Machine Learning



Sequential Data

Consider a system which can occupy one of N discrete
states or categories.

X, : state at time t Discrete x, € {s,, s,, ..., S,} or Continue x, € R?
Sequential data of length T: x = {x,, x,, ... ,x;}

We are interested in stochastic systems, in which state
evolution is random

Any joint distribution can be factored into a series of
conditional distributions:

p(X): p(Xl,XZ,...., XT): p(xl)ll[ p(Xt | XO""’Xt—l)

t=2
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Analysis of Sequential Data

e Sequential structure arises in a huge range of
applications
— Repeated measurements of a temporal process
— Online decision making & control
— Text, biological sequences, etc

e Standard machine learning methods are
often difficult to directly apply
— Do not exploit temporal correlations

— Computation & storage requirements typically scale
poorly to realistic applications
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Speech Recognition

* Given an audio
waveform, would like
to robustly extract &
recognize any spoken
words

e Statistical models can
be used to

— Provide greater
robustness to noise

— Adapt to accent of
different speakers

— Learn from training
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Target Tracking

S Minnow:
25,4 kts
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122 30.146 W
Cursor:
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LL: 4719,508 N
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arget:
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NAME: MR6
RNG: 0.5 nm
BRG: 3917
CSE: 174 T
SPD: 8.7 kis
CPA: 1513 yd
TCPA: 00:01:08

SEA: I
TUNE: I
IR: 1
EXP TGT: On

16

Radar-based tracking Visual tracking of
of multiple targets articulated objects

e Estimate motion of targets in 3D world from
indirect, potentially noisy measurements

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML11 (5)




Robot Navigation: SLAM

=I5, Simultaneous Localization and Mapping

. % R
Landmark PSSR ".5
SLAM o\ W < g
|

Estimated
Map

* As robot moves, estimate its
pose & world geometry
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Financial Forecasting

Dow Jones Industrial Average ($INDU) o »

3 years later in

DOW in 1929 A 1932
hit a peak '

2 DOW bortomed

DOW exceeded 1929
peak 25 Years
later in 1954

DAY

There are many
Similarities

twee NASDAQ may not
De HDOW exceed 2000

Chart from 1915-
1937 and _
NASDAQ Chart 1 NASDAQ in

from 1986-2005 B

Both Markets
saw major
increases, major
declines

peak until
~around 2025

How long will
the NASDAQ

The DOW
consolidation
lasted for 25
years

Consolidation
last?

NASDAQ bottomed
3 years later in
2003

2010 2015 2020 2025

e Predict future market behavior from historical data,
news reports, expert opinions, ...
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Biological Sequence Analysis

- Gene X - Gene Y Applications
— —
DNA ', ‘,
1 11 ——E— . o .
oA 1 1 * Classification of
A B - | biological sequences
| &=
Protein N Sj,ji:;:d::' N . . .
¥ 4 * Motif discovery in
Structure @ biosequences
Function A B 7T — 7

* Protein or DNA sequences (sequences of characters
from a discrete alphabet)
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Model Assuming Independence

* Simplest model:

®* Treat as independent
®* Graph without links

States are independent

403 4 4 - 4 —
02

g L | p(X11 Xoyenony XT): p(xl)p(XZ) N p(XT)
|bl eyl zllhl hI e«|9m|

I Bayes' l Theoram I
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Markov Chains

15t order Markov Chains

* Markov property: Next state depends only on previous:

p(Xt’l Xiyeons Xt—l): p(Xt | Xt—l)
e Joint distribution for a sequence of T states:

(% Xy Xo )= p<x1>f; p(x, %)

e Chain of observations:

X1 . l‘iz. X3. )(._1.

