
Machine Learning 

Support Vector Machines 
SVM 

 

Lesson 6 



Data Classification problem 
 

Training set: 
 

– xi : input data sample 

– yi  {1, …, K}: class or label of input 
 

• Target: Construct function    
 

 

 

• Prediction of class for any unknown input 
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Nearest Neighbor classifier 

• The simplest classification method 

• Assumption: data belongs to the same 
category are neighbors 

• Classification rule: Classify according to the 
neighbor(s) 
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Nearest Neighbor Classifier 

Classification 
 

• Find the nearest neighbor   

 (according to a distance function)  

  

 
• Class of unknown        is similar to its neighbor  

  n
Nn

m xxdistx ,min: *

,,1

*x

myy *

mx

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML6 ( 4 ) 



Extension to k-NN  
 

• Find k>1 neighbors 

• Classify according to the class majority 
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• Voronoi diagram 
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• Κ=2 classes Ω1 , Ω2  

• Target: Construction of a hyperplane f(x,w) between 
data of 2 classes  

• Decision boundaries: 

 

 

 

 

• w are the unknown parameters  
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• f(x) linear function: 

x1 

x2 

wT x + w0 < 0 

wT x + w0 > 0 

 Define a separating 
hyperplane between two 
classes 

w 
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• Question:  

 Which is the optimum 
hyperplane that separates 
better two classes?  

x1 

x2 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML6 ( 10 ) 



x1 

x2 • Question:  

 Which is the optimum 
hyperplane that separates 
better two classes?  
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x1 

x2 • Question:  

 Which is the optimum 
hyperplane that separates 
better two classes?  
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x1 

x2 

 Infinite number of 
solutions! 

• Question:  

 Which is the optimum 
hyperplane that separates 
better two classes?  
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x1 

x2 

Solution: Marginal Maximization 

[Boser, Guyon, Vapnik ’92], 
[Cortes & Vapnik ’95] 
 

 The optimal separating 
hyperplane is the one that 
gives the maximum 
margin width  
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 Definition 1: Margin is the 
minimum distance of N training 
samples to the hyperplane 

x1 

x2 

min distance 

Marginal Maximization 
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 Definition 2: Margin is the 
maximum width of boundary 
around the separating 
hyperplane without covering 
any sample 

x1 

x2  Definition 1: Margin is the 
minimum distance of N training 
samples to the hyperplane 

Marginal Maximization 

max width 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML6 ( 16 ) 



 Why is the optimum solution? 

Margin 

x1 

x2 

 Definition 2: Margin is the 
maximum width of boundary 
around the separating 
hyperplane without covering 
any sample 

 Definition 1: Margin is the 
minimum distance of N training 
samples to the hyperplane 

Marginal Maximization 
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“safe zone” 
 Solution: Find the 

hyperplane that 
maximizes the margin 
between two classes. 

 This will minimize the 
risk of classifier’s 
decision. 

 Also, it will increase the 
generalization of 
classifier (Vapnick, 1963) 

Margin 

x1 

x2 

Marginal Maximization 
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• Distance of any point xi 
 

 

 
 

 

 

• Margin: 
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xi 

wTx + w0 = 0   
 

w

wxwy

w

wxw
xr i

T

ii

T

i
00 






 

  0

0

min
2

2minmargin

wxwy
w

w

wxwy

i

T

i
x

i

T

i

x

i

i













 



Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML6 ( 19 ) 



Marginal Maximization Problem 
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Marginal Maximization Problem 

 

 

 

• Solution: Use a scaling factor k:  
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Marginal Maximization Problem 

 

 

 

• Solution: Use a scaling factor k:  
 

 

 

• Thus margin becomes: 
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• Therefore: 
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s.t. 
 

Quadratic Optimization Problem: minimize a quadratic 
function subject to a set of linear inequality constraints 

The objective function 
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 Training is formulated as an optimization problem 

Dual problem reduces computational complexity 

Kernel trick is used to reduce computation 

 

Determination of the model parameters corresponds to 
a convex optimization problem.  

Solution is straightforward (local  solution is the global 
optimum) 

 

Makes use of Lagrange multipliers 

 

SVM Training Methodology 
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 Optimization problem with linear inequality constraints   
 
 

Lagrange function: 
 

 

 Karush-Khun-Tucker (KKT) conditions: 

Joseph-Louis Lagrange (1736-1813) 
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• Minimization Problem: 

 

 
 

• Lagrange function: 

 

 

        

       

  

  

Solving the Optimization Problem 
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Dual Optimization Problem 
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Prime problem     
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  s.t. 

Prime problem 

Dual problem 
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Important Remarks 

1. The Prime problem has d+1 unknown parameters that 
must be tuned. These are the linear coefficients {w, w0}, 
where d is the data dimension. 

  

 The Dual problem has N unknown parameters which are 
the Lagrange multipliers { ai  i=1,…, N}, where N is the 
number of training samples. 

 

 This is valuable and convenient for multi-dimensional data, 
where d>>N,  since the dual search space is significantly 
lower in comparison with the prime search space. 
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2. The decision rule for choosing the class of an 
unknown sample x becomes: 

  

 

 

 

  

 which is a linear combination of dot products of x 
with all training samples xi , where each one has a 
unique weight equal to the Langrange multiplier ai . 
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3. According to the KKT conditions we have: 

  

 

 

 

 

 Thus:  
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3. According to the KKT conditions we have: 
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3. According to the KKT conditions we have: 

  

 

 

 

 

 Thus:  
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• All training samples outside the margin have ai=0 and 
they do not play any significant role to the decision. 

