
Machine Learning

Reinforcement Learning



Machine Learning

• Supervised Learning

– Teacher tells learner what to remember

• Reinforcement Learning

– Environment provides hints to learner

• Unsupervised Learning

– Learner discovers on its own



➢Reinforcement Learning

Special case of supervised learning where the desired 
decision (output) is unknown. Learning is performed 
through interaction with the environment using 
reward/penalty by maximizing the expected cumulative 
reward



Learning (Psychology)
Reinforcements for training animals
Negative reinforcements:
Pain and Hunger

Positive reinforcements:
Pleasure and food

Operant conditioning (Ivan Pavlov, 1927)

process by which humans and animals learn to behave 
in such a way to obtain rewards and avoid punishments

Computational neuroscience
Hebbian learning (1961): synaptic weights between 
neurons are reinforced by simultaneously activation.

environment

decision



Richard. S. Sutton
Professor and iCORE chair

Department of Computing Science

University of Alberta

Canada

(Psychology & Computer Science)

Reinforcement Learning

Richard S. Sutton and Andrew G. Barto
2nd edition 2018 (new edition 2020)

MIT Press, Cambridge, MA 
http://incompleteideas.net/book/the-book-2nd.html

43200 citations !!!!!  (today)

Bishop’s book has 51500 citations !!!!!

http://incompleteideas.net/book/the-book-2nd.html


Reinforcement Learning

1996 2017

1999, 2015

(16700 citations)

2015

112000 citations in total

57706 citations in total



• Agent receives sensory input and take actions in environment

• Assume the agent receives reward (or penalties/losses)

• The goal is to maximize the rewards it receives (or minimize 
the losses)

• Choosing actions that maximizing rewards (minimize losses) 
is equivalent to behave optimally

Intelligent Behavior



Characteristics of Reinforcement Learning

What makes reinforcement learning different from 
other machine learning paradigms?

• There is no supervisor, only a reward signal

• Learn by interacting with environment 

– active learning (not passive)

– Interactions are sequential

– Time really matters (sequential, non i.i.d data)

• Feedback is delayed, not instantaneous

• Goal - directed

• Agent’s action affect the subsequent data it receives

• Can learn without examples of optimal behaviour



• Game-playing: Sequence of moves to win a game (e.g. Chess, 
Backgammon) 

• Robot in a maze: Sequence of action to find a goal (e.g.
position or object)

• Autonomous vehicles control (driving - navigation)

• Routing problems: Medical trials / Packets / Ads placement

• Manage an investment portfolio

• Learning to choose actions to optimize factory output
(procedures)

• Control a power station

• Recommendation systems (lists)

• ……. (many more) …….

Agents with Intelligent Behavior



Agent and Environment

• At each step t the agent

– Receives observation Ot and Reward rt

– Executes (decides) action at

• The environment

– Receives the decision (action) at

– Emits next observation Ot+1 and reward Rt+1



• Model of the agent-environment system covering the 
Markov property.

• An MDP is a tuple {S, A, P, r, γ}
– S: finite set of states

– A: finite set of actions

– P: state transition 

probability function

– r: reward function

– γ: discount factor

Markov Decision Processes - MDPs

( )  aassrEasr ttt === + ,|, 1

]1,0[

( )aassssPP ttt

a

ss ==== + ,|'1'



• Captures whatever information is available to the agent
at step t about its environment.

• These are structures built up over time from sequences
of sensations, memories, etc.

• Markovian property: We could throw away the history 
once state is known

States (s)

P 𝑟𝑡+1 = 𝑟, 𝑠𝑡+1 = 𝑠′|𝑠0, 𝑎0, 𝑟1, … , 𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡 , 𝑠𝑡 , 𝑎𝑡 =
P 𝑟𝑡+1 = 𝑟, 𝑠𝑡+1 = 𝑠′|𝑠𝑡 , 𝑎𝑡



Reward

• A reward Rt is a scalar feedback signal

• Indicates how well agent is doing at step t – defines the goal

• The agent’s goal is to maximize cumulative reward

which is called return

• RL is based on the reward hypothesis:

Any goal can be formalized as the outcome of maximizing a 
cumulative reward 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ = ෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1



