Machine Learning

Reinforcement Learning

Machine Learning

Supervised Learning

- Teacher tells learner what to remember

Reinforcement Learning

- Environment provides hints to learner

Unsupervised Learning

- Learner discovers on its own

>Reinforcement Learning

Special case of supervised learning where the desired decision (output) is unknown. Learning is performed through interaction with the environment using *reward/penalty* by maximizing the expected cumulative reward

Learning (Psychology)

Reinforcements for training animals *Negative reinforcements*:

Pain and Hunger

Positive reinforcements: Pleasure and food

Operant conditioning (Ivan Pavlov, 1927)

process by which humans and animals *learn* to behave in such a way to obtain *rewards* and avoid *punishments*

Computational neuroscience

Hebbian learning (1961): synaptic weights between neurons are reinforced by simultaneously activation.

Reinforcement Learning

Reinforcement Learning An Introduction second edition

Richard. S. Sutton

Professor and iCORE chair Department of Computing Science University of Alberta Canada (Psychology & Computer Science)

Richard S. Sutton and Andrew G. Barto

2nd edition 2018 (new edition 2020) MIT Press, Cambridge, MA

http://incompleteideas.net/book/the-book-2nd.html

43200 citations !!!!! (today)

Bishop's book has 51500 citations !!!!!

Reinforcement Learning

Dimitri P. Bertsekas

McAfee Professor of Engineering Lab. for Information and Decision Systems Room 32-660D Massachusetts Institute of Technology Cambridge, MA 02139 dimitrib@mit.edu

112000 citations in total

1996

Dynamic Programming and Optimal Control

2017

John N. Tsitsiklis

Massachusetts Institute of Technology 77 Massachusetts Avenue, 32-D784 Cambridge, MA 02139-4307, U.S.A. +1-617-253-6175 jnt@mit.edu

57706 citations in total

1999, 2015

(16700 citations)

Convex Optimization Algorithms

2015

Intelligent Behavior

- Agent receives sensory input and take actions in environment
- Assume the agent receives reward (or penalties/losses)
- The goal is to **maximize the rewards** it receives (or minimize the losses)
- Choosing actions that maximizing rewards (minimize losses) is equivalent to behave optimally

Characteristics of Reinforcement Learning

What makes reinforcement learning different from other machine learning paradigms?

- There is **no supervisor**, only a **reward** signal
- Learn by interacting with environment
 - active learning (not passive)
 - Interactions are sequential
 - Time really matters (sequential, non i.i.d data)
- Feedback is delayed, not instantaneous
- Goal directed
- Agent's action affect the subsequent data it receives
- Can learn without examples of optimal behaviour

Agents with Intelligent Behavior

- **Game-playing**: Sequence of moves to win a game (e.g. Chess, Backgammon)
- Robot in a maze: Sequence of action to find a goal (e.g. position or object)
- Autonomous vehicles control (driving navigation)
- Routing problems: Medical trials / Packets / Ads placement
- Manage an **investment portfolio**
- Learning to choose actions to optimize factory output (procedures)
- Control a **power station**
- Recommendation systems (lists)
- (many more)

Agent and Environment

- At each step t the agent
 - Receives observation O_t and Reward r_t
 - Executes (*decides*) action a_t
- The environment
 - Receives the decision (action) a_t
 - Emits next observation O_{t+1} and reward R_{t+1}

Markov Decision Processes - MDPs

- Model of the agent-environment system covering the Markov property.
- An **MDP** is a tuple {*S*, *A*, *P*, *r*, *γ*}
 - S: finite set of states
 - A: finite set of actions
 - **P**: state transition
 probability function
 - r: reward function
 - γ: discount factor

$$P_{ss'}^{a} = P(s_{t+1} = s' | s_t = s, a_t = a)$$

$$r(s,a) = E\{r_{t+1} | s_t = s, a_t = a\}$$

$$\gamma \in [0,1]$$

States (s)