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML11 ( 10)




Markov Chains

e Elements of a Markov Chain with K states
X, €18,,5,,....5¢ |
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Markov Chains

e Elements of a Markov Chain with K states
X, €18,,5,,....5¢ |

* initial probabilities

7zj=P(X1=Sj) Zﬂ'j=1
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Markov Chains

e Elements of a Markov Chain with K states
X, €18,,5,,....5¢ |

* initial probabilities

”J'ZP(Xlzsj) Z”j:]-
j=1
* transition probabilities
K
Ajk:P(Xt+1:Sk|Xt:Sj) ;Ajkzl N4

A — [Ajk] j, k — 1, ooy K transition matrix

K x
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 Markov Chain as
Graphical Model

* Directed Graph (DAG) with K nodes equal to states and
edges with weights equal to transition probabilities.

I p. State values at : Markov
particular times properties
nodes edges
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Example (1) of Markov Model

The model, i.e. p(x_ | x_.): A sequence of observations:
u 7
6/7C ZO e I3
1/3 /

x=1{H,H,R,H,H}

P(x, = ) =0.7

p(x) = P(H) P(H|H) P(R|H) P(H]R) P(H|H) =

Plx, =/ )=0.3 = 0.7*6/7*1/7*1/3*6/7
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Example (ll) of Markov Model

ARainRain =0.3 ARainDr =0.7

A

0.2 A

DryRain=
e 2 states: s, = ‘Rain’ kaL s, = ‘Dry’
 Transition Probabilities: P(’Rain’ | ’Rain’)=0.3 )
P(‘Dry’|‘Rain’)=0.7,, P(‘Rain’|‘Dry’)=0.2, P(‘Dry’| ‘Dry’)=0.8

« Initial Probabilities: P(‘Rain’)= ng,, = 0.4, P(‘Dry’)=n,,, =0.6.
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Probability of a sequence

e Using the Markovian property:
P(X :{Xl’ Kpyeees XT}) — P(Xl)P(XZ | Xl)"'P(XT ‘ XT—l)
e Example: X={‘Dry’’Dry’,’Rain’,Rain’}

P({'Drv’,’Dry’,’Rain',Rain'}) =
= P('Dry') P('Dry’ ‘ 'Dry’) P(’Rain' | 'Dry’) P(’Rain’ | ’Rain’) =

= Ty Abryry Abryrain Arainkain= 0-6*0.8%0.2*0.3=288x10
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Estimating the parameters of a Markov Chain

* Input set of N sequences X =(X,, X,,..., Xy)

where X; = {Xil’xiz""’XiTi} and X, € {51,32,....SK}

 Maximum Likelihood (ML) estimators of a MC:

I(x,s):{l X=S5
N T,-1 0 x#S
A - IZ_;; | (X“’SJ’)I (X”“’Sk): N _ obs.frequency(sj — sk)
T -1 oy
’ ZN:'ZI(XWS]) n. obs. visit (s, >#)
=1 t=1

N

2. (xil,sj)
7%1' — =1 Y Relative frequency of using state s; as initial state
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Stationary distribution & Reversibility condition
* Define: pjk(n): P(Xt+n =S [ X = Sj) (pjk(l): Ajk)

p.(n)=P(x, :sk)=ZP(xn =s | X, =sj)P(xn_1 :sj):ZAjkpj(n—l):

o(n)=Ap(h-1)= p(n)=A---Az=A"x
* As n—oo then we have the stationary distribution:
limp(n)=¢
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Stationary distribution & Reversibility condition

* The reversibility condition states:

A Markov Cain with stationary distribution ¢ is
reversible if:
@; A i = @; Aji

for any two states |, j .

Aj

O ..-I:{)(quiﬁbrinpj

A;
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MC of 2" order

 State x, depends on two previous states x,, , , X, ,

X1 . Xa ; X3 ; X4 ;

N
xl )H p (x;ﬁ’
n=I

e Equivalent to a 1t order MC (?)

p(xl ?"XN) — p(xl )p(xi xﬂ—l? x:?—i)
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MC of 2" order

 State x, depends on two previous states x,, , , X, ,

X1 . Xa ; X3 ; X4 ;

N
xl )H p (x;ﬁ’
n=I

e Equivalent to a 1t order MC (?)

o € @ 0

X1 X, Xy X3 X3 Xy Xq X5

p(xl .':"XN) — p(xl )p(xi xﬂ—l > x:?—i)
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Hidden Markov Models - HMMs

* Introduce the notion of hidden states (or hidden variables) that
describe the graphical model that generates the data

* Hidden states are organized to be on a Markovian grid topology

* Every hidden state has its own distribution.