• It defines the agent’s behaviour, a decision mechanism

• A map from states to actions, S → A

• Deterministic policy

• Stochastic decision: probability distribution 

Policy (π)

𝜋 𝑎|𝑠 = 𝑃 𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠

𝜋 𝑠 = 𝑎



• State value function

• Determines how good is it for agent to be in a given state, 

• Gives the long-term value of state s: it is a prediction of 
future reward

• The value depends on a policy (select between actions)

Value Functions

𝑉𝜋 𝑠 = 𝐸 𝐺𝑡|S𝑡 = 𝑠, 𝜋 =

𝐸 𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾2 𝑅𝑡+3 + … |𝑆𝑡 = 𝑠, 𝜋 =

𝐸 ෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1 |𝑆𝑡 = 𝑠, 𝜋



• State-action value function 

• Determines how good is it to perform an action from a 
given state and then follow policy

• It is the expected return starting from state s, taking action
a, and then following policy π

𝑄𝜋 𝑠, 𝑎 = 𝐸𝜋 𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

= 𝐸𝜋 𝑅𝑡+1 + 𝛾 𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + … |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

= 𝐸𝜋 ෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎



Bellman Equations  Richard Bellman, 1957

(600 papers, 35 books, 7 monographs)

• Bellman equations expresses the relationship 
between the values of a state s and the values of its 
successor states

• The value of the next state must equal the discounted 
value of the expected next state, plus the reward 
expected along the way (recursive form)



The value function is decomposed into 2 parts

– Immediate reward rt+1

– Discounted value of successor state γ V(st+1)

Bellman Expectation Equation (V)

( ) ( )

( )

( )( ) ( )1111

11

0

21

|         

|         

||

++++

++



=

+++

+==+=

=+=









=+=== 

ttttt

ttt

t

k

kt

k

ttt

sVrsssVrE

ssRrE

ssrrEssREsV



















• The state-action value function can be similarly 
decomposed into 2 parts

Bellman Expectation Equation (Q)

( ) ( )

( )( )
( )111

111

0

21

,             

,|,             

,|             

,|,

+++

+++



=

+++

+=

==+=









==+=

===



ttt

ttttt

tt

k

kt

k

t

ttt

asQr

aassasQrE

aassrrE

aassREasQ





















Optimal Policies and Values

• Optimal state value function:

• If policy π is such that in each state s it selects an action 
that maximize value, then π is an optimal policy

• An optimal policy can be found by using greedily the 
V*(s)

( ) ( ) ( ) ( )








+== 
'

' '*,maxmax*
s

a

ss
a

sVPasrsVsV 





• Optimal state-action value function:

• An optimal policy can be found by maximizing over the 
Q*(s,a), i.e.

• There is always a deterministic optimal policy for any 
MDP

• If we know Q*(s,a) we have the optimal policy

( ) ( ) sasQasQ =    ,max,* 



( ) ( ) ( )+=
'

'
' ','*max,,*

s
a

a

ss asQPasrasQ 

( ) ( ) asQasa Aa ,*maxarg if  1|* ==

𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾max
𝑎
𝑄𝜋 𝑠′, 𝑎



• Exploration finds more information about the 
environment to (possibly) makes a better decision

• Exploitation makes the best decision given current 
information (exploits known information to maximize 
reward) 

• Both of them are important. Fundamental problem 
not occurring in supervised learning

• A trade-off is needed between exploration and 
exploitation

Exploration and Exploitation



• ε-greedy: With probability ε choose one action 
at random (uniformly), and choose the best 
action with probability 1-ε (ε is gradually 
reduced)

• Probabilistic: Use probabilistic action selection

(soft-max)

Strategies

( )
( )

( ) =

=
A

b

TbsQ

TasQ

e

e
saP

1

,

,

|



• Model-free prediction

• Estimate the value function of an unknown MDP

• Various methodologies

1. Monte-Carlo (MC) - Sample-based reinforcement 
methods

2. Temporal-Difference (TD) methods

3. Value function Approximation

Reinforcement Learning Methods



• MC learns directly from episodes of experience: 
– sample sequences of states, actions, rewards (s,a,r)

