Machine Learning

Support Vector Machines SVM

Lesson 6

Data Classification problem

Training set:
$$D = \{(x_i, y_i), \dots, (x_N, y_N)\}$$

- $x_i: input data sample$ $y_i \in \{1, ..., K\}: class or label of input$
- Target: Construct function

$$f: X \to Y$$

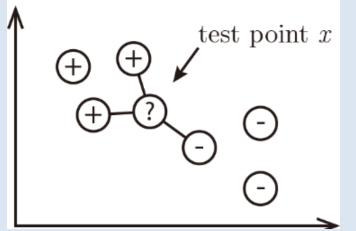
$$f(x_i) = y_i \quad \forall (x_i, y_i) \in D$$

Prediction of class for any unknown input

$$y^* = f(x^*)$$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (2)

Nearest Neighbor classifier



- The simplest classification method
- Assumption: data belongs to the same category are neighbors
- **Classification rule:** Classify according to the neighbor(s)

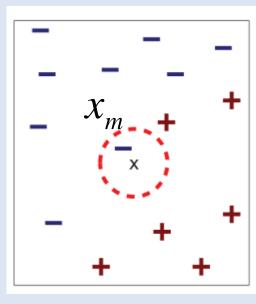
<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (3)

Nearest Neighbor Classifier

Classification

 Find the nearest neighbor (according to a **distance function**)

$$x_m: \min_{n=1,\ldots,N} \left\{ dist(x^*, x_n) \right\}$$



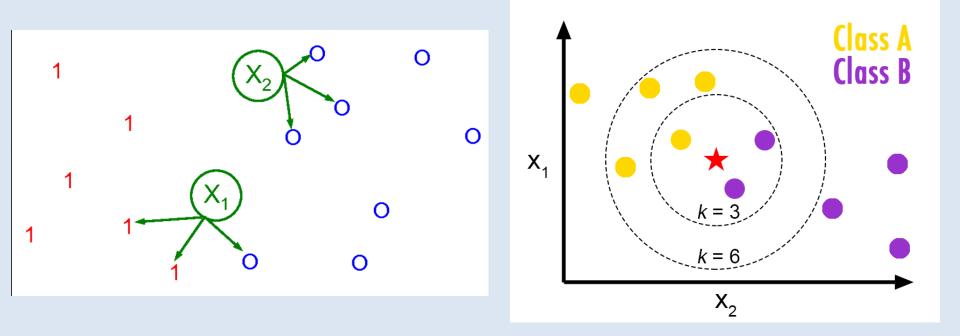
• Class of unknown x^* is similar to its neighbor

$$y^* = y_m$$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (4)

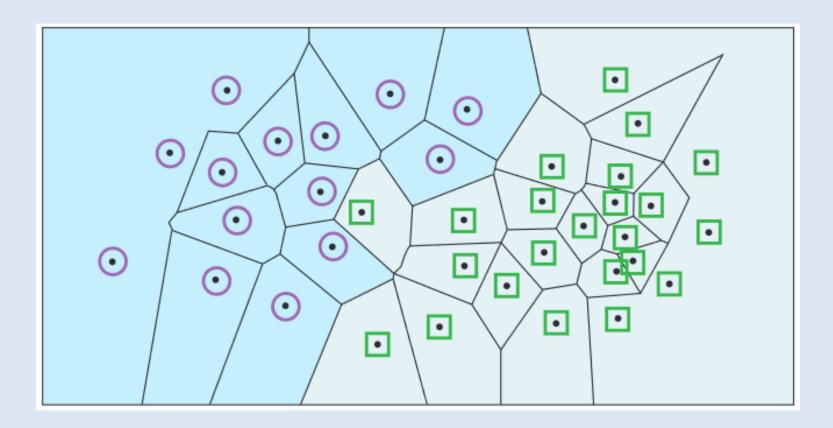
Extension to *k***-NN**

- Find k>1 neighbors
- Classify according to the class majority



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (5)

• Voronoi diagram



<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (6)

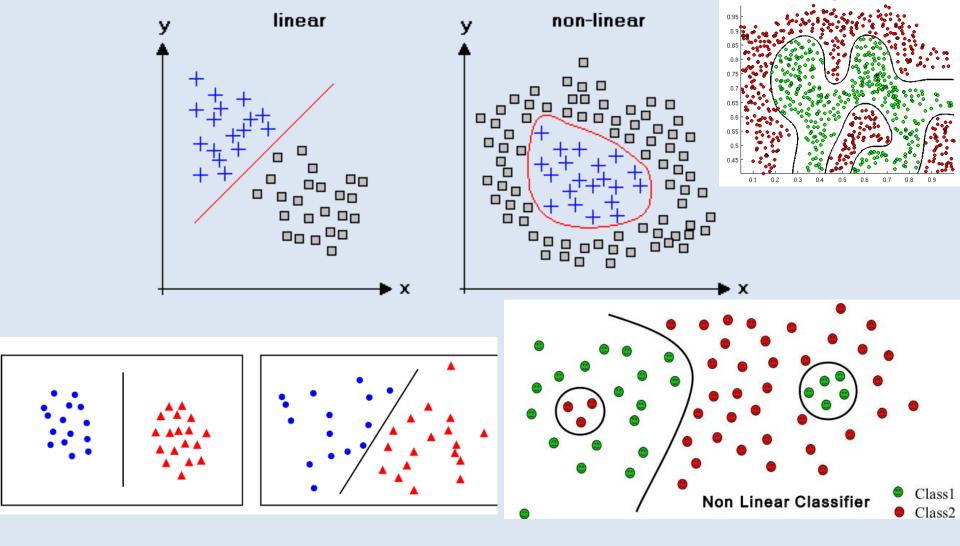
Linear Classifiers

- **K=2** classes Ω_1 , Ω_2
- Target: Construction of a hyperplane *f(x,w)* between data of 2 classes
- Decision boundaries:

if
$$f(x,w) \ge 0$$
 then $x \in \Omega_1$
else
if $f(x,w) < 0$ *then* $x \in \Omega_2$

• **w** are the unknown parameters

<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (7)



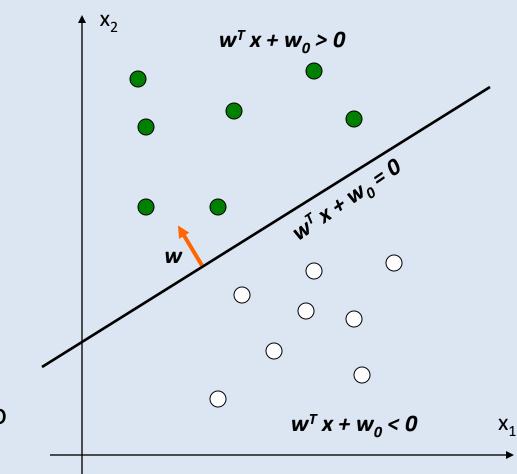
linear classification

nonlinear classification

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (8)