Definition:

A Hidden Markov Model (HMM) is a sequence of random
variables whose distribution depends only on the (hidden)
state of an associated Markov chain.
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Hidden Markov Models - HMMs

e States are latent variables

Latent values
Markov Model

N b H H L L H

b
& U

- ¢ | 2
i d )
3 Poror

Hidden Markov Model Observations

10
C O SEER ] B N I O SR
.HT s # [* 1]-_
—— ~ N )
i | /
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Hidden Markov Models - HMMs

e States are hidden

* For every observation (sequence) there is a hidden
sequence of states

X=X, %0 %} (2=142,, 2,5, 21 |

where Zt e {1, ey K} assuming discrete states

or 1 usestates; at momentt

L. = ]
Z, = (Ztl’ Ligyeeos ZtK) ! {O otherwise

binary vector
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Hidden Markov Models - HMMs

a e e ————— a hidden states
° a _____ ° observations
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Hidden Markov Models - HMMs

4 Z; Z f— ====- 4@ hidden states

y ,
@ @ _____ @ observations

Hidden states

have the Markovian property: Previous state dependence
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Hidden Markov Models - HMMs

a zZ; Z p— ===-- 4@ hidden states

observations
@ @ _____ @

Observation

depends only on the (hidden) state that is visited at each time step
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Parameters of an HMM

* initial state probabilities
K
7 =Plz,=s;)=Plz;=1) X =1
J:
r=(n,,n,, .., ):vector of probabilities

K

(Z )_H( )zlj , 1 initialstates,
P\Z, )= ] Y10 otherwise

j=
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* transition probabilities

Ajk — P(Zt = Sy ‘ Zi 4 :S'): P(Ztk :1‘ Li 1y = )

| ,

K

Transition array A =[A,] Z Ay =1 V]
k=1
K K

Zi 12

p(zt | Zt—l):HH(Ajk)tlj .

j=1 k=1

1o otherwise
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* emission probabilities

Every hidden state j has its own distribution with a
density function p(x | 6;) with parameters 6,

K

p(x12,)=T ] (p(x| 6,

J=1

It depends on the type of data, e.g.
— Gaussian (continuous) p(XIé’,-): N(ﬂj,Zj)

M

— Multinomial (discrete)  p(x|6,)=Mul(p, )= H(grg]j))'um)
m=1

O = {Hj };:1 set of parameters of K distributions
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* |n total, the parameters of an HMM are:
A={x, A O]

e Joint-distribution of (x,z)

p(x, 2| )= p(z]| A)p(x|z,2)=

- bleTote 12| Tl 12)

t=1

Markovian property Independence among
observations
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An example

e 2 states : ‘Low’ and ‘High’
(atmospheric pressure)

e Observations : { ‘Rain’, ‘Dry’ }

eTransition probabilities:
P(‘Low’|‘Low’)=0.3, P(‘High’| ‘Low’)=0.7 ,
P(‘Low’|‘High’)=0.2, P(‘High’ | ‘High’)=0.8

eEmission probabilities:
P(‘Rain’|‘Low’)=0.6 , P(‘Dry’| ‘Low’)=0.4 ,
P(‘Rain’ | ‘High’)=0.4 , P(‘Dry’ | ‘High’)=0.6

i « Initial probabilities:
Rain Dry P(‘Low’)=0.4 , P(‘High’)=0.6

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML11 ( 33)



Probability computation

P({‘Dry’/Rain’} ) =
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Probability computation

e 4 possible sequences (paths) of states:

