#### What is Machine Learning?

Based on www.cs.toronto.edu/~hinton

## What is Machine Learning?

- It is very hard to write programs that solve problems like recognizing a face.
  - We don't know what program to write because we don't know how our brain does it.
  - Even if we had a good idea about how to do it, the program might be horrendously complicated.
- Instead of writing a program by hand, we collect lots of examples that specify the correct output for a given input.
- A machine learning algorithm then takes these examples and produces a program that does the job.
  - The program produced by the learning algorithm may look very different from a typical hand-written program. It may contain millions of numbers.
  - If we do it right, the program works for new cases as well as the ones we trained it on.

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

00011(1112

るえてみる 2 ス 3 み 3 344445555 467773888 888194999

# Some more examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns (classification):
  - Facial identities or facial expressions
  - Handwritten or spoken words
  - Medical images
- Prediction (regression):
  - Future stock prices or currency exchange rates

#### Some web-based examples of machine learning

- The web contains a lot of data. Tasks with very big datasets often use machine learning
  - especially if the data is noisy or non-stationary.
- Spam filtering, fraud detection:
  - The enemy adapts so we must adapt too.
- Recommendation systems:
  - Lots of noisy data. Million dollar prize!
- Information retrieval:
  - Find documents or images with similar content.
- Data Visualization:
  - Display a huge database in a revealing way

#### Displaying the structure of a set of documents using Latent Semantic Analysis (a form of PCA)



Each document is converted to a vector of word counts. This vector is then mapped to two coordinates and displayed as a colored dot. The colors represent the hand-labeled classes.

When the documents are laid out in 2-D, the classes are not used. So we can judge how good the algorithm is by seeing if the classes are separated.

#### Displaying the structure of a set of documents using a deep neural network



#### Types of learning

- Supervised learning (input examples and correct answers are given)
  - Learn to predict output when given an input vector
    - Who provides the correct answer?
- Reinforcement learning
  - Learn action to maximize payoff (reinforcement signal)
    - Not much information in a payoff signal
    - Payoff is often delayed
- Unsupervised learning (only input examples, no correct answers)
  - Discover/create an internal representation of the input e.g. form clusters; extract features
    - How do we know if a representation is good?
  - Clustering, density estimation, dimensionality reduction
  - This is the new frontier of machine learning because most big datasets do not come with labels.

#### Machine Learning & Statistics

- A lot of machine learning is just a rediscovery of things that statisticians already knew. This is often disguised by differences in terminology:
  - Ridge regression = weight-decay
  - Fitting = learning
  - Held-out data = test data
- But the emphasis is very different:
  - A good piece of statistics: Clever proof that a relatively simple estimation procedure is asymptotically unbiased.
  - A good piece of machine learning: Demonstration that a complicated algorithm produces impressive results on a specific task.
- Data-mining: Using very simple machine learning techniques on very large databases because computers are too slow to do anything more interesting with ten billion examples.

## **Hypothesis Space**

- One way to think about a supervised learning machine is as a device that explores a "hypothesis space".
  - Each setting of the parameters in the machine is a different hypothesis about the function that maps input vectors to output vectors.
- The art of supervised machine learning is in:
  - Deciding how to represent the inputs and outputs
  - Selecting a hypothesis space that is powerful enough to represent the relationship between inputs and outputs but simple enough to be searched.

## Searching a hypothesis space

- The obvious method is to first formulate a loss (error) function and then adjust the parameters to minimize the loss function.
  - This allows the optimization to be separated from the objective function that is being optimized.
- Bayesians do not search for a single set of parameter values that do well on the loss function.
  - They start with a prior distribution over parameter values and use the training data to compute a posterior distribution over the whole hypothesis space.

#### **Some Loss Functions**

- Squared difference between actual and target realvalued outputs.
- Number of classification errors
  - Problematic for optimization because the derivative is not smooth.
- Negative log probability (likelihood) assigned to the correct answer.
  - In some cases it is the same as squared error (regression with Gaussian output noise)
  - In other cases it is very different (classification with discrete classes needs cross-entropy error)

## Generalization

- The real aim of supervised learning is to do well on test data that is not known during learning.
- Choosing the values for the parameters that minimize the loss function on the training data is not necessarily the best policy.
- We want the learning machine to model the true regularities in the data and to ignore the noise in the data.
  - But the learning machine does not know which regularities are real and which are accidental quirks of the particular set of training examples we happen to pick.
- So how can we be sure that the machine will generalize correctly to new data?

# Trading off the goodness of fit against the complexity of the model

- It is intuitively obvious that you can only expect a model to generalize well if it explains the data surprisingly well given the complexity of the model.
- If the model has as many degrees of freedom as the data, it can fit the data perfectly but so what?
- There is a lot of theory about how to measure the model complexity and how to control it to optimize generalization.

## A simple example: Fitting a polynomial

- The green curve is the true function (which is not a polynomial)
- The data points are uniform in x but have noise in y.
- We will use a loss function that measures the squared error in the prediction of y(x) from x. The loss for the red polynomial is the sum of the squared vertical errors.



#### Some fits to the data: which is best?









## Using a validation set

- Divide the total dataset into three subsets:
  - Training data is used for learning the parameters of the model.
  - Validation data is not used of learning but is used for deciding what type of model and what amount of regularization works best.
  - Test data is used to get a final, unbiased estimate of how well the network works. We expect this estimate to be worse than on the validation data.
- We could then re-divide the total dataset to get another unbiased estimate of the true error rate (cross-validation).

#### The Bayesian framework

- The Bayesian framework assumes that we always have a prior distribution for everything.
  - The prior may be very vague.
  - The likelihood term takes into account how probable the observed data is given the parameters of the model.
  - When we see some data, we combine our prior distribution with a likelihood term to get a posterior distribution.

#### **Bayes Theorem**

*joint probability* p(D) p(W | D) = p(D, W) = p(W) p(D | W)

Prior probability of weight vector W  $p(W | D) = \frac{p(W) \quad p(D | W)}{p(D)}$ Posterior probability of weight vector W given training data D  $p(W) p(D | W) = \int_{W} p(W) p(D | W)$ 

# A cheap trick to avoid computing the posterior probabilities of all weight vectors

- Suppose we just try to find the most probable weight vector.
  - We can do this by starting with a random weight vector and then adjusting it in the direction that improves p(W | D).
- It is easier to work in the log domain. If we want to minimize a cost we use negative log probabilities:

 $p(W | D) = p(W) \quad p(D | W) / p(D)$ Cost = -log p(W | D) = -log p(W) - log p(D | W) + log p(D)

## Why we maximize sums of log probs

- We want to maximize the product of the probabilities of the outputs on the training cases
  - Assume the different training cases, c, are independent.

$$p(D|W) = \prod_{c} p(d_{c}|W)$$

 Because the log function is monotonic, it does not change where the maxima are. So we can maximize sums of log probabilities

$$\log p(D|W) = \sum \log p(d_c|W)$$

## MAP & ML

- Suppose we completely ignore the prior over weight vectors
  - This is equivalent to giving all possible weight vectors the same prior probability density.
- Then all we have to do is to maximize:

$$\log p(D | W) = \sum \log p(D_c | W)$$

• Maximum likelihood (ML) learning.

 $\log p(W | D) = \log p(W) + \log p(D | W)$ 

 This is called maximum a posteriori (MAP) learning (prior is taken into account)