), set learning
rate n. Initialize iteration counter (t:=0), epoch counter (t:=0).

At the beginning of epoch t, let w(t) the weight vector
— Start of epoch t. For n=1,...,N
* Apply backpropagation (x",t") to compute 2\'/5\,

* Update weights: Wi(T+1)ZWi(T)-n2\|/EV ,i=1,..,.L |

* T:=T+1
— End of epoch t, test for termination (error difference,
number of epochs, early stopping)

MLP training

Alternative gradient-based approaches (gradient is computed
through back-propagation)

— Variants of gradient descent (e.g. use momentum term)
— Mini-batch approach
— Scaled conjugate gradients (commonly used)

— Second-order methods (only for small networks and
datasets)

e BFGS
e Levenberg—Marquardt

All gradient-based methods converge to a local minimum of
the loss function (multiple random restarts could be used)

MLP for classification

1-out of-p encoding for p classes C,,...,C,
— Every target vector has p components (t,,...,t)
— The target for class C, : t,=1 and t=0 for izk.

— An input is classified to the class corresponding to
maximum output

It possible to use output units with sigmoid activations and
train using least squares error

It is preferable to use softmax activation and train using cross-
entropy (analogous to multi-class logistic regression) (what is
the error 6 of the output units?)

In the case of two classes we use one logistic output with
targets t=1 and t=0.

* Train using cross-entropy for two classes (analogous to
logistic regression). Decision threshold could be set to 0.5.

Learning and Generalization

Generalization

* Generalization: successful predictions on unseen examples
 Occam’s razor:

— Prefer the simplest model that fits well to the data.
* Alternatively: Bias variance dilemma

— generalization error = bias + variance

— Bias: how well the model fits the training data (small for
large models)

— Variance: how small perturbations in the training set affect
the training results (large for large models)

A

t

Generalization

Small network: possibility for undertraining.
Large network: possibility for overtraining
We seek for networks with ‘optimal’ complexity

We need to have an estimate of the generalization error of a
network.

— Use of a test set (not used for training) (holdout)
— K-fold Cross-validation

— Leave-one-out (K=number of examples)

Cross-Validation

e K-fold cross-validation (K-CV):
— Split dataset D into K disjoint subsets (folds) D, ..., D, (usually
K=10).
— For each subset D, (i=1,..., K), train a model using D-D, as

training set and compute generalization error (ge;) using D, as
test set.

— Compute ge = average(ge,)
— Depends (somehow) on initial splitting

* Leave-one-out (K=N): deterministic, more reliable, but
computationally expensive

 We use cross-validation to select the best model (e.g. network
architecture) .

* The final solution is obtained by training the selected model on
the whole dataset.

Example

Dataset (theoretical generalization: 89%)

Example
Optimum at M=5, gen=100-12=88%

Generalization

M Error(10-CV)

28%
18%
13%
12%
15%
15%

~N O (O | B~ W (N

M=2
ge=26%

M=3
ge=18%

M=6
ge=15%

M=7

5
*
%&M A *
o
m_m.mm. ... N
ARl
Ly W e
* u@%ﬁw w_%_w_wwm_ﬁ D
o3
£
*
*
<
(9]
W
S

Overtraining

In case we train a model more flexible than necessary, it is
possible to achieve overtraining.

Overtraining: low error in training examples, large error on
unseen examples (poor generalization)

There are several techniques to avoid overtraining:
— Regularization (weight decay)

— Early stopping

— Weight sharing

— Model Averaging

— Dropout

Weight Decay

Use a regularization (penalty term):
L
RW)=>" w;
i=1

Forces weights to obtain low values during training.
The error function for training is:

e (W=EW R W)W

i=1
E(w) is the usual error function.
parameter r determines the regularization strength.

Weight updates: w;,(t+1)=w, (t)—n(g% - 2rwi(t)j

Weight Decay

e MLP with 1 hidden layer (20 hidden neurons)

Early stopping

Use of validation set (different from training and test set)
We train a (large) MLP (weight updates) using the training set

At regular intervals (e.g. 10 epochs) we ‘freeze’ training and using
the current weights we compute the error in the validation set
(validation error).

In the beginning of training, validation error drops along with
training error.

There may be a time point when the validation error starts to
increase. This is an indication of overtraining and a suggestion to
stop training.

Possible disadvantage: we must remove examples from the
training set, to use them in the validation set.

Training, validation and test sets should not contain common
examples.