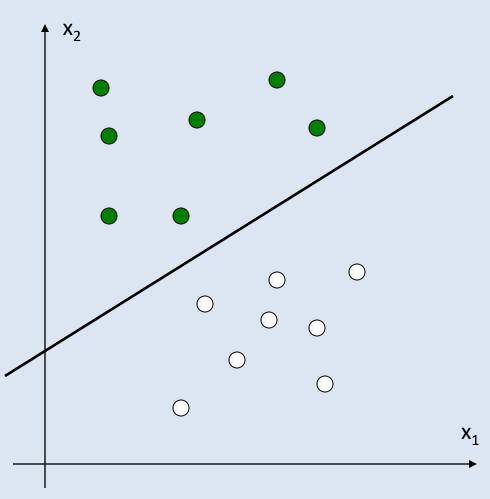
 $D = \{(x_i, y_i)\}_{i=1}^N$

- *f(x)* linear function:
 - $f(x) = w^T x + w_0$
- Define a separating hyperplane between two classes



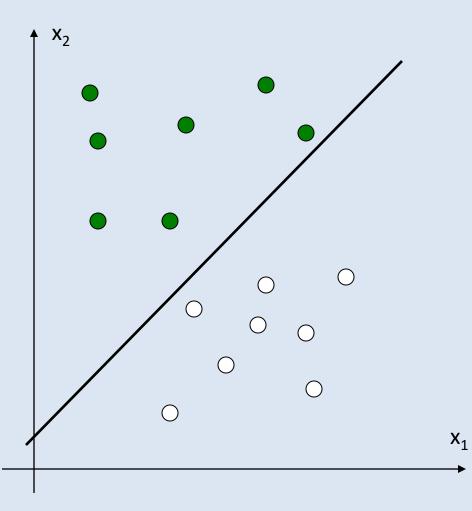
<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (9)

Which is the **optimum hyperplane** that separates better two classes?



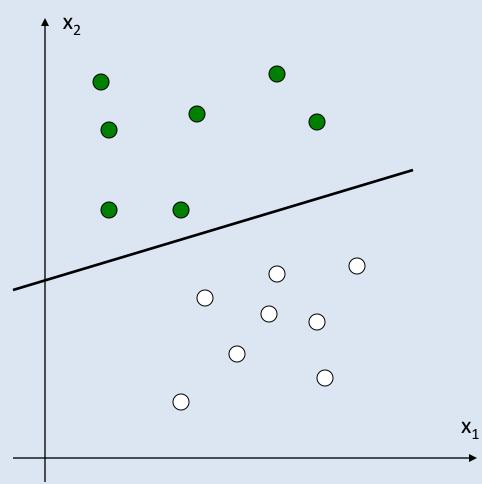
Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (10)

Which is the **optimum hyperplane** that separates better two classes?



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (11)

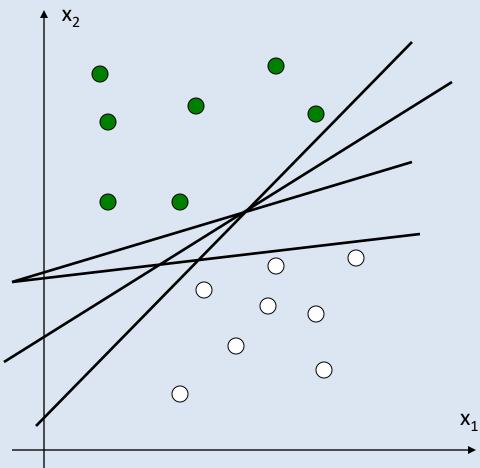
Which is the **optimum hyperplane** that separates better two classes?



<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (12)

Which is the **optimum hyperplane** that separates better two classes?

Infinite number of solutions!

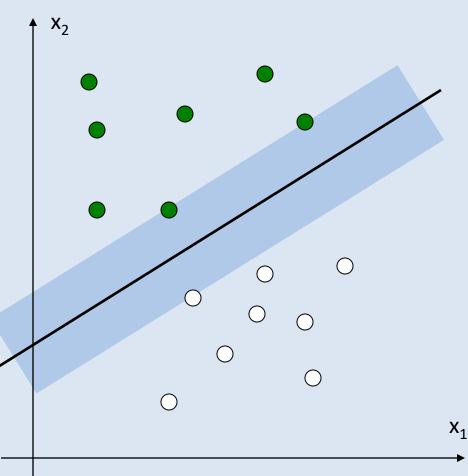


<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (13)

Solution: Marginal Maximization

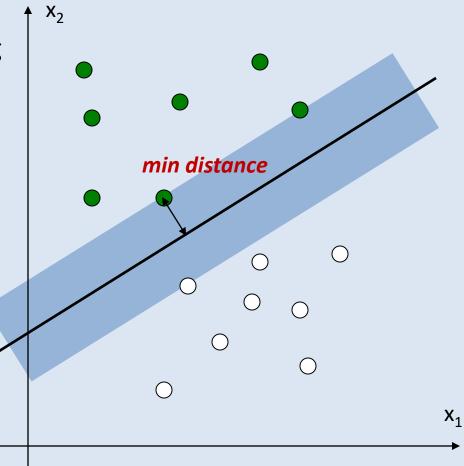
[Boser, Guyon, Vapnik '92], [Cortes & Vapnik '95]

The optimal separating hyperplane is the one that gives the maximum margin width



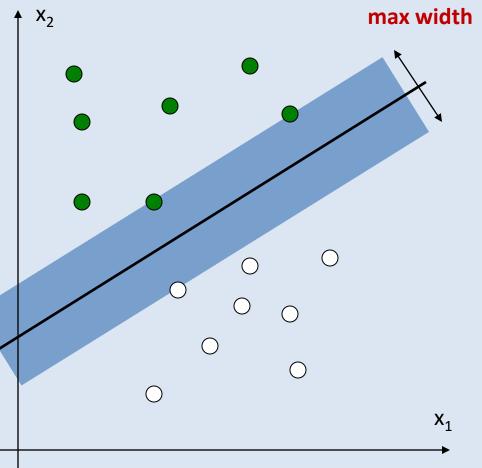
Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (14)

 Definition 1: Margin is the minimum distance of N training samples to the hyperplane

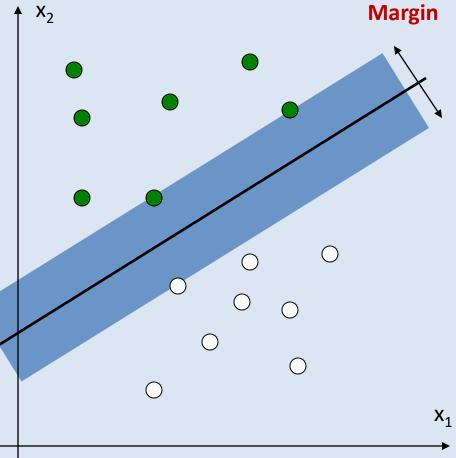


Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (15)

- Definition 1: Margin is the minimum distance of N training samples to the hyperplane
- Definition 2: Margin is the maximum width of boundary around the separating hyperplane without covering any sample



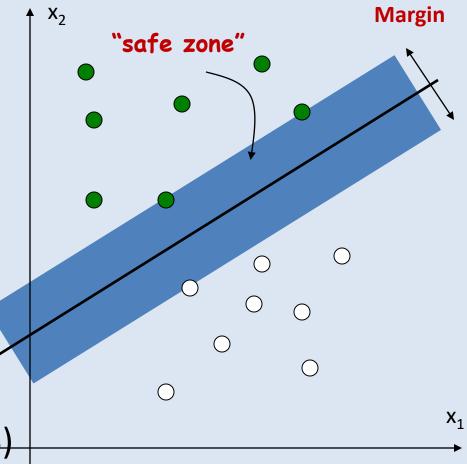
- Definition 1: Margin is the minimum distance of N training samples to the hyperplane
- Definition 2: Margin is the maximum width of boundary around the separating hyperplane without covering any sample



Why is the optimum solution?