• Training samples over the margin hold:  
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and they have ai >0. 
These are called 
support vectors and 
they play important 
role to the  decision.  
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An example 
 

. 

6=1.4 

Class 1 (-1) 

Class 2 (+1) 

1=0.8 

2=0 

3=0 

4=0 

5=0 

7=0 

8=0.6 

9=0 

10=0 
Support vectors 

    i with no-zero values 
 who “support” the margin 
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4. Kernel trick: Use a particular representation φ(x)  

 Idea: The original feature space is transformed into a 
(usually) larger feature space which increases the 
likelihood of being linear separable. 

 

Φ:  x → φ(x) 
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• In the new space all dot products become: 

 
 
 

 which is called kernel function and specifies similarity  

 

• The new decision rule can be written as: 
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Examples of kernel functions  
 

• Linear Kernel 
 

• Polynomial Kernel 
 

• Gaussian ή RBF Kernel 

 

• Cosine 

 
• Sigmoid 

 

• …... 
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Example 1: Construct a linear feature space 
using φ(x)  
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Example 2 
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5. Estimate the constant term w0 
 

• Set of support vectors 
 

• Substituting  

 

 we take: 
 

  

• Summing all: 
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Applications 
 

• Bioinformatics 
 

• Text categorization – mining 
 

• Handwritten character recognition 
 

• Computer Vision 
 

• Time series analysis 
 

• ….. 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML6 ( 45 ) 



 

 

• Bioinformatics – gene expression data 
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• Text categorization – mining 

 

Bag of words (lexicon) 
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Nonlinear SVM 
The non-separable case  

 Mapping data to a high dimensional space, via φ(x), 
increase the likelihood the data be separable. 

 However, this cannot be guaranteed. 

 Also, separating hyperplane might be susceptible to 
outliers. 
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Nonlinear SVM 
The non-separable case  

 Need to make the 
algorithm work for non-
linearly separable cases, as 
well as to be less sensitive 
to outliers.   

 

 Introduction of auxiliary 
variables ξi which allow 
errors, i.e. samples being 
in erroneous side of 
margin. 

x1 

x2 
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2

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML6 ( 49 ) 



For any sample xi : 

 

x1 

x2 

 iii xfy 
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For any sample xi : 

 

 If xi found in the right side 
(no error), then ξi = 0.  
 

x1 

x2 

 iii xfy 
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For any sample xi : 

 

 If xi found in the right side 
(no error), then ξi = 0.  
 

 If found inside the margin 
but in the right side ξi < 1 
 

x1 

x2 

 iii xfy 
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For any sample xi : 

 

 If xi found in the right side 
(no error), then ξi = 0.  
 

 If found inside the margin 
but in the right side ξi < 1 
 

 If found exactly in the 
hyperplane where 
wTx+w0=0 then ξi = 1 
 

x1 

x2 

 iii xfy 
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For any sample xi : 

 

 If xi found in the right side 
(no error), then ξi = 0.  
 

 If found inside the margin 
but in the right side ξi < 1 
 

 If found exactly in the 
hyperplane where 
wTx+w0=0 then ξi = 1 
 

 If it is wrong classified 
then ξi > 1  x1 

x2 
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 We allow margin be less 
than 1  

 

 

 ξi plays to role of error 
tolerance for every sample 
xi and sets up the local 
margin which allows 
margin to enter the space 
of other class. 
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Nonlinear SVM 

 Objective function: 

 

          is the total error tolerance of training set 

 

 Problem: 
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 Problem: 
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Lagrange function 
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Nonlinear SVM 

Lagrange multipliers ( ≥ 0 ) 
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The dual form of the problem 
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Dual form of the problem 
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s.t. 

 If ai > 0 then xi are support vectors: 

 
 If ai < C then μi > 0 and ξi = 0. It holds: 
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 If ai = C then μi = 0 and ξi > 0. Sample xi is inside the margin 

 If ξi ≤ 1 then xi is right classified, 

 If ξi > 1 then xi is wrong classified 
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 If ai = C then μi = 0 and ξi > 0. Sample xi is inside the margin 

 If ξ ≤ 1 then xi is right classified, 

 If ξi > 1 then xi is wrong classified 
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The SMO algorithm 
J. Platt, Fast Training of Support Vector Machines using Sequential Minimal 

Optimization, MIT Press (1998). 

• Sequential Minimal Optimization (SMO) 

 

• Solving the dual problem 
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SMO algorithmic structure 
 

• SMO breaks this problem into a series of smallest possible 
sub-problems, which are then solved sequentially. 

•  The smallest problem involves two such multipliers : 

 

 

• This reduced problem can be solved analytically: 
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Examples of non-linear svm classification 
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Two general schemes 
 

 

 one vs. all classifiers 

 

 Pairwise Classifiers 

Multi-class Classification 
Working with more than 2 classes 
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One vs. All Classifiers 

• One classifier for every class  j = 1,…,K 
 

• Samples of examined class are positive (label +1), while rest 
samples from all other K-1 classes are negative examples 
with label -1. 

• Training the K different classifiers and construct functions: 

 

 
• Decision rule: Classify an unknown sample x to the class 

with the maximum function value: 
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Pairwise Classifiers 

• One classifier for every pair of classes (j, k)  
 

• Training the K*(Κ-1) classifiers and construct 
separating functions for every pair:  

 

 
• Decision rule: Classify an unknown sample x to the 

class with the most votes among all classifiers. 

• In case of equivalence use the functions’ values for 
taking the decision. 
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