• MC is model-free: no knowledge of model 
– (MDP transitions/rewards)

• Learns from complete episodes (no bootstrapping)
– all episodes must terminate

• Simplest idea: value = mean return,
– i.e. solve problems by averaging sample returns

1. Monte Carlo (MC) methods



• Return is the  total discounted reward

• Value function is the

expected return

• Increment total return

n(s) frequency of state s, and Gt the actual return following st

𝑉 𝑠𝑡 ←
𝑆 𝑠𝑡
𝑛 𝑠𝑡

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯

𝑉𝜋 𝑠 = 𝐸 𝐺𝑡| 𝑆𝑡= 𝑠, 𝜋

𝑆 𝑠𝑡 ← 𝑆 𝑠𝑡 + 𝐺𝑡



• Update V(s) incrementally after episode

• For each state st with return Gt

𝑉 𝑠𝑡 ← 𝑉 𝑠𝑡 +
1

𝑛 𝑠𝑡
𝐺𝑡 − 𝑉 𝑠𝑡

𝑉 𝑠𝑡 ← 𝑉 𝑠𝑡 + 𝛼 𝐺𝑡 − 𝑉 𝑠𝑡

𝑁 𝑠𝑡 = 𝑁 𝑠𝑡 + 1



• TD earns directly from episodes of experience

• TD is model-free: no knowledge of MDP 
transitions/rewards is required

• TD learns from incomplete episodes (bootstrapping)

• Based on Bellman equations:

2. Temporal Difference (TD) Learning

𝑉𝜋 𝑠 = 𝐸𝜋 𝑟𝑡+1 + 𝛾𝑉𝜋 𝑆𝑡+1 |𝑆𝑡 = 𝑠

𝑉𝜋 𝑆𝑡 = 𝑟𝑡+1 + 𝛾𝑉𝜋 𝑆𝑡+1



• TD generic update rule:

Temporal Difference (TD) Learning

𝑉 𝑠𝑡 ← 𝑉 𝑠𝑡 + 𝛼 𝑟𝑡+1 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡

( )tsV 

TD target

TD error



Learning rate



• MC update:

• TD update:

MC and TD

𝑉 𝑠𝑡 ← 𝑉 𝑠𝑡 + 𝛼 𝐺𝑡 − 𝑉 𝑠𝑡

Actual return from st

to end of episode

TD error

Estimate of the return 
according to the current policy

𝑉 𝑠𝑡 ← 𝑉 𝑠𝑡 + 𝛼 𝑟𝑡+1 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡
TD target



Q-Learning
(Watkins, Ph.D. Thesis, Cambridge Univ. 1989)

 Off-policy greedy method: evaluate or improve one 
policy while acting using another

 Learn state-action value functions Q(s,a)

𝑄(𝑠𝑡 , 𝑎𝑡) 1 − 𝛼 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 𝑟𝑡+1 + 𝛾max𝑎 𝑄 (𝑠𝑡+1, 𝑎)

𝑄(𝑠𝑡 , 𝑎𝑡) 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 𝑟𝑡+1 + 𝛾max𝑎 𝑄 (𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)

(or)

TD error

),( 11 ++ tt asQ





SARSA (policy improvement)

 On-policy TD method: evaluate or improve the current
policy used for control

 SARSA takes exploration into account in updates

Use the action actually chosen in updates (e-greedy)

 ),(),(max),(),( 11 tttattttt asQasQrasQasQ −++⎯⎯ ++ 

 ),(),(),(),( 111 ttttttttt asQasQrasQasQ −++⎯⎯ +++ 



• Reinforcement learning can be used to solve large 
problems, e.g.

– Backgammon: 1020 states

– Computer Go: 10170 states

– Vehicles: continuous state space

• Solution for large MDPs

– Estimate value function with function approximation

– Update function parameters using TD learning

3. Value Function Approximation



• Several function approximators can be used, 
e.g.

– Neural Networks – Deep NNs

– Linear model – Linear combinations of features

– Kernel machines

– Statistical regression models

– Decision trees

– …..