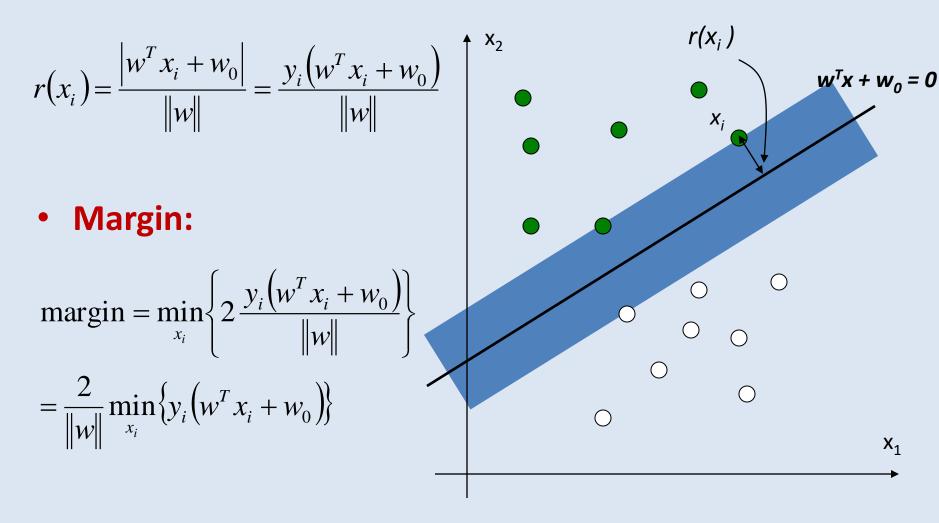
<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (17)

- Solution: Find the hyperplane that maximizes the margin between two classes.
- ✓ This will minimize the risk of classifier's decision.
- ✓ Also, it will increase the generalization of classifier (Vapnick, 1963)



<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – **ML6** (18)

Distance of any point x_i



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (19)

Marginal Maximization Problem

$$\left\{\hat{w}, \hat{w}_{0}\right\}: \max_{w, w_{0}} \left\{\frac{2}{\|w\|} \min_{x_{i}} \left\{y_{i} \left(w^{T} x_{i} + w_{0}\right)\right\}\right\}$$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (20)

Marginal Maximization Problem

$$\left\{ \hat{w}, \hat{w}_0 \right\} : \max_{w, w_0} \left\{ \frac{2}{\|w\|} \min_{x_i} \left\{ y_i \left(w^T x_i + w_0 \right) \right\} \right\}$$

• **Solution: Use a** scaling factor k:

$$k \min_{x_i} \{ y_i (w^T x_i + w_0) \} = 1$$

Marginal Maximization Problem

$$\left\{ \hat{w}, \hat{w}_0 \right\} : \max_{w, w_0} \left\{ \frac{2}{\|w\|} \min_{x_i} \left\{ y_i \left(w^T x_i + w_0 \right) \right\} \right\}$$

• **Solution: Use a** scaling factor k:

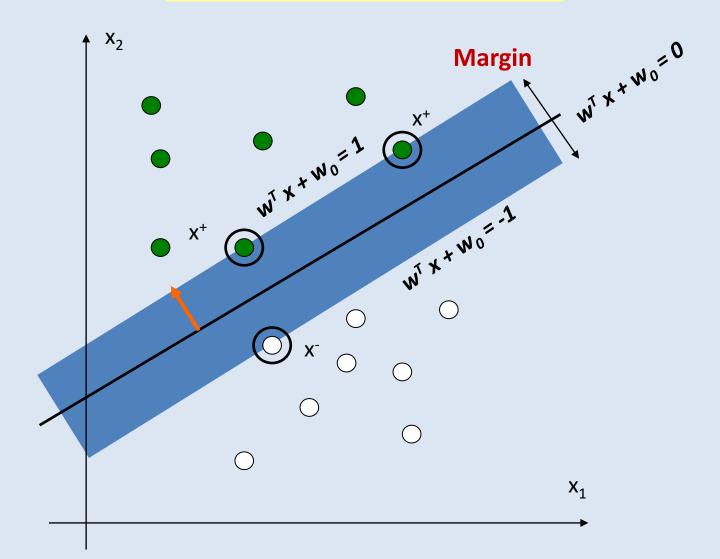
$$k \min_{x_i} \{ y_i (w^T x_i + w_0) \} = 1$$

• Thus margin becomes:

$$\frac{2}{\|w\|} \min_{x_i} \left\{ y_i \left(w^T x_i + w_0 \right) \right\} = \frac{2}{\|w\|}$$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (22)

• Therefore: $\forall x_i \in D: y_i (w^T x_i + w_0) \ge 1$



<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (23)

The objective function

We need to optimize $\|w\|^{-1}$ which is the same as **minimizing** $\|w\|^2$ subject to the **margin requirements**

$$\{\hat{w}, \hat{w}_{0}\}: \max_{w, w_{0}} \left\{ \frac{2}{\|w\|} \right\} \quad \text{s.t.} \quad y_{i} \left(w^{T} x_{i} + w_{0}\right) \ge 1 \quad \forall i$$

$$\{\hat{w}, \hat{w}_{0}\}: \min_{w, w_{0}} \left\{ \frac{1}{2} \|w\|^{2} \right\} \quad \text{s.t.} \quad y_{i} \left(w^{T} x_{i} + w_{0}\right) \ge 1 \quad \forall i$$

Quadratic Optimization Problem: minimize a quadratic function subject to a set of linear inequality constraints

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (24)

SVM Training Methodology

Training is formulated as an optimization problem
 Dual problem reduces computational complexity
 Kernel trick is used to reduce computation

Determination of the model parameters corresponds to a convex optimization problem.