P({‘Dry’/Rain’} ) =
P({‘Dry’/Rain’}, {'Low’,/Low’}) +
P({‘Dry’/Rain’}, {'Low’,/High’}) +
P({‘Dry’/Rain’}, {‘High’,/Low’}) +
P({‘Dry’/Rain’}, {'High’,/High’})

ormovu (1.x.):

P({‘Dry’/Rain’}, {'Low’,/Low’})=

P({‘Dry’/Rain’} | {'Low’,/Low’}) P({’Low’/Low’}) =
P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low’)
=0.4*0.4*0.6*0.4*0.3
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Problems of HMMs

. Likelihood calculation

. Most probable path

. Parameter estimation

. Making prediction
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[1]. Likelihood calculation

. Likelihood  p(x|A)

* Marginal to all possible paths

p(x| 4)= Zp(x Z|A)= ZZZD(ZM)P(M Z,1)=

T-1 T |
— ( Z )< P Zl)H p(zt+1 | Zt) p(xt | Zt)>
2=\12y,25,...,.27 ) L t=1 t=1 )

e There are K" different paths (huge complexity)
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Forward / Backward

* Dynamic programming algorithm

e Define forward variable

a(z, )= p(x,..., %, z,)
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Forward / Backward

Dynamic programming algorithm
Define forward variable:

a(z, )= p(x,..., %, z,)

Initially a(zl): p(Xv 21): p(zl)p(xl | 21)
Recursively

a(z,)=p(X-- %10 X zt) (XIZ) (% X0 2)

= p(x 12, p(x,, )=p(x12,)> alz,_,)p(z |z,

Zi_q Zi 4
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a(zt—l) — p(Xv o Ky Zt—l)
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(%)
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a(z, )= (X, X g X0 2)=| D alze,)p(z 124 ) | p(x | 2,)
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a(2y)= POt Xy X 21} {z a2 )plass ﬂ G120

(%) (X1
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Likelihood calculation:

p(X‘/l):ZZ p(X, Ly M‘):Za(ZT)
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Going backward .....

Define backward petaBAntni

IB(Zt): p(xt+1"“’XT ‘Zt)

Initially ,B(ZT):l

Recursively
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Going backward .....

Define backward petaBAntni

IB(Zt): p(xt+1"“’XT ‘Zt)

Initially ,B(ZT):l

Recursively — z p(xt+2 """ XT | Zt+1)p(xt+1 | Zt+1)p(zt+1 | Zt):
— Zﬁ(ztﬂ)p(xtﬂ | Zt+1)p(zt+1 | Zt)
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Likelihood calculation:
p(x| A1) Z p(x,z,|A)=

=§p(><\z A)p(z, | 1) Zﬂ(
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* Likelihood of a sequence (l)

p(x|2)=2_ plx. 27 | 4)= 2 a(z;)
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* Likelihood of a sequence (l)

(x| 2)= Y plx.2 1 2)= Y alz)
* Likelihood of a sequence (ll)

| 4)= przl/1 =2 Az)p(z)
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* Likelihood of a sequence (l)

(x| 2)= Y plx.2 1 2)= Y alz)
* Likelihood of a sequence (ll)

ZPXZM =2.Az)p (z,)

* Likelihood of a sequence (lll)

= ; p(x,z, | 1) = ;a(zt )B(z,)
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[2]. Most probable path
Viterbi Algorithm

* Define variable
Max probability among all
Z,)

5(Zt ) = [NaX p(Xl, Soor Xt y paths that visit state z, and

L4 produce sub-sequence x;— X,
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[2]. Most probable path
Viterbi Algorithm

* Define variable
Max probability among all
Z,)

5(Zt ) = [NaX p(Xl, Soor Xt y paths that visit state z, and

L4 produce sub-sequence x;— X,

* Initially 5(z,)=a(z,)
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[2]. Most probable path
Viterbi Algorithm

* Define variable
Max probability among all
Z,)

5(Zt ) = [NaX p(Xl, Soor Xt y paths that visit state z, and

L4 produce sub-sequence x;— X,
* Initially 5(z,)=a(z,)

