
What is Machine Learning?

Based on

www.cs.toronto.edu/~hinton

http://www.cs.toronto.edu/~hinton
http://www.cs.toronto.edu/~hinton

What is Machine Learning?

• It is very hard to write programs that solve problems like
recognizing a face.

– We don’t know what program to write because we don’t
know how our brain does it.

– Even if we had a good idea about how to do it, the
program might be horrendously complicated.

• Instead of writing a program by hand, we collect lots of
examples that specify the correct output for a given input.

• A machine learning algorithm then takes these examples
and produces a program that does the job.

– The program produced by the learning algorithm may
look very different from a typical hand-written program. It
may contain millions of numbers.

– If we do it right, the program works for new cases as well
as the ones we trained it on.

A classic example of a task that requires machine

learning: It is very hard to say what makes a 2

Some more examples of tasks that are best

solved by using a learning algorithm

• Recognizing patterns (classification):

– Facial identities or facial expressions

– Handwritten or spoken words

– Medical images

• Prediction (regression):

– Future stock prices or currency exchange rates

Some web-based examples of machine learning

• The web contains a lot of data. Tasks with very big

datasets often use machine learning

– especially if the data is noisy or non-stationary.

• Spam filtering, fraud detection:

– The enemy adapts so we must adapt too.

• Recommendation systems:

– Lots of noisy data. Million dollar prize!

• Information retrieval:

– Find documents or images with similar content.

• Data Visualization:

– Display a huge database in a revealing way

Displaying the structure of a set of documents

using Latent Semantic Analysis (a form of PCA)

Each document is converted

to a vector of word counts.

This vector is then mapped to

two coordinates and displayed

as a colored dot. The colors

represent the hand-labeled

classes.

 When the documents are laid

out in 2-D, the classes are not

used. So we can judge how

good the algorithm is by

seeing if the classes are

separated.

Displaying the structure of a set of documents

using a deep neural network

Types of learning

• Supervised learning (input examples and correct answers
are given)

– Learn to predict output when given an input vector
• Who provides the correct answer?

• Reinforcement learning

– Learn action to maximize payoff (reinforcement signal)
• Not much information in a payoff signal

• Payoff is often delayed

• Unsupervised learning (only input examples, no correct
answers)

– Discover/create an internal representation of the input
e.g. form clusters; extract features

• How do we know if a representation is good?

– Clustering, density estimation, dimensionality reduction

– This is the new frontier of machine learning because
most big datasets do not come with labels.

Machine Learning & Statistics

• A lot of machine learning is just a rediscovery of things
that statisticians already knew. This is often disguised by
differences in terminology:

– Ridge regression = weight-decay

– Fitting = learning

– Held-out data = test data

• But the emphasis is very different:

– A good piece of statistics: Clever proof that a
relatively simple estimation procedure is
asymptotically unbiased.

– A good piece of machine learning: Demonstration that
a complicated algorithm produces impressive results
on a specific task.

• Data-mining: Using very simple machine learning
techniques on very large databases because computers
are too slow to do anything more interesting with ten
billion examples.

Hypothesis Space

• One way to think about a supervised learning machine is as a
device that explores a “hypothesis space”.

– Each setting of the parameters in the machine is a different
hypothesis about the function that maps input vectors to output
vectors.

• The art of supervised machine learning is in:

– Deciding how to represent the inputs and outputs

– Selecting a hypothesis space that is powerful enough to
represent the relationship between inputs and outputs but simple
enough to be searched.

Searching a hypothesis space

• The obvious method is to first formulate a loss (error)

function and then adjust the parameters to minimize the

loss function.

– This allows the optimization to be separated from the

objective function that is being optimized.

• Bayesians do not search for a single set of parameter

values that do well on the loss function.

– They start with a prior distribution over parameter

values and use the training data to compute a

posterior distribution over the whole hypothesis

space.

Some Loss Functions

• Squared difference between actual and target real-
valued outputs.

• Number of classification errors

– Problematic for optimization because the derivative is
not smooth.

• Negative log probability (likelihood) assigned to the
correct answer.

– In some cases it is the same as squared error
(regression with Gaussian output noise)

– In other cases it is very different (classification with
discrete classes needs cross-entropy error)

Generalization

• The real aim of supervised learning is to do well on test
data that is not known during learning.

• Choosing the values for the parameters that minimize
the loss function on the training data is not necessarily
the best policy.

• We want the learning machine to model the true
regularities in the data and to ignore the noise in the
data.

– But the learning machine does not know which
regularities are real and which are accidental quirks of
the particular set of training examples we happen to
pick.

• So how can we be sure that the machine will generalize
correctly to new data?

Trading off the goodness of fit against the

complexity of the model

• It is intuitively obvious that you can only expect a model to

generalize well if it explains the data surprisingly well given

the complexity of the model.

• If the model has as many degrees of freedom as the data, it

can fit the data perfectly but so what?

• There is a lot of theory about how to measure the model

complexity and how to control it to optimize generalization.

A simple example: Fitting a polynomial

• The green curve is the true
function (which is not a
polynomial)

• The data points are uniform in
x but have noise in y.

• We will use a loss function
that measures the squared
error in the prediction of y(x)
from x. The loss for the red
polynomial is the sum of the
squared vertical errors.

from Bishop

Some fits to the data: which is best?
from Bishop

Using a validation set

• Divide the total dataset into three subsets:

– Training data is used for learning the
parameters of the model.

– Validation data is not used of learning but is
used for deciding what type of model and
what amount of regularization works best.

– Test data is used to get a final, unbiased
estimate of how well the network works. We
expect this estimate to be worse than on the
validation data.

• We could then re-divide the total dataset to get
another unbiased estimate of the true error rate
(cross-validation).

The Bayesian framework

• The Bayesian framework assumes that we always

have a prior distribution for everything.

– The prior may be very vague.

– The likelihood term takes into account how

probable the observed data is given the parameters

of the model.

– When we see some data, we combine our prior

distribution with a likelihood term to get a posterior

distribution.

Bayes Theorem







W

WDpWp

Dp

WDpWp
DWp

WDpWpWDpDWpDp

)|()(

)(

)|()(
)|(

)|()(),()|()(

Prior probability of

weight vector W

Posterior probability

of weight vector W

given training data D

Probability of observed

data given W

joint probability
conditional

probability

A cheap trick to avoid computing the

posterior probabilities of all weight vectors

• Suppose we just try to find the most probable
weight vector.

– We can do this by starting with a random
weight vector and then adjusting it in the
direction that improves p(W | D).

• It is easier to work in the log domain. If we want
to minimize a cost we use negative log
probabilities:

)(log)|(log)(log)|(log

)(/)|()()|(

DpWDpWpDWpCost

DpWDpWpDWp





Why we maximize sums of log probs

• We want to maximize the product of the probabilities of
the outputs on the training cases

– Assume the different training cases, c, are
independent.

• Because the log function is monotonic, it does not
change where the maxima are. So we can maximize
sums of log probabilities

)|()|(WdpWDp
c

c

)|(log)|(log WdpWDp
c

c

MAP & ML
• Suppose we completely ignore the prior over

weight vectors

– This is equivalent to giving all possible weight

vectors the same prior probability density.

• Then all we have to do is to maximize:

• Maximum likelihood (ML) learning.

• This is called maximum a posteriori (MAP)

learning (prior is taken into account)

)|(log)|(log WDpWDp
c

c

log (|) log () log (|)p W D p W p D W 