Solution is straightforward (local solution is the global optimum)

□ Makes use of Lagrange multipliers

<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (25)

Joseph-Louis Lagrange (1736-1813)

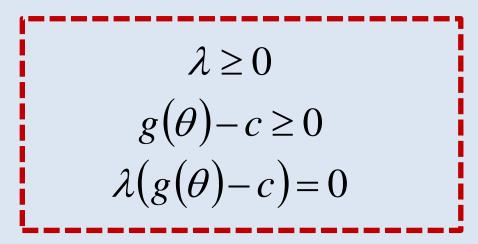
Optimization problem with linear inequality constraints

$$\min_{\theta} \{ f(\theta) \} \text{ s.t. } g(\theta) \ge c \Longrightarrow g(\theta) - c \ge 0$$

Lagrange function:

$$L(\theta,\lambda) = f(\theta) - \lambda(g(\theta) - c)$$

✓ Karush-Khun-Tucker (KKT) conditions:



<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (26)

Solving the Optimization Problem

• Minimization Problem:

$$\{\hat{w}, \hat{w}_0\}: \min_{w, w_0} \{\frac{1}{2} \|w\|^2\}$$
 s.t. $y_i (w^T x_i + w_0) \ge 1 \quad \forall i$

• Lagrange function:

$$L(w, w_0, a) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^N a_i (y_i (w^T x_i + w_0) - 1)$$

KKT conditions $\begin{cases} \forall i & a_i \ge 0\\ y_i \left(w^T x_i + w_0 \right) - 1 \ge 0\\ a_i \left(y_i \left(w^T x_i + w_0 \right) - 1 \right) = 0 \end{cases}$

a_i Lagrange multipliers

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (27)

Dual Optimization Problem

minimize
$$L(w, w_0, a) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^N a_i (y_i (w^T x_i + w_0) - 1)$$

$$\frac{\partial L}{\partial w} = 0 \Longrightarrow \hat{w} = \sum_{i=1}^{N} a_i y_i x_i$$

$$\frac{\partial L}{\partial w_0} = 0 \Longrightarrow \sum_{i=1}^N a_i y_i = 0$$

Machine Learning 2017 – Computer Science & Engineering, University of Ioannina – ML6 (28)

Prime problem minimize
$$L(w, w_0, a) = \frac{1}{2} ||w||^2 - \sum_{i=1}^N a_i (y_i (w^T x_i + w_0) - 1)$$

<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – **ML6** (30)

Prime problem minimize
$$L(w, w_0, a) = \frac{1}{2} ||w||^2 - \sum_{i=1}^N a_i (y_i (w^T x_i + w_0) - 1)$$

$$\sum_{i=1}^N a_i y_i = 0 \qquad \hat{w} = \sum_{i=1}^N a_i y_i x_i$$

Dual problem

(maximize)
$$L_D(a) = \sum_{i=1}^N a_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j y_i y_j x_i^T x_j$$

s.t. $a_i \ge 0$, $\sum_{i=1}^N a_i y_i = 0$

<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – **ML6** (31)

Important Remarks

 The Prime problem has d+1 unknown parameters that must be tuned. These are the linear coefficients {w, w₀}, where d is the data dimension.

The **Dual problem** has **N unknown** parameters which are the Lagrange multipliers { **a**_i **i=1,..., N**}, where N is the number of training samples.

This is valuable and convenient for multi-dimensional data, where *d>>N*, since the dual search space is significantly lower in comparison with the prime search space.

2. The decision rule for choosing the class of an unknown sample *x* becomes:

$$\begin{aligned} f(x) &= w^T x + w_0 \\ \hat{w} &= \sum_{i=1}^N a_i y_i x_i \end{aligned} \Rightarrow f(x) = \sum_{i=1}^N a_i y_i x_i^T x + w_0 \end{aligned}$$

which is a **linear combination of dot products** of xwith all training samples x_i , where each one has a unique weight equal to the Langrange multiplier a_i .

3. According to the KKT conditions we have:

$$a_{i} \ge 0$$

$$y_{i}(w^{T}x_{i} + w_{0}) - 1 \ge 0$$

$$a_{i}(y_{i}(w^{T}x_{i} + w_{0}) - 1) = 0$$

$$\begin{cases} a_{i} = 0 \text{ and } y_{i}(w^{T}x_{i} + w_{0}) > 1 \\ y_{i}(w^{T}x_{i} + w_{0}) - 1 = 0 \text{ and } a_{i} > 0 \end{cases}$$

Thus:

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (34)

3. According to the KKT conditions we have:

Thus:

$$a_{i} \geq 0$$

$$y_{i}(w^{T}x_{i} + w_{0}) - 1 \geq 0$$

$$a_{i}(y_{i}(w^{T}x_{i} + w_{0}) - 1) = 0$$
Training samples of D
with zero weight outside
the margin
$$y_{i}(w^{T}x_{i} + w_{0}) - 1 = 0$$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (35)

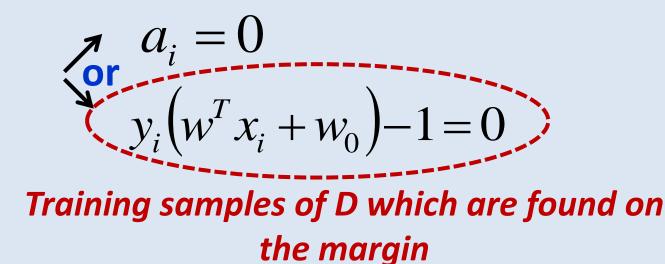
3. According to the KKT conditions we have:

$$a_{i} \ge 0$$

$$y_{i} \left(w^{T} x_{i} + w_{0} \right) - 1 \ge 0$$

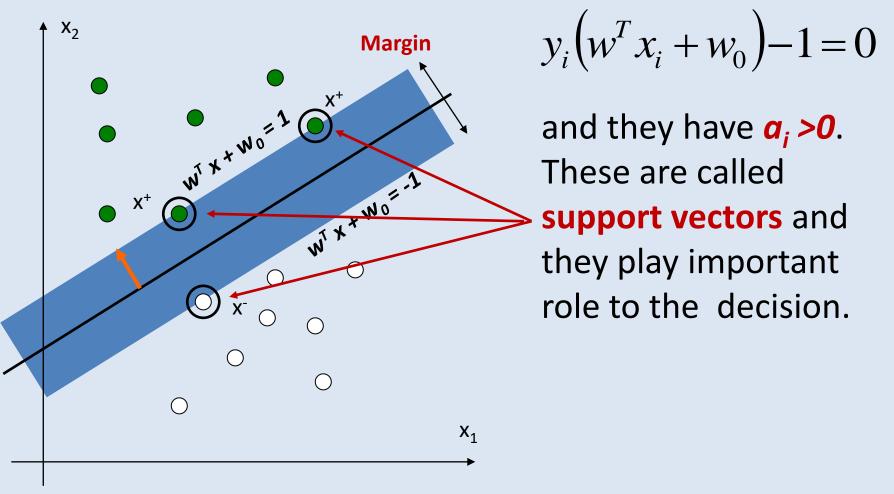
$$a_{i} \left(y_{i} \left(w^{T} x_{i} + w_{0} \right) - 1 \right) = 0$$