- Captures whatever information is available to the agent at step t about its environment.
- These are **structures built up over time** from **sequences** of sensations, memories, etc.
- Markovian property: We could throw away the history once state is known

$$P\{r_{t+1} = r, s_{t+1} = s' | s_0, a_0, r_1, \dots, s_{t-1}, a_{t-1}, r_t, s_t, a_t\} = P\{r_{t+1} = r, s_{t+1} = s' | s_t, a_t\}$$

Reward

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t defines the goal
- The agent's goal is to maximize cumulative reward

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$$

which is called return

• RL is based on the reward hypothesis:

Any goal can be formalized as the outcome of maximizing a cumulative reward

Policy (π)

- It defines the agent's behaviour, a **decision mechanism**
- A map from states to actions, $S \rightarrow A$
- Deterministic policy

$$\pi(s) = a$$

• Stochastic decision: probability distribution

$$\pi(a|s) = P(a_t = a|s_t = s)$$

Value Functions

• State value function

$$V^{\pi}(s) = E(G_t | S_t = s, \pi) = E(R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s, \pi) = E\left(\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, \pi\right)$$

- Determines how good is it for agent to be in a given state,
- Gives the long-term value of state s: it is a prediction of future reward
- The value depends on a policy (select between actions)

State-action value function

$$Q^{\pi}(s,a) = E_{\pi}(G_t|s_t = s, a_t = a)$$

 $= E_{\pi}(R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | s_t = s, a_t = a)$

$$= E_{\pi} \left(\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | s_{t} = s, a_{t} = a \right)$$

- Determines how good is it to perform an action from a given state and then follow policy
- It is the expected return starting from state s, taking action a, and then following policy π

Bellman Equations Richard Bellman, 1957

(600 papers, 35 books, 7 monographs)

- Bellman equations expresses the relationship between the values of a state s and the values of its successor states
- The value of the next state must equal the discounted value of the expected next state, plus the reward expected along the way (recursive form)

Bellman Expectation Equation (V)

$$V^{\pi}(s) = E_{\pi}(R_{t} | s_{t} = s) = E_{\pi}(r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s)$$

= $E_{\pi}(r_{t+1} + \gamma R_{t+1} | s_{t} = s)$
= $E_{\pi}(r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_{t} = s) = r_{t+1} + \gamma V^{\pi}(s_{t+1})$

The value function is decomposed into 2 parts

- Immediate **reward** *r*_{*t*+1}
- Discounted value of successor state $\gamma V(s_{t+1})$

Bellman Expectation Equation (Q)

 The state-action value function can be similarly decomposed into 2 parts

$$Q^{\pi}(s,a) = E_{\pi}(R_{t} | s_{t} = s, a_{t} = a)$$

= $E_{\pi}\left(r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s, a_{t} = a\right)$
= $E_{\pi}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) | s_{t} = s, a_{t} = a)$
= $r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1})$

Optimal Policies and Values

• Optimal state value function:

$$V^*(s) = \max_{\pi} V^{\pi}(s) = \max_{a} \left\{ r(s,a) + \gamma \sum_{s'} P^a_{ss'} V^*(s') \right\}$$

- If policy π is such that in each state s it selects an action that maximize value, then π is an optimal policy
- An optimal policy can be found by using greedily the V*(s)

Optimal state-action value function:

$$Q^{*}(s,a) = \max_{\pi} Q^{\pi}(s,a) \quad \forall s \quad Q^{*}(s,a) = r(s,a) + \gamma \sum_{s'} P^{a}_{ss'} \max_{a'} Q^{*}(s',a')$$

$$Q^*(s,a) = r(s,a) + \gamma \max_a Q^{\pi}(s',a)$$

• An **optimal policy** can be found by maximizing over the Q*(s,a), i.e.

$$\pi^*(a \mid s) = 1 \text{ if } a = \arg\max_{a \in A} \{Q^*(s, a)\}$$

- There is always a deterministic optimal policy for any MDP
- If we know $Q^*(s,a)$ we have the optimal policy