Early stopping

4 Training error

Validation error

\
\
\
\
\
AY
\
\
A}
\
\
\
\
\
\
N
N
N
S
N
N
A\
~
~
~
~
~
~
\\\\

Early epochs
stopping

Weight Sharing

-2 1 1 1 0 (| -1

0 1 2 (| 1 1 31| 0

One or more connections have (share) the same weight value w.
The shared connections are usually in the same connection layer.

In this way the number of network parameters (adjustable
weights) is reduced, thus the model flexibility is reduced.

The gradient of the error with respect to the shared weight
parameter w is equal to the sum of the gradients with respect to
the individual connection weights that share the parameter w.

Successfully used in convolutional neural networks to achieve
translation invariance in computer vision problemes.

Model Averaging

Averaging reduces variance
Train several networks

— Same or different architecture
— Same dataset or random bootstraps of the dataset
To predict for an example
— Use the example as input to all trained models
— Average the outputs (regression) or perform voting (classification)

— Each model may also have weight for his decision

Bagging and boosting are successful methodologies (same model
trained on different datasets obtained by sampling with
replacement from the original dataset).

Model averaging is expensive for large models (e.g. deep neural
networks)

Dropout

-
b

(a) Standard Neural Net (b) After applying dropout.
Dropout is a regularization technique for reducing overfitting in
neural networks.

It is a very efficient way of performing model averaging with
neural networks.

Drop out a node: temporarily remove it from the network (along
with its connections)

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout

Present with
probability p

Always
presont
(a) At training time [t} At test timse

Typically each node is removed with probability p (dropout
probability) independent of the other nodes (e.g. p=0.5)

Training using on-line gradient descent. For each training example,
we sample a ‘thinned’ network by dropping out units and perform
backpropagation training on the ‘thinned’ network.

At test time all nodes are present. The weights of each node are
p*w, instead of w (p is the dropout probability). In this way, it is like
performing averaging over all ‘thinned’ networks.

Possible to use dropout at connection level (instead of node level).

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

RBF Neural Network

RBF Network

RBF (radial basis function) networks.
Feedforward neural network

MLP alternative.

Only one hidden layer with RBF hidden units
Output units similar to MLP

Input - Hidden Output
layer layer layer

RBF functions

* RBF hidden unit j:

[Jd 2\
i ew, | 2. 0wi)
(X)=exp| ——~ |=exp| — =
j(X)=exp 207 P 257

© Wi=(Wg,e, Wjd)T center, o, radius

N
AR
w§

R
,?‘&s‘\ N

Co0o0000000
omNwhroImNLO =

RBF network

RBF is a universal approximator (as MLP)

Trained by minimizing a loss function (e.g. using gradient
descent)

Gradient computation is easy (only one hidden layer)

Initialization of RBF centers is difficult (clustering may be
used)

Number of RBF hidden units may be determined using model
selection techniques (e.g. cross-validation)

	Slide 1: Neural Networks
	Slide 2: Βιολογικά Νευρωνικά Δίκτυα
	Slide 3: Artificial Neuron (generalized linear model)
	Slide 4: Artificial Neuron
	Slide 5: Artificial Neuron
	Slide 6: Activation functions
	Slide 7: Activation functions
	Slide 8: Συναρτήσεις ενεργοποίησης
	Slide 9: Feedfoward Neural Networks
	Slide 10: Layered Feedforward Neural Networks
	Slide 11: MultiLayer Perceptron (MLP)
	Slide 12: MultiLayer Perceptron (MLP)
	Slide 13: MultiLayer Perceptron(MLP)
	Slide 14: MLP Computational Capabilities
	Slide 15: MLP computational capabilities
	Slide 16: MLP training
	Slide 17: MLP training
	Slide 18: Backpopagation
	Slide 19: Εξήγηση backpropagation
	Slide 20: Backpropagation
	Slide 21: Backpropagation
	Slide 22: MLP training with gradient descent (batch update)
	Slide 23: MLP training with gradient descent (on-line update)
	Slide 24: MLP training
	Slide 25: MLP for classification
	Slide 26: Learning and Generalization
	Slide 27: Generalization
	Slide 28: Generalization
	Slide 29: Cross-Validation
	Slide 30: Εxample
	Slide 31: Example
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Overtraining
	Slide 37: Weight Decay
	Slide 38: Weight Decay
	Slide 39: Early stopping
	Slide 40: Early stopping
	Slide 41: Weight Sharing
	Slide 42: Model Averaging
	Slide 43: Dropout
	Slide 44: Dropout
	Slide 45: RBF Neural Network
	Slide 46: RBF Network
	Slide 47: RBF functions
	Slide 48: RBF network