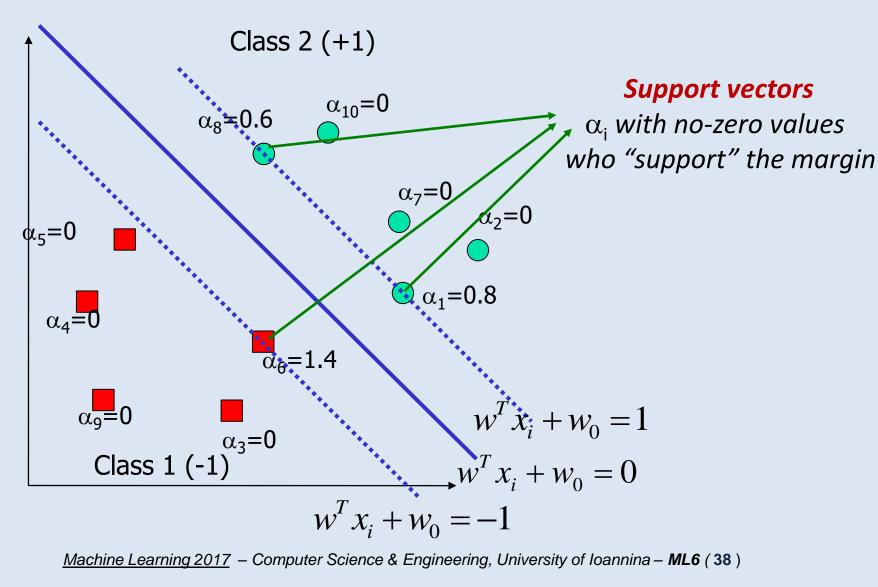


Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (36)

- All training samples outside the margin have a_i=0 and they do not play any significant role to the decision.
- Training samples over the margin hold:

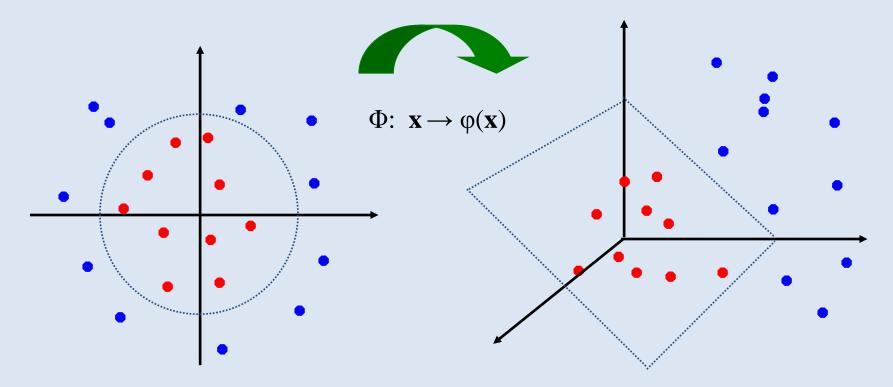


An example



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (38)

4. Kernel trick: Use a particular representation φ(x)
Idea: The original feature space is transformed into a (usually) larger feature space which increases the likelihood of being linear separable.



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (39)

• In the new space all dot products become:

$$x_i^T x_j \rightarrow \phi(x_i)^T \phi(x_j) \equiv K(x_i, x_j)$$

which is called kernel function and specifies similarity

• The new decision rule can be written as:

$$f(x) = \sum_{i=1}^{N} a_i y_i x_i^T x + w_0 \quad \to \quad f(x) = \sum_{i=1}^{N} a_i y_i \phi(x_i)^T \phi(x) + w_0$$
$$f(x) = \sum_{i=1}^{N} a_i y_i K(x_i, x) + w_0$$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (40)

Examples of kernel functions

- Linear Kernel
- Polynomial Kernel
- Gaussian ή RBF Kernel
- Cosine

• Sigmoid

$$K(x_{i}, x_{j}) = x_{i}^{T} x_{j}$$

$$K(x_{i}, x_{j}) = (x_{i}^{T} x_{j} + 1)^{p}$$

$$K(x_{i}, x_{j}) = e^{-\frac{\|x_{i} - x_{j}\|^{2}}{2o^{2}}}$$

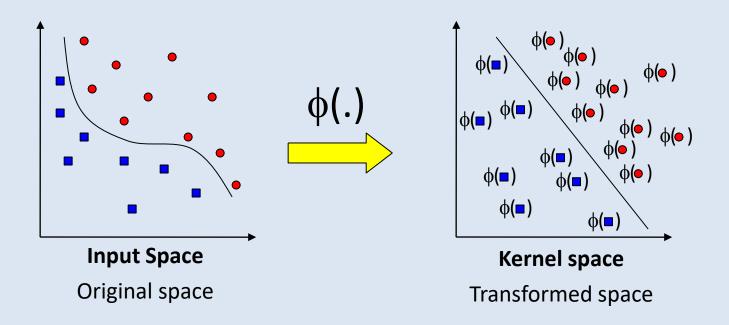
$$K(x_{i}, x_{j}) = \frac{x_{i}^{T} x_{j}}{\|x_{i}\|^{2} \|x_{j}\|^{2}}$$

$$K(x_{i}, x_{j}) = \frac{1}{1 + e^{-(\beta_{1} x_{i}^{T} x_{j})}}$$

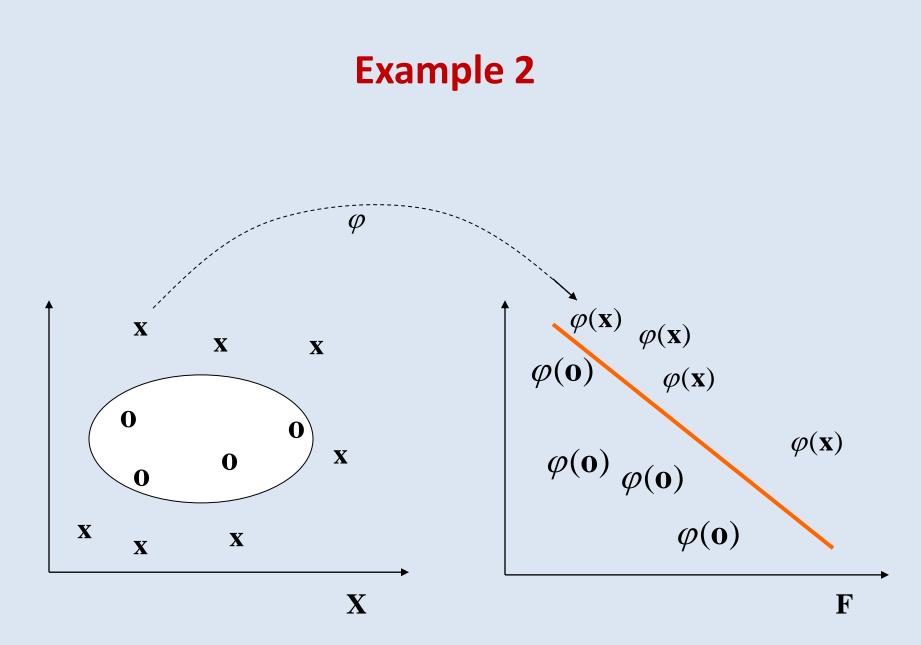
 $_i + \beta_0$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (41)

Example 1: Construct a linear feature space using $\phi(x)$



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (42)



