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• Consider a system which can occupy one of N discrete 
states  or categories. 

• xt : state at time t Discrete xt  {s1, s2, …, sK} or Continue xt  Rd 

• Sequential data of length T: x = {x1, x2, … ,xT}  

• We are interested in stochastic systems, in which state 
evolution is random 

• Any joint distribution can be factored into a series of 
conditional distributions: 

 

 

Sequential Data  
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Analysis of Sequential Data 

• Sequential structure arises in a huge range of 
applications 
– Repeated measurements of a temporal process 
– Online decision making & control 
– Text, biological sequences, etc 
 

• Standard machine learning methods are 
often difficult to directly apply 
– Do not exploit temporal correlations 
– Computation & storage requirements typically scale 

poorly to realistic applications 
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Speech Recognition 
• Given an audio 

waveform, would like 
to robustly extract & 
recognize any spoken 
words 

• Statistical models can 
be used to 
– Provide greater 

robustness to noise 

– Adapt to accent of 
different speakers 

– Learn from training 
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Target Tracking 

Radar-based tracking 
of multiple targets 

Visual tracking of 
articulated objects 

 

• Estimate motion of targets in 3D world from 
indirect, potentially noisy measurements 
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Robot Navigation: SLAM 
Simultaneous Localization and Mapping 

CAD Map 

Estimated 
Map 

Landmark 
SLAM 

• As robot moves, estimate its 
pose & world geometry 
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Financial Forecasting 

• Predict future market behavior from historical data, 
news reports, expert opinions, … 
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Biological Sequence Analysis 

• Protein or DNA sequences (sequences of characters 
from a discrete alphabet) 

Applications 

 

• Classification of 
biological sequences 

 

• Motif discovery in 
biosequences 
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States are independent 
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1st order Markov Chains 

• Markov property: Next state depends only on previous: 

 

 
 

• Joint distribution for a sequence of T states: 

 

 

• Chain of observations: 
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Markov Chains 
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• Elements of a Markov Chain with K states 

 

Markov Chains 

 Kt sssx .,, 21 
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• Elements of a Markov Chain with K states 

 

• initial probabilities 

 

 

 

Markov Chains 
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• Elements of a Markov Chain with K states 

 

• initial probabilities 

 

 

• transition probabilities 

Markov Chains 
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• Markov Chain as  

 Graphical Model 

 

 

 

 

 

• Directed Graph (DAG) with K nodes equal to states and 
edges with weights equal to transition probabilities. 

nodes 

state values at 
particular times 

edges 

Markov 
properties 
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p(x) = P(H) P(H|H) P(R|H) P(H|R) P(H|H) =  
        = 0.7*6/7*1/7*1/3*6/7  

Example (I) of Markov Model 

 HHRHHx ,,,,

1/7 

6/7 

1/3 

2/3 

P(x1  =             ) = 0.7 

P(x1  =             ) = 0.3 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML11 ( 15 ) 



Rain Dry 

ARainDry = 0.7 ARainRain = 0.3 

ADryRain = 0.2 ADryDry = 0.8 

• 2 states: s1 = ‘Rain’ και s2 = ‘Dry’ 

• Transition Probabilities: P(‘Rain’|‘Rain’)=0.3 , 

P(‘Dry’|‘Rain’)=0.7 , P(‘Rain’|‘Dry’)=0.2, P(‘Dry’|‘Dry’)=0.8 

• Initial Probabilities: P(‘Rain’)= πRain = 0.4 , P(‘Dry’)=πDry =0.6 . 

Example (II) of Markov Model 
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• Using the Markovian property: 
 
 
 
 

• Example:  X={‘Dry’,’Dry’,’Rain’,Rain’} 
  

P({‘Dry’,’Dry’,’Rain’,Rain’} ) =  

= P(‘Dry’) P(‘Dry’|’Dry’) P(‘Rain’|’Dry’) P(‘Rain’|’Rain’) =  

= πDry ADryDry ADryRain ARainRain= 0.6*0.8*0.2*0.3=288x10-4  

Probability of a sequence 

)|()|()(}),,,{( 112121  TTT xxPxxPxPxxxxP 
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• Input set of N sequences 

 

 

• Maximum Likelihood (ML) estimators of a MC: 

Estimating the parameters of a Markov Chain 
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• Define: 

 

 

 

 

• As n then we have the stationary distribution: 

 

 

 it holds:  

Stationary distribution & Reversibility condition 
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• The reversibility condition states: 
  

 A Markov Cain with stationary distribution φ is 
reversible if: 

  

 

 for any two states i, j .  