Value Function Approximation



• Assume a parametric model (w) for the Q-value
function

• Estimate model parameters, w, according to Q-
learning scheme (gradient descent):

Value function approximation with 
Temporal Difference Learning 

𝐸 𝑤 =
1

2𝑁
෍

𝑡=1

𝑁

𝑄(𝑠𝑡 , 𝑎𝑡 , 𝑤) − 𝑄𝜋(𝑠𝑡 , 𝑎𝑡)
2 =

=
1

2𝑁
෍

𝑡=1

𝑁

𝑄(𝑠𝑡 , 𝑎𝑡 , 𝑤) − 𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎, 𝑤)

2

𝑄𝜋 𝑠, 𝒂 ≈ max
𝑎

𝑄(𝑠, 𝑎; 𝑤)

Learning is executed 
on-line, or
with mini-batches



• On-line learning at every iteration:

𝛿𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡; 𝑤
𝑜𝑙𝑑 − 𝑟𝑡+1 + 𝛾max𝑎 𝑄 (𝑠𝑡+1, 𝑎; 𝑤

𝑜𝑙𝑑)

𝑤𝑛𝑒𝑤 𝑤𝑜𝑙𝑑 − 𝛼 𝛿𝑡 ∇𝑤𝑄(𝑠𝑡, 𝑎𝑡; 𝑤)



• Store the agent’s experiences at each time 
step et = (st, at, rt, st+1) in a dataset D = e1, ..., en

pooled over many episodes into a replay 
memory

• In practice, only store the last N experience 
tuples in the replay memory and sample 
uniformly from D when performing update

Experience replay memory



Double Q-learning strategy

– Collect samples and store them to memory D (by substitution)

– Learning is conducted using experience replay memory mini 
batches

– Target is calculated from a clone (target) Q-function

– After performing some learning epochs, copy updated Q-
network (function) to target Q-network (function)

𝐷 = 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1

𝛿𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡; 𝑤 − 𝑟𝑡+1 + 𝛾max𝑎 𝑄 (𝑠𝑡+1, 𝑎; 𝑤
𝑡𝑎𝑟𝑔𝑒𝑡)

𝑤𝑛𝑒𝑤 𝑤 − 𝛼 𝛿𝑡 ∇𝑤𝑄 𝑠𝑡 , 𝑎𝑡; 𝑤

𝑤𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑤𝑛𝑒𝑤

use mini baches S  D



• Represent value function as a linear combination of 
features

• Describe state s as a feature vector

• Or state-action feature vector

Linear Value Function Approximation

𝜙 𝑠 = 𝜙1 𝑠 , 𝜙2 𝑠 , … , 𝜙𝑛 𝑠

𝜙 𝑠, 𝑎 = 𝜙1 𝑠, 𝑎 , 𝜙2 𝑠, 𝑎 , … , 𝜙𝑛 𝑠, 𝑎



• Then the value function can be any regression model

e.g. linear regression model 

• wi are linear weights  

𝑉 𝑠 = 𝑤𝑇𝜙 𝑠 = 𝑤1𝜙1 𝑠 + 𝑤2𝜙2 𝑠 + ⋯+ 𝑤𝑛𝜙𝑛 𝑠

𝑄 𝑠𝑡 , 𝑎𝑡 , 𝑤 = 𝑤𝑇𝜙 𝑠𝑡 , 𝑎𝑡 =෍

𝑖=1

𝑛

𝑤𝑖𝜙𝑖 𝑠𝑡 , 𝑎𝑡



• Value function has a neural network (non-linear) design

• Model parameters, w, are the weights of network

Neural Networks for value function approximation



• Use deep net to estimate Q-values

• Input: the state of agent

• Output: Q-values for possible actions

• Learning step: gradient descent with the loss

• Policy: choose action to maximize the Q-value

Deep Q learning (DQN)



Deep Reinforcement Learning 
(Deep Mind Tech., Google - 2015)



• Network architecture and hyperparameters fixed 
across all games

• Input state is stack of raw pixels from last 4 frames

• Output is Q(s,a) got 18 joystick/button positions

• Reward is change in score for that step



Policy Gradient

• Assumption: Policy is parametric model a = πθ(s)

• Goal: Directly maximize the total expected reward over the 
entire trajectory, τ