* RecurSiVEIV 5(Zt): Mmax p(xl""’ X Zt): p(Xt | Zt) Max {5(Zt—1)p(zt | Zt—l)}

Z1—>Zi 4 21 —>Zi 4
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[2]. Most probable path
Viterbi Algorithm

Define variable
Max probability among all
Z,)

5(Zt ) = [NaX p(Xl, Soor Xt y paths that visit state z, and

L4 produce sub-sequence x;— X,
Initially 5(z,)=a(z,)

RecurSiVEIV 5(Zt): Mmax p(xl""’ X Zt): p(Xt | Zt) Max {5(Zt—1)p(zt | Zt—l)}

Finally ZT* = arg max o (ZT ) Most probable final visited state
Z1
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[2]. Most probable path
Viterbi Algorithm

Define variable
Max probability among all
Z,)

5(Zt ) = [NaX p(Xl, Soor Xt y paths that visit state z, and

L4 produce sub-sequence x;— X,
Initially 5(z,)=a(z,)

RecurSiVEIV 5(Zt): Mmax p(xl""’ X Zt): p(Xt | Zt) Max {5(Zt—1)p(zt | Zt—l)}

Z1—>Zi 4 21 —>Zi 4

Finally ZT* = arg max o (ZT ) Most probable final visited state

7

Execute a reverse-time, backtracking procedure and
then picks the maximizing state sequence
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Oom-—-p>p-0n

An example of the Viterbi algorithm
(assume K=4 hidden states — sequence of length T=6)

5(z,)= max p(x,..., %, z)=p(x | z.) max 5(z.,)p(z | z,.,)

L1 —>Zi 4 1 —>2Zi 4

=1 t=2 t=3 TIME

Total number of paths: 4*6=4096; Number of candidate paths in Viterbi=4
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[3]. Parameter estimation of an HMM
(Training an HMM)
 Parameters of an HMM A={m, A, O}

* Useful posterior probabilities

7/(Zt): p(zt |X):

é:(zt’ Zt+1) — p(zt’ Ziq | X) =
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[3]. Parameter estimation of an HMM
(Training an HMM)

 Parameters of an HMM A={m, A, ©}

* Useful posterior probabilities

o blk)_ a(z)plz)
7/(t) p(tl) p(x) Za()()

7 2 Y=nblz 7. [x :p(X,Zt,ZHl):
E(2,,201)= P2, 21 | X) o(x)
a(z)p(z0 1 2)P(%y 1 200)B(2,)

YAz )p(E el 2P 21 )B(E )

Z Z' t+1
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— Expectation of the number of visiting (frequency)
state s,

— Expectation of the number of transitions (frequency)
from state s; to state s,

T-1 T-1

ﬁjk :Zé:(zt — j’zt+1 :k)zz p(zt — j’zt+1 =k|X)
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[3.1] Baum-Welch algorithm

Update rules for model parameters

Probability of visiting state k at first time, i.e.
(in statistics) relative frequency of visiting state k

Probability of transition from state j to state k, i.e.
(in statistics) relative frequency of making j-> k
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[3.1] Baum-Welch algorithm

Update rules for model parameters

(new)
7y = 7/(21 = )
T-1
Zi(zt:J’ZtJrl_k) A
A (new) _ t=1 — ik
Jk K T-1 K i
ZZ?(Zt_J’Ztﬂ:m) anm
m=1 t=1 m=1
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[3.1] Baum-Welch algorithm

Update rules for model parameters (discrete data)

M

I(x,m)
(new) p(ij): MUI(QJ'):H(Qjm)
ﬂ-k :7/(212 ) " 1 x=m
I(x,m):{o X% m
T-1
g(zt:j’ztﬂ_k) A
A (new) — t=1 — jk
jk K T-1 K
Z é:(zt = J Zt+1 = m) Zﬁjm
m=1 t=1 m=1
T
Z7(Zt = J)I(Xt m)
0. (new) _ t=1
jm T
ZV(Zt = J)
t=1
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[3.1] Baum-Welch algorithm