Exploration and Exploitation

- **Exploration** finds more information about the environment to (possibly) makes a better decision
- Exploitation makes the best decision given current information (exploits known information to maximize reward)
- Both of them are important. Fundamental problem not occurring in supervised learning
- A trade-off is needed between exploration and exploitation

Strategies

- ε-greedy: With probability ε choose one action at random (uniformly), and choose the best action with probability 1-ε (ε is gradually reduced)
- **Probabilistic:** Use probabilistic action selection (soft-max) $e^{Q(s,a)/T}$

$$P(a \mid s) = \frac{e^{\mathcal{L}(s,w)/T}}{\sum_{b=1}^{A} e^{\mathcal{Q}(s,b)/T}}$$

Reinforcement Learning Methods

- Model-free prediction
- Estimate the value function of an unknown MDP
- Various methodologies
 - Monte-Carlo (MC) Sample-based reinforcement methods
 - 2. Temporal-Difference (TD) methods
 - **3. Value function Approximation**

1. Monte Carlo (MC) methods

- MC learns *directly* from episodes of experience:
 sample sequences of *states*, *actions*, *rewards* (*s*,*a*,*r*)
- MC is *model-free*: no knowledge of model
 (MDP transitions/rewards)
- Learns from *complete* episodes (no bootstrapping)
 - all episodes must terminate
- Simplest idea: value = mean return,
 - i.e. solve problems by **averaging** sample returns

- **Return** is the total discounted reward $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$
- Value function is the expected return

$$V^{\pi}(s) = E(G_t | S_t = s, \pi)$$

Increment total return

$$S(s_t) \leftarrow S(s_t) + G_t$$

$$V(s_t) \leftarrow \frac{S(s_t)}{n(s_t)}$$

n(s) frequency of state s, and **G**_t the actual return following s_t

- Update V(s) incrementally after episode
- For each state s_t with return G_t

$$N(s_t) = N(s_t) + 1$$

$$V(s_t) \leftarrow V(s_t) + \frac{1}{n(s_t)} [G_t - V(s_t)]$$

$$V(s_t) \leftarrow V(s_t) + \alpha [G_t - V(s_t)]$$

2. Temporal Difference (TD) Learning

- TD earns directly from episodes of experience
- TD is model-free: no knowledge of MDP transitions/rewards is required
- TD learns from incomplete episodes (bootstrapping)
- Based on Bellman equations:

$$V^{\pi}(s) = E_{\pi}(r_{t+1} + \gamma V^{\pi}(S_{t+1})|S_t = s)$$

$$V^{\pi}(S_t) = r_{t+1} + \gamma V^{\pi}(S_{t+1})$$

Temporal Difference (TD) Learning

TD(0) Algorithm for Learning V^{π}

 \bullet Initialise V(s) arbitrarily; π is the policy to be evaluated; choose learning rate α and discount factor γ

• Repeat for each episode

Pick a start state s

Repeat for each step in episode

Get action a given by policy π for state s

Take action $a_{\rm r}$ observe reward r and next state s'

$$V(s) \leftarrow V(s) + O[r + \gamma V(s') - V(s)] \qquad \longleftarrow$$

 $s \leftarrow s'$ Learning rate

until s is terminal

MC and TD

MC update:

$$V(s_t) \leftarrow V(s_t) + \alpha [G_t - V(s_t)]$$

不

• TD update:

°s_t

а

Q-Learning

(Watkins, Ph.D. Thesis, Cambridge Univ. 1989)

 Off-policy greedy method: evaluate or improve one policy while acting using another

• Learn state-action value functions Q(s,a) $Q^{\pi}(s_{t+1}, a_{t+1})$ $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]$ TD error

(or)

 $Q(s_t, a_t) \leftarrow [1 - \alpha]Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a)]$

