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What is Machine Learning? 

• It is very hard to write programs that solve problems like 
recognizing a face. 

– We don’t know what program to write because we don’t 
know how our brain does it. 

– Even if we had a good idea about how to do it, the 
program might be horrendously complicated. 

• Instead of writing a program by hand, we collect lots of 
examples that specify the correct output for a given input. 

• A machine learning algorithm then takes these examples 
and produces a program that does the job. 

– The program produced by the learning algorithm may 
look very different from a typical hand-written program. It 
may contain millions of numbers. 

– If we do it right, the program works for new cases as well 
as the ones we trained it on. 



A classic example of a task that requires machine 

learning: It is very hard to say what makes a 2         



Some more examples of tasks that are best 

solved by using a learning algorithm 

• Recognizing patterns (classification): 

– Facial identities or facial expressions 

– Handwritten or spoken words 

– Medical images 

 

• Prediction (regression): 

– Future stock prices or currency exchange rates  



Some web-based examples of machine learning 

• The web contains a lot of data. Tasks with very big 

datasets often use machine learning 

–  especially if the data is noisy or non-stationary. 

• Spam filtering, fraud detection:  

–  The enemy adapts so we must adapt too. 

• Recommendation systems: 

– Lots of noisy data. Million dollar prize! 

• Information retrieval: 

– Find documents or images with similar content. 

• Data Visualization: 

– Display a huge database in a revealing way 

 



Displaying the structure of a set of documents  

using Latent Semantic Analysis (a  form of PCA) 

Each document is converted 

to a vector of word counts. 

This vector is then mapped to 

two coordinates and displayed 

as a colored dot. The colors 

represent the hand-labeled 

classes.  

 When the documents are laid 

out in 2-D, the classes are not 

used. So we can judge how 

good the algorithm is by 

seeing if the classes are 

separated. 



Displaying the structure of a set of documents  

using a deep neural network 



Types of learning 

• Supervised learning (input examples and correct answers 
are given) 

– Learn to predict output when given an input vector 
• Who provides the correct answer? 

• Reinforcement learning 

– Learn action to maximize payoff (reinforcement signal) 
• Not much information in a payoff signal 

• Payoff is often delayed 

• Unsupervised learning (only input examples, no correct 
answers) 

– Discover/create an internal representation of the input 
e.g. form clusters; extract features 

• How do we know if a representation is good? 

– Clustering, density estimation, dimensionality reduction 

– This is the new frontier of machine learning because 
most big datasets do not come with labels. 



Machine Learning & Statistics 

• A lot of machine learning is just a rediscovery of things 
that statisticians already knew. This is often disguised by 
differences in terminology: 

– Ridge regression = weight-decay 

– Fitting = learning 

– Held-out data = test data 

• But the emphasis is very different: 

– A good piece of statistics: Clever proof that a 
relatively simple estimation procedure is 
asymptotically unbiased. 

– A good piece of machine learning: Demonstration that 
a complicated algorithm produces impressive results 
on a specific task. 

• Data-mining: Using very simple machine learning 
techniques on very large databases because computers 
are too slow to do anything more interesting with ten 
billion examples. 

 

 



Hypothesis Space 

• One way to think about a supervised learning machine is as a 
device that explores a “hypothesis space”. 

– Each setting of the parameters in the machine is a different 
hypothesis about the function that maps input vectors to output 
vectors. 

 

• The art of supervised machine learning is in: 

– Deciding how to represent the inputs and outputs 

– Selecting a hypothesis space that is powerful enough to 
represent the relationship between inputs and outputs but simple 
enough to be searched. 



Searching a hypothesis space 

• The obvious method is to first formulate a loss (error) 

function and then adjust the parameters to minimize the 

loss function. 

– This allows the optimization to be separated from the 

objective function that is being optimized. 

• Bayesians do not search for a single set of parameter 

values that do well on the loss function. 

– They start with a prior distribution over parameter 

values and use the training data to compute a 

posterior distribution over the whole hypothesis 

space. 



Some Loss Functions 

• Squared difference between actual and target real-
valued outputs. 

• Number of classification errors  

– Problematic for optimization because the derivative is 
not smooth. 

• Negative log probability (likelihood) assigned to the 
correct answer. 

– In some cases it is the same as squared error 
(regression with Gaussian output noise)  

– In other cases it is very different (classification with 
discrete classes needs cross-entropy error) 



Generalization 

• The real aim of supervised learning is to do well on test 
data that is not known during learning. 

• Choosing the values for the parameters that minimize 
the loss function on the training data is not necessarily 
the best policy. 

• We want the learning machine to model the true 
regularities in the data and to ignore the noise in the 
data.  

– But the learning machine does not know which 
regularities are real and which are accidental quirks of 
the particular set of training examples we happen to 
pick. 

• So how can we be sure that the machine will generalize 
correctly to new data? 



Trading off the goodness of fit against  the 

complexity of the model 

• It is intuitively obvious that you can only expect a model to 

generalize well if it explains the data surprisingly well given 

the complexity of the model. 

 

• If the model has as many degrees of freedom as the data, it 

can fit the data perfectly but so what? 

 

• There is a lot of theory about how to measure the model 

complexity and how to control it to optimize generalization. 



A simple example: Fitting a polynomial 

• The green curve is the true 
function (which is not a 
polynomial) 

• The data points are uniform in 
x but have noise in y. 

 

• We will use a loss function 
that measures the squared 
error in the prediction of y(x) 
from x. The loss for the red 
polynomial is the sum of the 
squared vertical errors.  

from Bishop 



Some fits to the data: which is best? 
from Bishop 



Using a validation set 

• Divide the total dataset into three subsets: 

– Training data is used for learning the 
parameters of the model. 

– Validation data is not used of learning but is 
used for deciding what type of model and 
what amount of regularization works best. 

– Test data is used to get a final, unbiased 
estimate of how well the network works. We 
expect this estimate to be worse than on the 
validation data. 

• We could then re-divide the total dataset to get 
another unbiased estimate of the true error rate 
(cross-validation). 



The Bayesian framework 

• The Bayesian framework assumes that we always 

have a prior distribution for everything. 

– The prior may be very vague. 

– The likelihood term takes into account how 

probable the observed data is given the parameters 

of the model.  

– When we see some data, we combine our prior 

distribution with a likelihood term to get a posterior 

distribution. 



Bayes Theorem 
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A cheap trick to avoid computing the 

posterior probabilities of all weight vectors 

• Suppose we just try to find the most probable 
weight vector. 

– We can do this by starting with a random 
weight vector and then adjusting it in the 
direction that improves  p( W | D ). 

• It is easier to work in the log domain. If we want 
to minimize a cost we use negative log 
probabilities: 

 

 

 
)(log)|(log)(log)|(log

)(/)|()()|(

DpWDpWpDWpCost

DpWDpWpDWp







Why we maximize sums of log probs 

• We want to maximize the product of the probabilities of 
the outputs on the training cases 

– Assume the different training cases, c, are 
independent. 

 

 

  

• Because the log function is monotonic, it does not 
change where the maxima are. So we can maximize 
sums of log probabilities 
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MAP & ML 
• Suppose we completely ignore the prior over 

weight vectors 

– This is equivalent to giving all possible weight 

vectors the same prior probability density. 

• Then all we have to do is to maximize: 

 

 

• Maximum likelihood (ML) learning. 

 

 

• This is called maximum a posteriori (MAP) 

learning (prior is taken into account) 
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