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (43)

- 5. Estimate the constant term w_0
- Set of support vectors $S = \{x_i : y_i(w^T \phi(x_i) + w_0) = 1\}$
- Substituting

we take:

$$\hat{w} = \sum_{i=1}^{N} a_{j} y_{j} \phi(x_{j})$$
$$y_{i} \left(\sum_{x_{j} \in S} a_{j} y_{j} \phi(x_{j})^{T} \phi(x_{i}) + w_{0} \right) = 1 \quad \forall x_{i} \in S$$

Summing all:

$$\sum_{x_i \in S} y_i \left(\sum_{x_j \in S} a_j y_j K(x_j, x_i) + w_0 \right) = N_s = |S|$$
size of S

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (44)

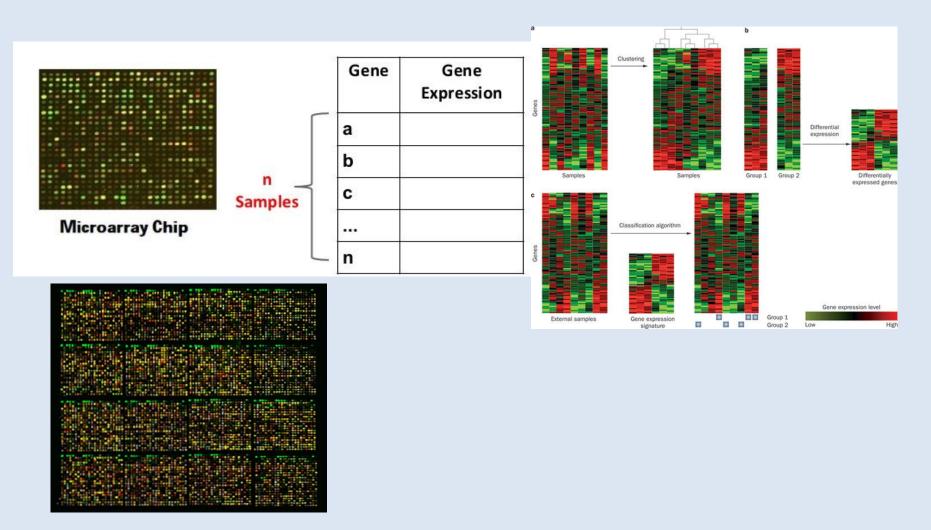
Applications

- Bioinformatics
- Text categorization mining

- Handwritten character recognition
- Computer Vision
- Time series analysis
- •

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (45)

• Bioinformatics – gene expression data



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (46)

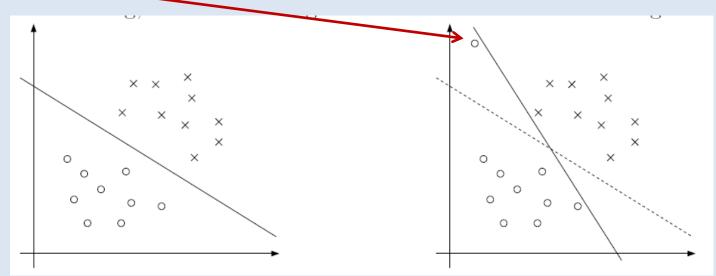
• Text categorization – mining

Bag of words (lexicon)

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (47)

Nonlinear SVM The non-separable case

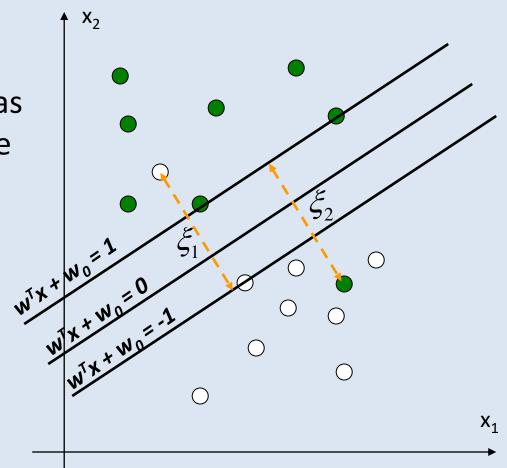
- ✓ Mapping data to a high dimensional space, via $\phi(x)$, increase the likelihood the data be separable.
- ✓ However, this cannot be guaranteed.
- Also, separating hyperplane might be susceptible to outliers.



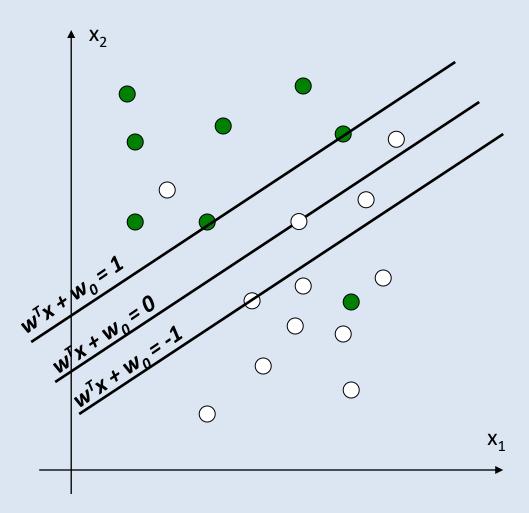
Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (48)

Nonlinear SVM The non-separable case

- Need to make the algorithm work for nonlinearly separable cases, as well as to be less sensitive to outliers.
- Introduction of auxiliary variables \$\xi_i\$ which allow errors, i.e. samples being in erroneous side of margin.



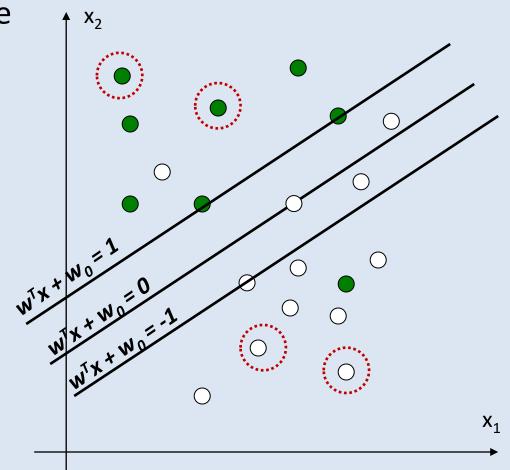
For any sample
$$x_i : \frac{\xi_i}{\xi_i} = |y_i - f(x_i)|$$



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (50)

For any sample
$$x_i : \frac{\xi_i}{\xi_i} = |y_i - f(x_i)|$$

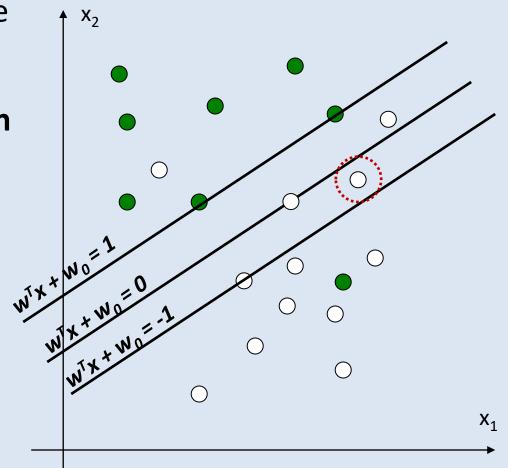
If x_i found in the right side (no error), then $\xi_i = 0$.