Stationary distribution & Reversibility condition 
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MC of 2nd order 

• State xn depends on two previous states xn-1 , xn-2 

 

 

 

 

 

• Equivalent to a 1st order MC (?) 
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MC of 2nd order 

• State xn depends on two previous states xn-1 , xn-2 

 

 

 

 

 

• Equivalent to a 1st order MC (?) 

x1 x2 x2 x3 x3 x4 x4 x5 
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• Introduce the notion of hidden states (or hidden variables) that 
describe the graphical model that generates the data 

• Hidden states are organized to be on a Markovian grid topology 

 

 
• Every hidden state has its own distribution. 

Definition:  

Hidden Markov Models - HMMs 

A Hidden Markov Model (HMM) is a sequence of random 
variables whose distribution depends only on the (hidden) 
state of an associated Markov chain.  
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• States are latent variables 

 

 

Hidden Markov Models - HMMs 
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• States are hidden 

• For every observation (sequence) there is a hidden 
sequence of states   

    

  

 where 

 

Hidden Markov Models - HMMs 
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Hidden Markov Models - HMMs 

x1 x2 xT 

hidden states 

observations 

z0 z1 z2 zT 
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Hidden Markov Models - HMMs 

z0 z1 z2 zT 

Hidden states  
 
have the Markovian property: Previous state dependence 

x1 x2 xT 

hidden states 

observations 
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Hidden Markov Models - HMMs 

z0 z1 z2 zT 

Observation  
 
depends only on the (hidden) state that is visited at each time step 

x1 x2 xT observations 

hidden states 
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• initial state probabilities 

     

 

 π = (π1 , π2  , … ,πK ) : vector of probabilities 
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• transition probabilities 

     

 

     

 Transition array   Α = [Αjk]   

  

   1|1| ,11   kttkjtktjk zzPszszPA

jA
K

k

jk 


    1
1

   
 




K

j

K

k

zz

jktt
ktjtAzzp

1 1

1
,,1|






otherwise

tmomentatsstate
z

j

tj
0

    1

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML11 ( 30 ) 



• emission probabilities 

 Every hidden state j has its own distribution with a 
density function p(x | θj ) with parameters θj  

 

     
 

 

     It depends on the type of data, e.g. 

– Gaussian (continuous)  

– Multinomial (discrete) 

– …… 
 

           set of parameters of Κ distributions 
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• In total, the parameters of an HMM are: 

 

 

• Joint-distribution of (x,z) 
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Markovian property Independence among  
observations 
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Low High 

0.7 0.3 

0.2 0.8 

Dry Rain 

0.6 0.6 
0.4 0.4 

An example 

• 2 states : ‘Low’ and ‘High’ 
(atmospheric pressure) 
 
• Observations : { ‘Rain’ , ‘Dry’ } 

 
•Transition probabilities: 
P(‘Low’|‘Low’)=0.3 , P(‘High’|‘Low’)=0.7 , 
P(‘Low’|‘High’)=0.2, P(‘High’|‘High’)=0.8 
  

•Emission probabilities: 
P(‘Rain’|‘Low’)=0.6 , P(‘Dry’|‘Low’)=0.4 , 
P(‘Rain’|‘High’)=0.4 , P(‘Dry’|‘High’)=0.6  

 

• Initial probabilities:  
P(‘Low’)=0.4 , P(‘High’)=0.6  
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 P({‘Dry’,’Rain’} ) =    

Probability computation 
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• 4 possible sequences (paths) of states: 
  

 P({‘Dry’,’Rain’} ) =    
P({‘Dry’,’Rain’} , {‘Low’,’Low’}) +     
P({‘Dry’,’Rain’} , {‘Low’,’High’}) +   
P({‘Dry’,’Rain’} , {‘High’,’Low’}) +     
P({‘Dry’,’Rain’} , {‘High’,’High’})  
 

όπου (π.χ.):  
P({‘Dry’,’Rain’} , {‘Low’,’Low’})=  
P({‘Dry’,’Rain’} | {‘Low’,’Low’})  P({‘Low’,’Low’}) =  
P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low’) 
= 0.4*0.4*0.6*0.4*0.3 

Probability computation 
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1. Likelihood calculation 
 

 

2. Most probable path 
 

 

3. Parameter estimation 
 

 

4. Making prediction 

Problems of HMMs 
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• Likelihood 
 

 

• Marginal to all possible paths 

 

 

 

 

 

 

• There are KT different paths (huge complexity) 

[1]. Likelihood calculation 
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• Dynamic programming algorithm 

• Define forward variable 
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Forward / Backward 
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• Dynamic programming algorithm 

• Define forward variable: 
 

 

 

 

• Initially   
 

• Recursively 
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Likelihood calculation: 
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• Going backward ….. 
 

