
Machine Learning 

Support Vector Machines 
SVM 

 

Lesson 6 



Data Classification problem 
 

Training set: 
 

– xi : input data sample 

– yi  {1, …, K}: class or label of input 
 

• Target: Construct function    
 

 

 

• Prediction of class for any unknown input 
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Nearest Neighbor classifier 

• The simplest classification method 

• Assumption: data belongs to the same 
category are neighbors 

• Classification rule: Classify according to the 
neighbor(s) 
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Nearest Neighbor Classifier 

Classification 
 

• Find the nearest neighbor   

 (according to a distance function)  

  

 
• Class of unknown        is similar to its neighbor  
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Extension to k-NN  
 

• Find k>1 neighbors 

• Classify according to the class majority 
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• Voronoi diagram 
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• Κ=2 classes Ω1 , Ω2  

• Target: Construction of a hyperplane f(x,w) between 
data of 2 classes  

• Decision boundaries: 

 

 

 

 

• w are the unknown parameters  
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Linear Classifiers 
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• f(x) linear function: 

x1 

x2 

wT x + w0 < 0 

wT x + w0 > 0 

 Define a separating 
hyperplane between two 
classes 
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• Question:  

 Which is the optimum 
hyperplane that separates 
better two classes?  

x1 

x2 
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x1 

x2 • Question:  

 Which is the optimum 
hyperplane that separates 
better two classes?  
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x1 

x2 • Question:  

 Which is the optimum 
hyperplane that separates 
better two classes?  
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x1 

x2 

 Infinite number of 
solutions! 

• Question:  

 Which is the optimum 
hyperplane that separates 
better two classes?  
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x1 

x2 

Solution: Marginal Maximization 

[Boser, Guyon, Vapnik ’92], 
[Cortes & Vapnik ’95] 
 

 The optimal separating 
hyperplane is the one that 
gives the maximum 
margin width  
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 Definition 1: Margin is the 
minimum distance of N training 
samples to the hyperplane 

x1 

x2 

min distance 

Marginal Maximization 
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 Definition 2: Margin is the 
maximum width of boundary 
around the separating 
hyperplane without covering 
any sample 

x1 

x2  Definition 1: Margin is the 
minimum distance of N training 
samples to the hyperplane 

Marginal Maximization 

max width 
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 Why is the optimum solution? 

Margin 

x1 

x2 

 Definition 2: Margin is the 
maximum width of boundary 
around the separating 
hyperplane without covering 
any sample 

 Definition 1: Margin is the 
minimum distance of N training 
samples to the hyperplane 

Marginal Maximization 
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“safe zone” 
 Solution: Find the 

hyperplane that 
maximizes the margin 
between two classes. 

 This will minimize the 
risk of classifier’s 
decision. 

 Also, it will increase the 
generalization of 
classifier (Vapnick, 1963) 

Margin 

x1 

x2 

Marginal Maximization 
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• Distance of any point xi 
 

 

 
 

 

 

• Margin: 

x1 

x2 r(xi ) 

xi 

wTx + w0 = 0   
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Marginal Maximization Problem 
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Marginal Maximization Problem 

 

 

 

• Solution: Use a scaling factor k:  
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Marginal Maximization Problem 

 

 

 

• Solution: Use a scaling factor k:  
 

 

 

• Thus margin becomes: 
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• Therefore: 
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s.t. 
 

Quadratic Optimization Problem: minimize a quadratic 
function subject to a set of linear inequality constraints 

The objective function 
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 Training is formulated as an optimization problem 

Dual problem reduces computational complexity 

Kernel trick is used to reduce computation 

 

Determination of the model parameters corresponds to 
a convex optimization problem.  

Solution is straightforward (local  solution is the global 
optimum) 

 

Makes use of Lagrange multipliers 

 

SVM Training Methodology 
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 Optimization problem with linear inequality constraints   
 
 

Lagrange function: 
 

 

 Karush-Khun-Tucker (KKT) conditions: 

Joseph-Louis Lagrange (1736-1813) 
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• Minimization Problem: 

 

 
 

• Lagrange function: 

 

 

        

       

  

  

Solving the Optimization Problem 
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Dual Optimization Problem 
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Prime problem     
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Prime problem     
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  s.t. 

Prime problem 

Dual problem 
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Important Remarks 

1. The Prime problem has d+1 unknown parameters that 
must be tuned. These are the linear coefficients {w, w0}, 
where d is the data dimension. 

  

 The Dual problem has N unknown parameters which are 
the Lagrange multipliers { ai  i=1,…, N}, where N is the 
number of training samples. 

 

 This is valuable and convenient for multi-dimensional data, 
where d>>N,  since the dual search space is significantly 
lower in comparison with the prime search space. 
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2. The decision rule for choosing the class of an 
unknown sample x becomes: 

  

 

 

 

  

 which is a linear combination of dot products of x 
with all training samples xi , where each one has a 
unique weight equal to the Langrange multiplier ai . 
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3. According to the KKT conditions we have: 
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3. According to the KKT conditions we have: 
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3. According to the KKT conditions we have: 
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• All training samples outside the margin have ai=0 and 
they do not play any significant role to the decision. 

• Training samples over the margin hold:  
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and they have ai >0. 
These are called 
support vectors and 
they play important 
role to the  decision.  
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An example 
 

. 
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Class 1 (-1) 
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4. Kernel trick: Use a particular representation φ(x)  

 Idea: The original feature space is transformed into a 
(usually) larger feature space which increases the 
likelihood of being linear separable. 