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (51)

For any sample
$$x_i : \frac{\xi_i}{\xi_i} = |y_i - f(x_i)|$$

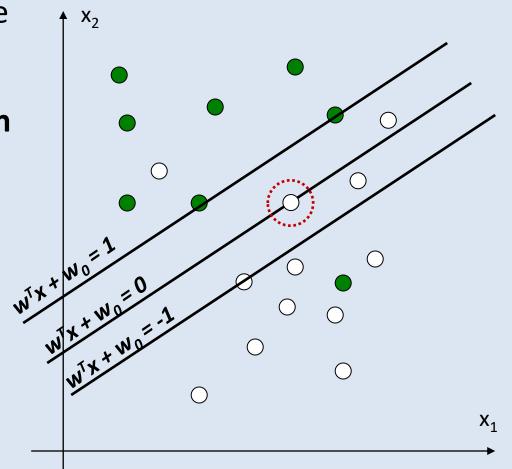
- If x_i found in the right side
 (no error), then ξ_i = 0.
- If found inside the margin but in the right side ξ_i < 1



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (52)

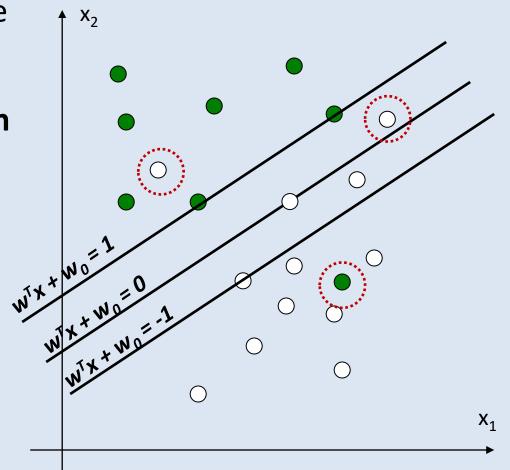
For any sample
$$x_i : \frac{\xi_i}{\xi_i} = |y_i - f(x_i)|$$

- If x_i found in the right side
 (no error), then ξ_i = 0.
- If found inside the margin but in the right side ξ_i < 1
- If found exactly in the hyperplane where $w^T x + w_0 = 0$ then $\xi_i = 1$



For any sample
$$x_i : \frac{\xi_i}{\xi_i} = |y_i - f(x_i)|$$

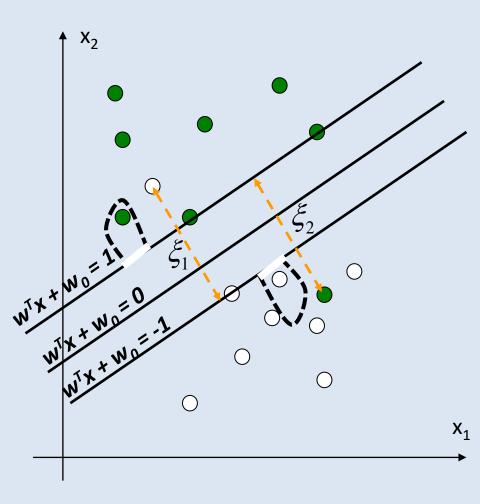
- If x_i found in the right side
 (no error), then ξ_i = 0.
- If found inside the margin but in the right side ξ_i < 1
- If found exactly in the hyperplane where $w^T x + w_0 = 0$ then $\xi_i = 1$
- If it is wrong classified then ξ_i > 1



 We allow margin be less than 1

$$\forall i \quad y_i \left(w^T x_i + w_0 \right) \ge 1 - \xi_i$$

 ξ_i plays to role of error tolerance for every sample
 x_i and sets up the local margin which allows
 margin to enter the space of other class.



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (55)

Nonlinear SVM

Objective function:

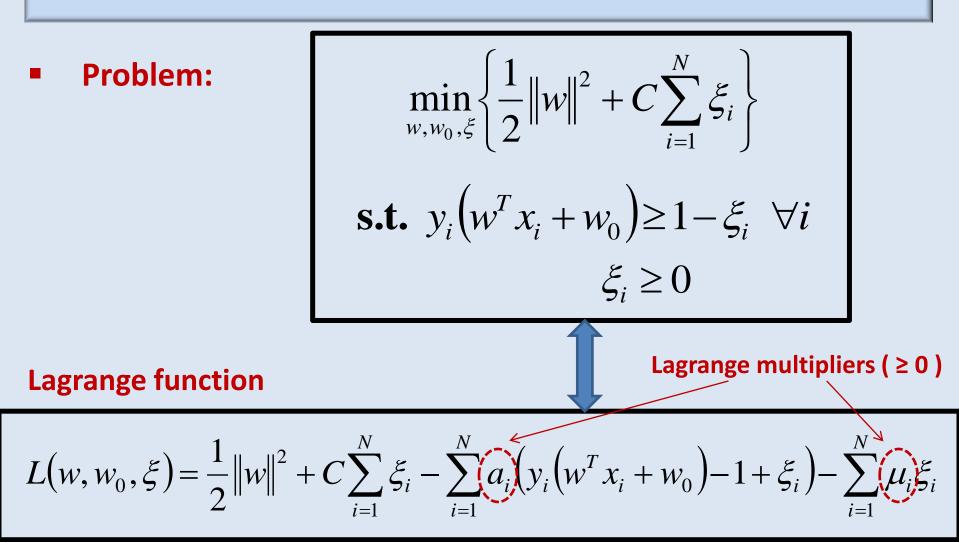
•
$$\sum_{i=1}^{N} \xi_i$$
 is the total error tolerance of training set

Problem:

$$\min_{w,w_0,\xi} \left\{ \frac{1}{2} \|w\|^2 + C \sum_{i=1}^N \xi_i \right\}$$

s.t. $y_i \left(w^T x_i + w_0 \right) \ge 1 - \xi_i \quad \forall i$
 $\xi_i \ge 0$

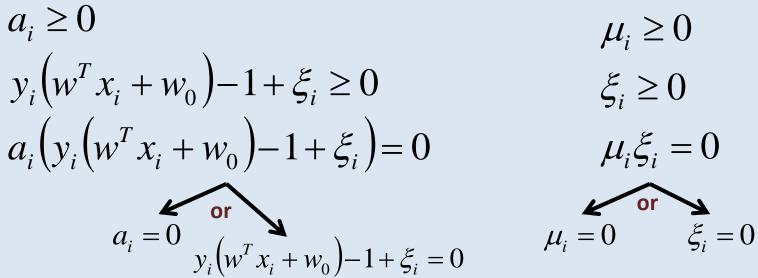
Machine Learning 2017 – Computer Science & Engineering, University of Ioannina – ML6 (56)