Algorithm: *Q*-Learning

- Initialise Q(s, a)
- Repeat many times
 - Pick s start state
 - Repeat each step to goal
 - * Choose a based on Q(s, a) ϵ -greedy
 - \ast Do a, observe r, s'
 - * $Q(s, a) = Q(s, a) + \alpha [r + \gamma \max_{a'} Q(s', a') Q(s, a)]$ * s = s'
 - Until s terminal

SARSA (policy improvement)

- On-policy TD method: evaluate or improve the current policy used for control
- SARSA takes exploration into account in updates

$$\frac{Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)]}{Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]}$$
Use the action actually chosen in updates (e-greedy)

3. Value Function Approximation

- Reinforcement learning can be used to solve large problems, e.g.
 - Backgammon: 10²⁰ states
 - Computer Go: 10¹⁷⁰ states
 - Vehicles: continuous state space
- Solution for large MDPs
 - Estimate value function with function approximation
 - Update function parameters using TD learning

Value Function Approximation

- Several function approximators can be used, e.g.
 - Neural Networks Deep NNs
 - Linear model Linear combinations of features
 - Kernel machines
 - Statistical regression models
 - Decision trees

Value function approximation with Temporal Difference Learning

• Assume a parametric model (*w*) for the **Q-value** function $O^{\pi}(c, q) \sim \max O(c, q, w)$

$$Q^{\pi}(s, \boldsymbol{a}) \approx \max_{a} Q(s, a; \boldsymbol{w})$$

 Estimate model parameters, w, according to Qlearning scheme (gradient descent):

$$E(w) = \frac{1}{2N} \sum_{t=1}^{N} (Q(s_t, a_t, w) - Q^{\pi}(s_t, a_t))^2 =$$

$$= \frac{1}{2N} \sum_{t=1}^{N} \left(Q(s_t, a_t, w) - (r_{t+1} + \gamma \max_a Q(s_{t+1}, a, w)) \right)^2$$
Learning is executed on-line, or with mini-batches

• On-line learning at every iteration:

 $\boldsymbol{\delta}_{t} = Q(s_{t}, a_{t}; \boldsymbol{w}^{old}) - (r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a; \boldsymbol{w}^{old}))$

$$w^{new} \leftarrow w^{old} - \alpha \, \delta_t \, \nabla_w Q(s_t, a_t; w)$$

Experience replay memory

 Store the agent's experiences at each time step e_t = (s_t, a_t, r_t, s_{t+1}) in a dataset D = e₁, ..., e_n pooled over many episodes into a replay memory

 In practice, only store the last N experience tuples in the replay memory and sample uniformly from D when performing update

Double Q-learning strategy

- Collect samples and store them to memory D (by substitution)
- Learning is conducted using experience replay memory mini batches
- Target is calculated from a clone (target) Q-function
- After performing some learning epochs, copy updated Qnetwork (function) to target Q-network (function)

$$D = \{s_t, a_t, r_{t+1}, s_{t+1}\}$$

$$\delta_t = Q(s_t, a_t; w) - (r_{t+1} + \gamma \max_a Q(s_{t+1}, a; w^{target}))$$

use mini baches $S \subseteq D$

$$w^{new} \leftarrow w - \alpha \, \delta_t \, \nabla_w Q(s_t, a_t; w)$$

 $w^{target} = w^{new}$

Linear Value Function Approximation

- Represent value function as a linear combination of features
- Describe state s as a feature vector

 $\phi(s) = (\phi_1(s), \phi_2(s), \dots, \phi_n(s))$

• Or state-action feature vector

 $\phi(s,a) = \left(\phi_1(s,a), \phi_2(s,a), \dots, \phi_n(s,a)\right)$

Then the value function can be any regression model
 e.g. linear regression model

$$V(s) = w^{T}\phi(s) = w_{1}\phi_{1}(s) + w_{2}\phi_{2}(s) + \dots + w_{n}\phi_{n}(s)$$

$$Q(s_t, a_t, w) = w^T \phi(s_t, a_t) = \sum_{i=1}^n w_i \phi_i(s_t, a_t)$$

• w_i are linear weights

Neural Networks for value function approximation

- Value function has a neural network (non-linear) design
- Model parameters, *w*, are the weights of network