 

Φ:  x → φ(x) 
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• In the new space all dot products become: 

 
 
 

 which is called kernel function and specifies similarity  

 

• The new decision rule can be written as: 
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Examples of kernel functions  
 

• Linear Kernel 
 

• Polynomial Kernel 
 

• Gaussian ή RBF Kernel 

 

• Cosine 

 
• Sigmoid 

 

• …... 
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Example 1: Construct a linear feature space 
using φ(x)  
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Example 2 
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5. Estimate the constant term w0 
 

• Set of support vectors 
 

• Substituting  

 

 we take: 
 

  

• Summing all: 
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Applications 
 

• Bioinformatics 
 

• Text categorization – mining 
 

• Handwritten character recognition 
 

• Computer Vision 
 

• Time series analysis 
 

• ….. 
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• Bioinformatics – gene expression data 
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• Text categorization – mining 

 

Bag of words (lexicon) 
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Nonlinear SVM 
The non-separable case  

 Mapping data to a high dimensional space, via φ(x), 
increase the likelihood the data be separable. 

 However, this cannot be guaranteed. 

 Also, separating hyperplane might be susceptible to 
outliers. 
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Nonlinear SVM 
The non-separable case  

 Need to make the 
algorithm work for non-
linearly separable cases, as 
well as to be less sensitive 
to outliers.   

 

 Introduction of auxiliary 
variables ξi which allow 
errors, i.e. samples being 
in erroneous side of 
margin. 

x1 

x2 

1
2
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For any sample xi : 

 

x1 

x2 

 iii xfy 
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For any sample xi : 

 

 If xi found in the right side 
(no error), then ξi = 0.  
 

x1 

x2 

 iii xfy 
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For any sample xi : 

 

 If xi found in the right side 
(no error), then ξi = 0.  
 

 If found inside the margin 
but in the right side ξi < 1 
 

x1 

x2 

 iii xfy 
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For any sample xi : 

 

 If xi found in the right side 
(no error), then ξi = 0.  
 

 If found inside the margin 
but in the right side ξi < 1 
 

 If found exactly in the 
hyperplane where 
wTx+w0=0 then ξi = 1 
 

x1 

x2 

 iii xfy 
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For any sample xi : 

 

 If xi found in the right side 
(no error), then ξi = 0.  
 

 If found inside the margin 
but in the right side ξi < 1 
 

 If found exactly in the 
hyperplane where 
wTx+w0=0 then ξi = 1 
 

 If it is wrong classified 
then ξi > 1  x1 

x2 

 iii xfy 
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 We allow margin be less 
than 1  

 

 

 ξi plays to role of error 
tolerance for every sample 
xi and sets up the local 
margin which allows 
margin to enter the space 
of other class. 
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Nonlinear SVM 

 Objective function: 

 

          is the total error tolerance of training set 

 

 Problem: 
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 Problem: 

 

 

     



N

i

ii

N

i

ii

T

ii

N

i

i wxwyaCwwwL
11

0

1

2

0 1
2

1
,, 

      
       
  
  









 


N

i

i
ww

Cw
1

2

,, 2

1
min

0




      

       

  

  

Lagrange function 

  iwxwy ii

T

i    1  0 s.t.

0i

Nonlinear SVM 

Lagrange multipliers ( ≥ 0 ) 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML6 ( 57 ) 



 

 
 

 

 

      
       
  
  

 
   01

01

0

0

0







ii

T

ii

ii

T

i

i

wxwya

wxwy

a





0

0

0







ii

i

i







0ia
  010  ii

T

i wxwy 
0i 0i

ΚΚΤ conditions 

or or 

     



N

i

ii

N

i

ii

T

ii

N

i

i wxwyaCwwwL
11

0

1

2

0 1
2

1
,,  minimize 

The dual form of the problem 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML6 ( 58 ) 



 

 

The dual form of the problem 
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 If ai > 0 then xi are support vectors: 
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 If ai = C then μi = 0 and ξi > 0. Sample xi is inside the margin 

 If ξi ≤ 1 then xi is right classified, 

 If ξi > 1 then xi is wrong classified 
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 If ai = C then μi = 0 and ξi > 0. Sample xi is inside the margin 

 If ξ ≤ 1 then xi is right classified, 

 If ξi > 1 then xi is wrong classified 
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The dual form of the problem 
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The SMO algorithm 
J. Platt, Fast Training of Support Vector Machines using Sequential Minimal 

Optimization, MIT Press (1998). 

• Sequential Minimal Optimization (SMO) 

 

• Solving the dual problem 
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SMO algorithmic structure 
 

• SMO breaks this problem into a series of smallest possible 
sub-problems, which are then solved sequentially. 

•  The smallest problem involves two such multipliers : 

 

 

• This reduced problem can be solved analytically: 
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Examples of non-linear svm classification 
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Two general schemes 
 

 

 one vs. all classifiers 

 

 Pairwise Classifiers 

Multi-class Classification 
Working with more than 2 classes 
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One vs. All Classifiers 

• One classifier for every class  j = 1,…,K 
 

• Samples of examined class are positive (label +1), while rest 
samples from all other K-1 classes are negative examples 
with label -1. 

• Training the K different classifiers and construct functions: 

 

 
• Decision rule: Classify an unknown sample x to the class 

with the maximum function value: 
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Pairwise Classifiers 

• One classifier for every pair of classes (j, k)  
 

• Training the K*(Κ-1) classifiers and construct 
separating functions for every pair:  

 

 
• Decision rule: Classify an unknown sample x to the 

class with the most votes among all classifiers. 

• In case of equivalence use the functions’ values for 
taking the decision. 
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