Update rules for model parameters (continuous-normal data)

ﬂ’-k(neW) (Z . k) p(X|(9j)= N(yj,Zj)
T-1 _
5(2 — J’ Zt+l k) A
A (new) _ t=1 — ik
jk K T-1 _ K i
Z é:(Z — J’Zt+1_m) anm
m=1 t=1 m=1
T T
S S k><x x S
new t

P
~_
H_N
|
:
M—|
N
N
|
L

—
I
[HEY
—
Il
[EEY
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[3.2] Use EM algorithm

Likelihood function 4= {7?1 A @}

p(x| 1) przm Z{ p(z, MHp 2 | Z,, A)Hp(xu z}

p(Zl/\) p(Xlz A)

where p(zl):ﬁ(ﬂ-j )le
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Applying EM algorithm for parameter estimation of HMM

Expectation of complete data (Q-function)

K T-1 K K T K
=E| >z, Inm +> > Y 7,z INA+D D 7, Inp(x |6)| =
k=1 t=1 j=1 k=1 t=1 k=1 01d)
K T-1 K K T K
Z E[Zlk ],1(0"1) Inﬂ'k + Jyy E[Z Zt+1k] old) In Ajk +ZZ E[Ztk ]/1(0'0') In p(xt |‘9k)
k=1 t=1 j=1 k=1 t=1 k=1
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Applying EM algorithm for parameter estimation of HMM

Expectation of complete data (Q-function)

K T1 K K T K
=E| > z, Iz +>. > > 2z INA+D D 7, In p(x, |6,) =

k=1 t=1 j=1 k=1 t=1 k=1 J(01d)
K T1 K K T K
Z E[Zlk ]/1(0'0') Inz +> > > E[th ik :L(old) In A + ZZ E[Ztk ]/1(0“” In p(xt | Hk)
=1 t=1 j=L k=1 t=1 k=1

Q(ﬂ,,/l(OId))—

& (old) Ce (old) L (old)

27/1k In7z, + Jylygjk InAjk+ZZ7/tk In p(Xt|‘9k)

=1 4 t=1 j=1 k=1 4 t=1 k=1 4
y(z, =k)=p(z, =1) £z =24 =K) y(z. =k)
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Applying EM algorithm for training HMM (cont.)

E-step: Calculation of posterior (old) values of last step

a(OId)(Z . k),B(OId (Z _ k)

Zaold (Z —J old( J)

= g(om)(zt =),Zy = k):
a(OId)(Zt = j)Ajk(OId)p(Xt |‘9k(0|d)):8(0|d)(zt = k)

> a2, ~m)A, "ol 16,5z, ~n)

1 n=1

= y(z, =k | x)=

M~

3
Il
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Applying EM algorithm for training HMM (cont.)

M-step : maximization of Q-function

T-1 K K T K
old old
maX{Z%k Nz, + Zijk( )InAjk"'ZZ?/tk( In p(xtlek)}
{7,A,0} =10 =18k=1 t=1 k=1
K K
st. > 7,=1 Vj=1...,K > A, =1 constraints
k=1 k=1
Update rules:
T-1
é;(old) T . T
_,, (old) 5 _ tzﬂ: 4 27/5 % Zﬂgom (X _ﬂj)(xt_/‘j)T
T = Y1k ik = K Tz—if( ) M= o =
o (old (old)
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[4]. Making predictions with HMM

Calculating:  P(Xp,, | X)= P(Xp.y | X Xpsen s X )
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[4]. Making predictions with HMM

Calculating:  P(Xp,, | X)= P(Xp.y | X Xpsen s X )

T+1 | X Z p T+11 T+1 | X Z p T+1 | ZT+1 T+1 | X)

It It
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[4]. Making predictions with HMM

Calculating:  P(Xp,, | X)= P(Xp.y | X Xpsen s X )

T+1 | X Z p T+11 T+1 | X Z p T+1 | ZT+1 T+1 | X)