Deep Q learning (DQN)

- Use deep net to estimate Q-values
- Input: the state of agent
- Output: Q-values for possible actions
- Learning step: gradient descent with the loss
- Policy: choose action to maximize the Q-value

Deep Reinforcement Learning (Deep Mind Tech., Google - 2015)

Towards General Artificial Intelligence

- Playing Atari with Deep Reinforcement Learning. ArXiv (2013)
 - 7 Atari games
 - The first step towards "General Artificial Intelligence"
- DeepMind got acquired by @Google (2014)
- Human-level control through deep reinforcement learning. Nature (2015)
 - 49 Atari games
 - Google patented "Deep Reinforcement Learning"

- Network architecture and hyperparameters fixed across all games
- Input state is stack of raw pixels from last 4 frames
- Output is Q(s,a) got 18 joystick/button positions
- Reward is change in score for that step

Policy Gradient

- Assumption: Policy is parametric model $a = \pi_{\theta}(s)$
- Goal: Directly maximize the total expected reward over the entire trajectory, $\boldsymbol{\tau}$

 $J(\theta) = E_{\pi_{\theta}}[R(\tau)]$

• Learning: Gradient descent on the policy's parameters $\boldsymbol{\theta}$

$$\hat{\theta} : \max_{\theta} J(\theta) \qquad \qquad \theta \leftarrow \theta + \nabla_{\theta} E_{\pi_{\theta}}[R(\tau)]$$

Policy Gradient

- Long-term reward:
 - sum of rewards for the trajectory $\tau = (s_0, a_0, r_1, s_1, a_1, \dots, s_{T-1}, a_{T-1}, r_T, s_T)$

$$R(\tau) = \sum_{t=1}^{l} r(s_t)$$

- Value of policy $J(\theta) = E_{\pi_{\theta}}[R(\tau)] = \sum_{\tau} P(\tau|\theta)R(\tau)$
 - $P(\tau|\theta)$: probability of trajectory following the policy π_{θ}
- Goal: find policy parameters θ that maximize $J(\theta)$

$$\hat{\theta}: \max_{\theta} J(\theta) = \max_{\theta} \sum_{\tau} P(\tau|\theta) R(\tau)$$

Computing the gradient

• (of course) we cannot compute all trajectories ... but we can sample m trajectories

$$\nabla_{\theta} J(\theta) \approx \frac{1}{m} \sum_{i} R(\tau_{i}) \, \nabla_{\theta} \log P(\tau_{i} | \theta)$$

• gradient

$$\nabla_{\theta} \log P(\tau|\theta) = \nabla_{\theta} \log \left[\mu(s_0) \prod_{i=0}^{T-1} \pi_{\theta}(a_i|s_i) P(s_{i+1}|s_i, a_i) \right]$$

$$= \nabla_{\theta} \left[\log \mu(s_0) + \sum_{i=0}^{T-1} \log \pi_{\theta}(a_i|s_i) + \log P(s_{i+1}|s_i, a_i) \right]$$

$$= \sum_{i=0}^{T-1} \sum_{\text{No dynamics model required!}} \sum_{i=0}^{T-1} \sum_{i=0}^{T-$$

Computing the gradient

Solution

$$\nabla_{\theta} J(\theta) \approx \frac{1}{m} \sum_{i=1,\dots,m} R(\tau_i) \sum_{t=0}^{T-1} \nabla_{\theta} \log \left(\frac{\pi_{\theta}(a_{it}|s_{it})}{\pi_{\theta}(a_{it}|s_{it})} \right)$$

- If action is discrete use (e.g.) Deep NN with softmax (last layer with so many neurons as actions)
- In continuous spaces of actions, action is directly generated
- Problem: gradient is noisy and has large variance
- Need to reduce variance