• Define backward μεταβλητή 
 

 

 

 

 

• Initially  

 

 

• Recursively 
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• Going backward ….. 
 

• Define backward μεταβλητή 
 

 

 

 

 

• Initially  

 

 

• Recursively 
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Likelihood calculation: 
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• Likelihood of a sequence (I) 
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• Likelihood of a sequence (I) 

 

 

• Likelihood of a sequence (II) 
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• Likelihood of a sequence (I) 

 

 

• Likelihood of a sequence (II) 

 

 
 

• Likelihood of a sequence (III) 
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Viterbi Algorithm 

• Define variable 
 

 

 

 

[2]. Most probable path 
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Max probability among all 
paths that visit state zt and 
produce sub-sequence x1 xt 
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Viterbi Algorithm 

• Define variable 
 

 

 

 

• Initially   
 

• Recursively 
 

• Finally 
 

• Execute a reverse-time, backtracking procedure then 
picks the maximizing state sequence 

[2]. Most probable path 
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Viterbi Algorithm 

• Define variable 
 

 

 

 

• Initially   
 

• Recursively 
 

• Finally 
 

• Execute a reverse-time, backtracking procedure then 
picks the maximizing state sequence 

[2]. Most probable path 
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Viterbi Algorithm 

• Define variable 
 

 

 

 

• Initially   
 

• Recursively 
 

• Finally 
 

• Execute a reverse-time, backtracking procedure then 
picks the maximizing state sequence 

[2]. Most probable path 
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Viterbi Algorithm 

• Define variable 
 

 

 

 

• Initially   
 

• Recursively 
 

• Finally 
 

• Execute a reverse-time, backtracking procedure and 
then picks the maximizing state sequence 

[2]. Most probable path 
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Most probable final visited state 

Max probability among all 
paths that visit state zt and 
produce sub-sequence x1 xt 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML11 ( 57 ) 



An example of the Viterbi algorithm  
(assume K=4 hidden states – sequence of length T=6) 
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• Parameters of an HMM λ={π, Α, Θ} 
 

• Useful posterior probabilities 

[3]. Parameter estimation of an HMM  
(Training an HMM) 
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• Parameters of an HMM λ={π, Α, Θ} 
 

• Useful posterior probabilities 
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[3]. Parameter estimation of an HMM  
(Training an HMM) 
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– Expectation of the number of visiting (frequency) 
state sk 

 

 

 
 

 

– Expectation of the number of transitions (frequency) 
from state sj to state sk 
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Update rules for model parameters  

[3.1] Baum-Welch algorithm 
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Probability of visiting state k at first time, i.e. 
(in statistics) relative frequency of visiting state k 

Probability of transition from state j to state k, i.e. 
(in statistics) relative frequency of making j-> k 
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Update rules for model parameters  

[3.1] Baum-Welch algorithm 
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Update rules for model parameters (discrete data) 

[3.1] Baum-Welch algorithm 
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Update rules for model parameters (continuous-normal data) 
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[3.1] Baum-Welch algorithm 
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Likelihood function 

 

 

 

where  

[3.2] Use EM algorithm 
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p(z|λ) p(x|z,λ) 



Applying EM algorithm for parameter estimation of HMM 

 

Expectation of complete data (Q-function) 
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Applying EM algorithm for parameter estimation of HMM 

 

Expectation of complete data (Q-function) 
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Applying EM algorithm for training HMM (cont.) 
 

E-step: Calculation of posterior (old) values of last step 
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Applying EM algorithm for training HMM (cont.) 
 