It It

_Zp T+1|ZT+1Zp L1 10 Ly |X

It
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[4]. Making predictions with HMM

Calculating: p(XT+1 ‘ X) = p(XT+1 ‘ X, X0,

T+1 | X Z p T+11 T+1 | X Z p T+1 | ZT+1 T+1 | X)

It It

_;p T+1|ZT+1Zp T+11 L7 |X /V(ZT)
_Zp T+1|ZT+1Zp T+1|Z Z |X)
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[4]. Making predictions with HMM

Calculating: p(XT+1 ‘ X) = p(XT+1 ‘ X, X0,

T+1 | X Z p T+11 T+1 | X Z p T+1 | ZT+1 T+1 | X)

It It

_;p T+1|ZT+1Zp T+11 L7 |X /V(ZT)
—zp T+1|ZT+1Zp T+1|Z pZTlx)

It

_Zp T+1|ZT+lzp T+1|Z
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[4]. Making predictions with HMM

Calculating:  P(Xp,, | X)= P(Xp.y | X Xpsen s X )

T+1|X Zp T+17 T+1|X Zp T+1|ZT+1 T+1|X)
Z1.1 I141

—;p T+1|ZT+1Zp T+10 L7 |X V(ZT)

/

—Zp T+1|ZT+1Zp T+1|Z Z |X)

It

_Zp T+1|ZT+lzp T+1|Z

p(XT+1 | X) )Z PUXr 4 | ZT+1)Z p( Zr 4|2 ) ( )

14
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[4]. Making prediction with HMM

(T+1|X Zp T+1|ZT+1Zp T+1|Z

ZT +1

* Appropriate for real time applications. Rapid
computation.
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[4]. Making prediction with HMM

(T+1|X Zp T+1|ZT+1Zp T+1|Z ( )

ZT +1

* Appropriate for real time applications. Rapid
computation.

 Prediction distribution can be seen as a mixture model
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[4]. Making prediction with HMM

( T+1 | X Z p T+1 | ZT+1 p(ZT+l | ZT )a(ZT)

ZT +1

* Appropriate for real time applications. Rapid
computation.

 Prediction distribution can be seen as a mixture model
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[4]. Making prediction with HMM

(T+1|X Zp T+1|ZT+1Zp T+1|Z )

ZT +1

* Appropriate for real time applications. Rapid
computation.

 Prediction distribution can be seen as a mixture model

p T+1‘X Zﬂ' T+1‘j)
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Kalman Filters

* Linear state space models

e Z, Z, — ———-—- {ZD hidden states
@ @ _____ @ observations

» States & Observations are continuous and jointly

Gaussian variables
@
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Kalman Filters

z, = Az, +W, w, ~ N(0,T’)
X, =Cz, +V, v, ~ N(0,%)
Z, = Ly +U u~N(0,v,)

A
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Kalman Filters

2, =Bz, +W, w, ~ N(0,T’)
x, =Cz, +V, v, ~ N(0,%)

2, =) +u u~ N(0,v,)

* Set of parameters: O={A, I, C, 2, u, v, }

A
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Kalman Filters

z, = Az, +W, w, ~ N(0,T)
X, =Cz, +V, v, ~ N(0,%)
Z, = Ly +U u~N(0,v,)

* Set of parameters: O={A, I, C, 2, u, v, }

: p( ): (/um ) h
p(z |2,,)=N(Az,,,T)

plxlz)=NezE)
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e Posterior distribution of state

A2 V= o(7 1% x Pz, x)  alz)
(t) p(tl f9eoss t) p(Xl,...,Xt) p(Xl,...,Xt)

* Posterior of observation
C, = P(X | X,..., X ;)

Join: p(x,...,%)=CC,--C

» forward:a(z, )= p(x,...,X,Z2,)

:j p(Xy,. . X gy 2oy )P(Xs 2o | 2, )dZ,

a(z,)= p(x 12.)| az.1)p(z | 2., )z,

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML11 ( 85)