Monte-Carlo Policy Gradient

REINFORCE algorithm (Williams, 1992)

Given architecture with parameters θ to implement π_{θ} Initialize θ randomly

repeat

Generate episode $\{s_1, a_1, r_2, \dots s_{T-1}, a_{T-1}, r_T, s_T\} \sim \pi_{\theta}$ for all time steps t = 1 to T - 1 do Get $R_t \leftarrow \text{long-term return from step } t$ to $T = \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R_t$ end for until convergence

Actor – Critic methods

- Learn Value function and Policy
- Critic: evaluates the current policy and the result is used in the policy training
- Actor: implements the policy and is trained using Policy Gradient in direction suggested by critic
- Have **separate memory structure** to represent the policy independent of the value function

Reduce variance with baseline

- R_t has a lot of variance
- We can reduce variance subtracting a baseline to the estimator

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)(R_t - b(s_t))$$

• A good baseline is value function

doesn't depend on actions taken

$$b(s_t) = V^{\pi_\theta}(s_t)$$

• Use another parametric model w

$$V^{\pi_{\theta}}(s_t) \approx V_w(s_t)$$

Monte-Carlo Actor Critic (with baseline function)

Given architecture with parameters θ to implement π_{θ} and parameters w to approximate V

Initialize θ randomly

repeat

Generate episode $\{s_1, a_1, r_2, \dots s_{T-1}, a_{T-1}, r_T, s_T\} \sim \pi_{\theta}$ for all time steps t = 1 to T - 1 do Get $R_t \leftarrow \text{long-term return from step } t$ to T $\delta \leftarrow R_t - V_w(s_t)$ $w \leftarrow w + \beta \delta \nabla_w V_w(s_t)$ $\theta \leftarrow \theta + \alpha \delta \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$ end for until convergence

Estimating the TD error

- Critic: estimate the state-action value $Q_w(s, a; w) \approx Q^{\pi_{\theta}}(s, a)$
- Actor: policy evaluation (action selection)

 $\pi_{\theta}(s, a) \approx \pi(s, a; \theta)$

• TD error

$$\delta^{\pi_{\theta}} = (r + \gamma Q_w(s', a')) - Q_w(s.a)$$

One step Actor Critic

Given architecture with parameters θ to implement π_{θ} and parameters w to approximate QInitialize θ randomly

repeat

Set *s* to initial state Get a from π_{θ}

repeat

Take action a and observe reward r and new state s'Get a' from π_{θ} $\begin{array}{ll} \delta \leftarrow r + Q_w(s', a') - Q_w(s, a) & // \text{ TD-error (Bellman equation)} \\ w \leftarrow w + \beta \delta \nabla_w Q_w(s, a) & // \text{ critic update} \end{array}$ $\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a|s) Q_w(s,a)$ // Actor update $s \leftarrow s'$ **until** s is terminal until convergence

Actor-Critic schemes: TD and Advantage

• **TD error**
$$\delta^{\pi_{\theta}} = (r_{t+1} + \gamma V^{\pi_{\theta}} (s_{t+1})) - V^{\pi_{\theta}} (s_t)$$

Advantage function (Critic estimate the advantage function)

$$\frac{E_{\pi_{\theta}}(\delta^{\pi_{\theta}}|s,a)}{V_{w}(s,a)} = E_{\pi_{\theta}}[r_{t+1} + \gamma V^{\pi_{\theta}}(s_{t+1})|s,a] - V^{\pi_{\theta}}(s) = Q_{w}(s,a) - V_{w}(s) = A_{w}(s,a)$$

Use two function approximators with two set of parameters, w, v

 $egin{array}{rl} V^{\pi_{ heta}}(s) &pprox & V_{
u}(s) \ Q^{\pi_{ heta}}(s,a) &pprox & Q_w(s,a) \ A(s,a) &= & Q_w(s,a) - V_
u(s) \end{array}$

dueling Networks

update both functions