• Learning: Gradient descent on the policy’s parameters θ

𝐽 𝜃 = 𝐸𝜋𝜃 𝑅(𝜏)

෠𝜃 ∶ max
𝜃

𝐽 𝜃 𝜃 ← 𝜃 + ∇𝜃 𝐸𝜋𝜃 𝑅(𝜏)



Policy Gradient

• Long-term reward: 
• sum of rewards for the trajectory

• Value of policy

• P(τ|θ): probability of trajectory following the policy πθ

• Goal: find policy parameters θ that maximize J(θ)

𝜏 = (𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇 , 𝑠𝑇)

𝐽 𝜃 = 𝐸𝜋𝜃 𝑅(𝜏) =෍

𝜏

𝑃 𝜏 𝜃 𝑅(𝜏)

𝑅 𝜏 =෍

𝑡=1

𝑇

𝑟(𝑠𝑡)

෠𝜃 ∶ max
𝜃

𝐽 𝜃 = max
𝜃

෍

𝜏

𝑃 𝜏 𝜃 𝑅(𝜏)



Computing the gradient

• (of course) we cannot compute all trajectories … but we can 
sample m trajectories 

• gradient

∇𝜃𝐽 𝜃 ≈
1

𝑚
෍

𝑖

𝑅 𝜏𝑖 ∇𝜃 log 𝑃 𝜏𝑖 𝜃



Computing the gradient

• Solution

• If action is discrete use (e.g.) Deep NN with softmax (last 
layer with so many neurons as actions)

• In continuous spaces of actions, action is directly generated

• Problem: gradient is noisy and has large variance

• Need to reduce variance 

∇𝜃𝐽 𝜃 ≈
1

𝑚
෍

𝑖=1,…,𝑚

𝑅 𝜏𝑖 ෍

𝑡=0

𝑇−1

∇𝜃 log 𝜋𝜃 𝑎𝑖𝑡|𝑠𝑖𝑡



Monte-Carlo Policy Gradient

(Williams, 1992)



Actor – Critic methods

• Learn Value function and Policy

• Critic: evaluates the current policy and the result is used in the 
policy training 

• Actor: implements the policy and is trained using Policy 
Gradient in direction suggested by critic

• Have separate memory structure to represent the policy 
independent of the value function





Reduce variance with baseline

• Rt has a lot of variance

• We can reduce variance subtracting a baseline to the estimator

• A good baseline is value function

• Use another parametric model w

𝑏 𝑠𝑡 = 𝑉𝜋𝜃 𝑠𝑡

doesn’t depend 
on actions taken

𝑉𝜋𝜃 𝑠𝑡 ≈ 𝑉𝑤(𝑠𝑡)



Monte-Carlo Actor Critic (with baseline function)



Estimating the TD error

•Critic: estimate the state-action value

•Actor: policy evaluation (action selection)

• TD error

𝑄𝑤 𝑠, 𝑎;𝒘 ≈ 𝑄𝜋𝜃 𝑠, 𝑎

𝜋𝜃 𝑠, 𝑎 ≈ 𝜋 𝑠, 𝒂; 𝜽

𝛿𝜋𝜃 = 𝑟 + 𝛾𝑄𝑤 𝑠′, 𝑎′ − 𝑄𝑤 𝑠. 𝑎





Actor-Critic schemes: TD and Advantage

• TD error

• Advantage function (Critic estimate the advantage function)

▪Use two function approximators with two set of parameters, w, v

▪ update both functions

𝐸𝜋𝜃 𝛿𝜋𝜃 𝑠, 𝑎 = 𝐸𝜋𝜃 𝑟𝑡+1 + 𝛾 𝑉𝜋𝜃 𝑠𝑡+1 |𝑠, 𝑎 − 𝑉𝜋𝜃 𝑠 =

= 𝑄𝑤 𝑠, 𝑎 − 𝑉𝑤 𝑠 = 𝐴𝑤 𝑠, 𝑎

𝛿𝜋𝜃 = 𝑟𝑡+1 + 𝛾 𝑉𝜋𝜃 𝑠𝑡+1 − 𝑉𝜋𝜃 𝑠𝑡

dueling Networks