M-step : maximization of Q-function 

 

 

 

 
 

Update rules: 

 

       








 


   

1

1 1 1 111

1

,,

|lnlnlnmax
T

t

K

j

T

t

K

k

kt

old

tk

K

k

jk

old

jk

K

k

k

old

k xpA 


1    ,,1      1  ..
11

 


K

k

jk

K

k

k AKjts  constraints 

 old

kk 1 

 

 













K

k

T

t

old

jk

T

t

old

jk

jkA

1'

1

1

'

1

1



  

 







T

t

old

j

T

t

t

old

j

j

x

1

1







   

 











T

t

old

k

T

t

T

jtjt

old

k

k

xx

1

1





Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML11 ( 70 ) 



Calculating: 

[4]. Making predictions with HMM 
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Calculating:    TTT xxxxpxp ,,,|| 2111  x
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[4]. Making predictions with HMM 



Calculating:    TTT xxxxpxp ,,,|| 2111  x
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[4]. Making predictions with HMM 



Calculating:    TTT xxxxpxp ,,,|| 2111  x
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[4]. Making predictions with HMM 



Calculating:    TTT xxxxpxp ,,,|| 2111  x
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[4]. Making predictions with HMM 



Calculating:    TTT xxxxpxp ,,,|| 2111  x
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[4]. Making predictions with HMM 



• Appropriate for real time applications. Rapid 
computation. 
 

[4]. Making prediction with HMM 
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• Appropriate for real time applications. Rapid 
computation. 
 

• Prediction distribution can be seen as a mixture model 

[4]. Making prediction with HMM 
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• Appropriate for real time applications. Rapid 
computation. 
 

• Prediction distribution can be seen as a mixture model 

[4]. Making prediction with HMM 
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• Appropriate for real time applications. Rapid 
computation. 
 

• Prediction distribution can be seen as a mixture model 

[4]. Making prediction with HMM 
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• Linear state space models 
 

 

 

 

 

 

• States & Observations are continuous and jointly 
Gaussian variables 
 

Kalman Filters 
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• Set of parameters: Θ={ Α, Γ, C, Σ, μ0, v0 } 
 

Kalman Filters 
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• Set of parameters: Θ={ Α, Γ, C, Σ, μ0, v0 } 
 

Kalman Filters 
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• Posterior distribution of state 

 

 
 

• Posterior of observation 

  

 

 

• forward: 
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forward  
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Join : 



• By combining the relations: 
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• Since all distributions are Gaussians 

 

 The distribution of state’s prediction is also Gaussian:  

 

 

• Therefore, the recursion equation becomes: 
 

     ttttt VNxxzpza ,,,|ˆ
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are already known 



• Following the Gaussian properties we obtain:  
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 Kalman gain matrix 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML11 ( 88 ) 

  

T

tttt CCPCAxNc 11,|  Prediction (posterior) 
of observation 

Prediction (posterior)  
of  state 



• Interpretation  

 

• [1]. Make prediction of next observation 

 

 

• [2]. After obtaining the observation, making correction 
 

 11   ttttt CAxKA 
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• Interpretation  

 

• [1]. Make prediction of next observation 

 

 

• [2]. After obtaining the observation, making correction 
 

 11   ttttt CAxKA 
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• Interpretation  

 

• [1]. Make prediction of next observation 

 

 

• [2]. After obtaining the observation, making correction 
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• Generate samples from a distribution p(x) 

 

• Transformation method 

 

• Rejection method 

 

• Metropolis method 
 

Metropolis sampling Nick Metropolis, 1953 
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• Nick Metropolis (1915-99): Greek-American physicist  

 

• Suppose we want to generate samples from p(x). 

 

• Idea: Create a Markov Chain such that p(x) to be its 
stationary distribution. 

 

• Thus, after reaching the stationary state, every 
movement we make is a sample from p(x). 

 
 

Metropolis sampling Nick Metropolis, 1953 
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• Start from an initial state x(0) and generate a sequence of 
transitions {x(0) , x(1) , ..., x(t) , x(t+1) , … }. 
 

• Use transition function q(y|x(t)) move into a new state y. 
 

• Assumption: function q(y|x) is symmetric. 
 

• Take the likelihood ratio a(x,y) = p(y)/p(x) 
 

• If a(x,y) > 1 => accept y ,i.e. x(t+1) = y 

 else if a(x,y) < 1 accept y with probability a(x,y) and 
reject it with probability (1-a(x,y)).  

 
 

Metropolis sampling Nick Metropolis, 1953 
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• In general, we accept a new state with probability: 
 

 

 

 

 

 

 

• Thus, we generate a sequence of states with increased 
probability: 

Metropolis sampling Nick Metropolis, 1953 
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burn-in period samples from p(x) 



• Generalization of Metropolis.  
 

• Cancellation of the assumption of symmetric transition 
function, i.e. q(y|x)q(x|y). 
 

• Probability of accepting a new state: 

 

 
 

Metropolis-Hastings, 1970 
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• Transition Probability 

 

 

• Respectively  

 

 

• Then, p(x) is stationary distribution since: 

Metropolis-Hastings, 1970 
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