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (57)

minimize
$$L(w, w_0, \xi) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N a_i (y_i (w^T x_i + w_0) - 1 + \xi_i) - \sum_{i=1}^N \mu_i \xi_i$$

KKT conditions



Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (58)

minimize
$$L(w, w_0, \xi) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N a_i (y_i (w^T x_i + w_0) - 1 + \xi_i) - \sum_{i=1}^N \mu_i \xi_i$$

Partial derivatives

$$\frac{\partial L}{\partial w} = 0 \Longrightarrow \hat{w} = \sum_{i=1}^{N} a_i y_i x_i$$
$$\frac{\partial L}{\partial w_0} = 0 \Longrightarrow \sum_{i=1}^{N} a_i y_i = 0$$
$$\frac{\partial L}{\partial \xi_i} = 0 \Longrightarrow a_i = C - \mu_i$$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (59)

minimize
$$L(w, w_0, \xi) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^N \xi_i - \sum_{i=1}^N a_i (y_i (w^T x_i + w_0) - 1 + \xi_i) - \sum_{i=1}^N \mu_i \xi_i$$

Dual form of the problem
maximize $L_D(a) = \sum_{i=1}^N a_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j y_i y_j x_i^T x_j$
s.t. $0 \le a_i \le C$, $\sum_{i=1}^N a_i y_i = 0$

<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (60)

maximize
$$L_D(a) = \sum_{i=1}^N a_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j y_i y_j x_i^T x_j$$

s.t. $0 \le a_i \le C$, $\sum_{i=1}^N a_i y_i = 0$

If *a_i* > 0 then *x_i* are support vectors:

$$y_i (w^T x_i + w_0) - 1 + \xi_i = 0$$

• If $a_i < C$ then $\mu_i > 0$ and $\xi_i = 0$. It holds: $y_i \left(w^T x_i + w_0 \right) - 1 = 0$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (61)

maximize
$$L_D(a) = \sum_{i=1}^N a_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j y_i y_j x_i^T x_j$$

s.t. $0 \le a_i \le C$, $\sum_{i=1}^N a_i y_i = 0$

- If $a_i = C$ then $\mu_i = 0$ and $\xi_i > 0$. Sample x_i is inside the margin
 - If $\xi_i \leq 1$ then x_i is **right classified**,
 - If $\xi_i > 1$ then x_i is wrong classified

maximize
$$L_D(a) = \sum_{i=1}^N a_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j y_i y_j x_i^T x_j$$

s.t. $0 \le a_i \le C$, $\sum_{i=1}^N a_i y_i = 0$

- If $a_i = C$ then $\mu_i = 0$ and $\xi_i > 0$. Sample x_i is inside the margin
 - If $\xi \le 1$ then x_i is **right classified**,
 - If $\xi_i > 1$ then x_i is wrong classified

The SMO algorithm

J. Platt, Fast Training of Support Vector Machines using Sequential Minimal Optimization, MIT Press (1998).

- Sequential Minimal Optimization (SMO)
- Solving the dual problem

maximize
$$L_D(a) = \sum_{i=1}^N a_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N a_i a_j y_i y_j x_i^T x_j$$

s.t. $0 \le a_i \le C$, $\sum_{i=1}^N a_i y_i = 0$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (64)

SMO algorithmic structure

- SMO breaks this problem into a series of smallest possible sub-problems, which are then solved sequentially.
- The smallest problem involves **two such multipliers :**

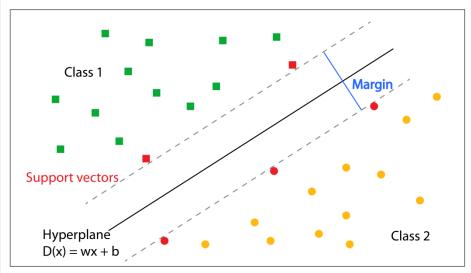
$$0 \le a_1, a_2 \le C$$
 and $a_1y_1 + a_2y_2 = -\sum_{i=3}^N a_iy_i = \zeta$

• This reduced problem can be solved analytically:

$$a_{1} = y_{1}(\zeta - a_{2}y_{2}) \qquad \hat{a}_{2} : \max_{a_{2}} \left\{ L_{D}(a) \right\}_{a_{1} = y_{1}(\zeta - a_{2}y_{2})}$$
$$a_{2}^{(new)} = \begin{cases} C & \text{if } \hat{a}_{2} > C \\ \hat{a}_{2} & \text{if } 0 \le \hat{a}_{2} \le C \\ 0 & \text{if } \hat{a}_{2} < 0 \end{cases} \qquad \hat{a}_{1} = y_{1}(\zeta - \hat{a}_{2}y_{2})$$

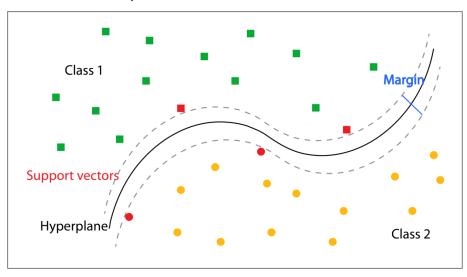
<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (65)

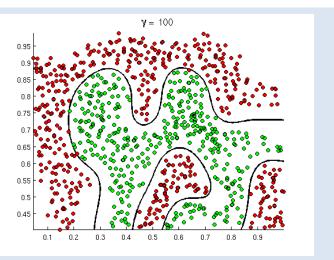
Examples of non-linear svm classification

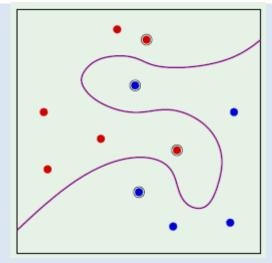


A. Linear separation

B. Non-linear separation







<u>Machine Learning 2017</u> – Computer Science & Engineering, University of Ioannina – ML6 (66)

Multi-class Classification Working with more than 2 classes

Two general schemes

> one vs. all classifiers

Pairwise Classifiers

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (67)

One vs. All Classifiers

- One classifier for every class j = 1, ..., K
- Samples of examined class are positive (label +1), while rest samples from all other K-1 classes are negative examples with label -1.
- Training the K different classifiers and construct functions:

$$f_j(x) = \varphi \left(w_{j0} + \sum_{i=1}^d w_{ji} x_i \right)$$

 Decision rule: Classify an unknown sample x to the class with the maximum function value:

$$c(x) = \underset{j=1,\dots,K}{\operatorname{arg\,max}} f_j(x)$$

Machine Learning 2017 - Computer Science & Engineering, University of Ioannina - ML6 (68)

Pairwise Classifiers

- One classifier for every pair of classes (j, k)
- Training the K*(K-1) classifiers and construct separating functions for every pair:

$$f_{jk}(x) = \varphi \left(w_0^{(j,k)} + \sum_{j=1}^d w_j^{(j,k)} x_j \right)$$

- **Decision rule:** Classify an unknown sample x to the class with the most votes among all classifiers.
- In case of equivalence use the functions' values for taking the decision.