* By combining the relations:

a(z.)=p(x 1z.)| a(zt )p(z, 12,4 )dz,
e we obtain:

ca(z,)= (xt\Z)I )o(z, | 2., )z, ,
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 Since all distributions are Gaussians

a(Zt): p(xt | Z, )j a(zt—l)p(zt | Zt—l)dzt—l is Gaussian

The distribution of state’s prediction is also Gaussian:

chAl(zt): p(zt | le'th):"': N(lut’vt)

 Therefore, the recursion equation becomes:

ca(z,)=p(x |2)|a(z.,)p(z ] 2.4 )dz

2
CtN(/ut’V) N CZ Z _[N 15V, 1)N(Azt—1’r)dzt—1
/N

are already known
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* Following the Gaussian properties we obtain:

,th — A:ut—l T Kt (Xt - CAlut—l) Prediction (posterior)
of state
Vi=hR.-KCFP,

Ct — N (Xt ‘ C A /ut—11 CPt—lcT 4+ Z) Prediction (posterior)

of observation

Kt — Pt—lCT (CP’[—lCT —+ Z)_l Kalman gain matrix
P,=T+AV_A'
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2= Az, +W, w, ~N(0,T)
* Interpretation x =Cz,+v, v ~N(0,3)

Z, =ty +U U~N(0,V0)
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2= Az, +W, w, ~N(0,T)
* Interpretation x =Cz,+v, v ~N(0,3)

Z, =ty +U U~N(O,V0)
e [1]. Make prediction of next observation )A(t

¢, =N(x |CAz_,,CP_C" +3)
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2= Az, +W, w, ~N(0,T)
* Interpretation x =Cz,+v, v ~N(0,3)

Z, =ty +U U~N(0,V0)
e [1]. Make prediction of next observation )A(t

¢, =N(x |CAz_,,CP_C" +3)

e [2]. After obtaining the observatten, making correction
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Metropolis sampling nickmetropotis, 1653

Generate samples from a distribution p(x)

Transformation method

Rejection method

Metropolis method
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Metropolis sampling nickmetropotis, 1653

Nick Metropolis (1915-99): Greek-American physicist ‘

Suppose we want to generate samples from p(x).

Idea: Create a Markov Chain such that p(x) to be its
stationary distribution.

Thus, after reaching the stationary state, every
movement we make is a sample from p(x).
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Metropolis sampling nickmetropotis, 1653

Start from an initial state x\©) and generate a sequence of
transitions {x(@  x(1) - x{®) x(t+1) = 1

Use transition function g(y|x®) move into a new state y.
Assumption: function g(y|x) is symmetric.
Take the likelihood ratio a(x,y) = p(y)/p(x)

If a(x,y) > 1 =>accepty ,i.e. x# =y

else if a(x,y) < 1 accept y with probability a(x,y) and
reject it with probability (1-a(x,y)).

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML11 ( 94 )




Metropolis sampling nickmetropotis, 1653

* In general, we accept a new state with probability:

alx,y)=min M |
x.y) {D(X)’l

J

'

* Thus, we generate a sequence of states with increased
probability:

p(x(o))< p(x(l))< p(x(z))<...< p(x(t))< p(x(”l))< p(x(t+2))<
CYNC YY)

O )@ @ ) ) 2)

burn-in period ‘ samples from p(x)
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Metropolis-Hastings, 17

* Generalization of Metropolis.

* Cancellation of the assumption of symmetric transition
function, i.e. q(y|x)=q(x|y).

* Probability of accepting a new state:

axIy)p(y) ,
Ly [x)p(x) "

a(x, y)=min-
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Metropolis-Hastings, 17

* Transition Probability

P(x y)=a(y|x)a(x,y)= min{qm y)%,q(y | x)}

* Respectively
P(y = x)=q(x| y)aly, x)= min{q(yl x)%,q(xl y)}

 Then, p(x) is stationary distribution since:

p(x)P(x = y)= p(y)P(y - x)
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