
Machine Learning 

Linear Regression 
 

Lesson 3 



• Basics of Regression 

• Least Squares estimation 

• Polynomial Regression 

• Basis functions Regression model 

• Regularized Regression 

• Statistical Regression  

– Maximum Likelihood (ML) estimation 

– Maximum A-Posteriori (MAP) estimation 

– Bayesian Regression 

2 

Linear Regression 
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• Input: Set of N tuples: 

–                   is the sample 

–  ti  R prediction or a value of an unknown function 
over the features of xi 

• Supervised technique 
 

• Goal: create a function y : 

– in one dimension 

– in d dimensions 
 

 θ is the (unknown) set of parameters 
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Basics in Regression 
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Graphical Example of Regression 

? 
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Graphical Example of Regression 
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Graphical Example of Regression 
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Linear regression:  
The case of 1-dimensional data 
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Linear regression:  
The case of 1-dimensional data 
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Linear regression:  
The case of 1-dimensional data 
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Learning: Estimating the regression 
coefficients {w0 , w1} which are the 
weights of the linear equation 
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iii txwwDx  10    :   



• Most popular estimation method is least squares. 

• Determine linear weights w that minimize the sum of 
squared loss (SSL): 

 

 

 

• Use standard differential calculus: 

–  differentiate SSL with respect to w0 , w1 

–  find zeros of each partial differential equation 

–  solve for w0 , w1  

 

Least squares linear fit to data 
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• Derivatives of parameters: 
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More dimensions (d>1) 
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• Input x has d features: 
 

• There are d+1 linear weights for describing 
the regression function 

 dxxx   1



 wxy ,



• Linear regression model 

 

 
• Alternative representation 

 

 
 where 
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Sum of Squared Error (SSE) 
• How can we quantify the error? 
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Sum of Squared Error (SSE) 
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• How can we quantify the error? 

 

 

 

 

 

 

 

 

 

    2

1

2

2

1
ˆ

2

1
TXwtxwwJ

N

i

ii

T  


     TXwTXwwJ
T


2

1



















NdN

d

xx

xx

X







1

111

1

1  TNttT 1

 Tdwwww    10 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML1 ( 16 ) 



Finding good parameters 

• Want to find parameters w which minimize the error 
 

• Think of a cost “surface”: error residual for that w… 
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SSE Minimization 
• Consider a simple problem 

– One feature (d=1), two data points (N>2) 

– Two unknowns:  w0, w1 

– Two equations: 

• Can solve this system directly (X : 2x2 ): 

• However, most of the time,  N > d+1 

– There may be no linear function that hits all the data exactly 

– Instead, solve directly for minimum of SSE function 

1101 xwwt 
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The general case 

• Reordering, we take 

• (XT X)-1XT  is called the “pseudo-inverse” 

• If XT is square and independent, this is the inverse X-1 
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Least Squares estimator 
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• Even when (XT X) is invertible, might be computationally 
expensive if X is huge. 

• Treat as an optimization problem: 

 
 
 

• How to find an estimator? 

 J(w) is convex in w 
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Optimization methods of SSE 



• Steepest Descent 

 

 

 

 

 

 

η: learning rate 

(or step-size) 

Gradient Descent Optimization 

Function decreases 
most quickly in the 
direction of the negative 
gradient. 
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Effect of step-size (η) 

 

• Large η : fast convergence but larger residual error. May cause 
oscillations 

  

• Small η : slow convergence but small residual error.  
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1. Gradient descent Optimization scheme 

• Since J(w) is convex, move along negative of gradient 

 

• Initialize: (t=0) 

 

• Update rule: 

 

 

 
 

• Stop: when some criterion is met (e.g. fixed # iterations) or 
when  
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2. Stochastic Gradient descent 
• Previous scheme was a batch gradient descent: all training 

examples are participated at every step 

 

 

• Stochastic gradient descent scheme repeatedly examines a single 
example at every step: 

 

 

 

• Advantage: often gets w close to the minimum much faster than 
batch mode. 

• It is preferred over batch when training set is large. 
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3. Newton-Raphson Optimization scheme 

• Update rule: 

 where H: Hessian matrix (second derivatives of J(w)) 

 
 

 

 

 

• By substituting the previous we obtain the rule: 

 

 

 

 

• This is the least-squares solution and is exact solution in one step 
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Effects of SSE (l2 error) choice 

• Sensitivity to outliers 
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Heavy penalty for large errors 
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Use the sum of absolute error (SAE) (l1 error) 
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Use the sum of absolute error (SAE) (l1 error) 
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Use the sum of absolute error (SAE) (l1 error) 
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L1 is more robust to 
outliers. However, the 
solution is unstable and 
the optimization problem 
is harder (use pattern 
search schemes, e.g. 
SIMPLEX).   
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Non-linear Regression 

• Consider non-linear regression 

 

– Ex: higher-order polynomials 
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Polynomial Regression 



• Example:  

 Use 3d polynomial. Single feature x, predict target t: 
 

 

 

 

 

 

 

• Sometimes useful to think of “feature transform” 
 

 

 

 

Add features: 

Linear regression in new features 
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Learning polynomial regression coefficients 

• Using Least-squares: 

 

 

 

• Using Gradient descent update rule: 
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Linear Basis Function Models 

• In general, can use any feature set we think is useful 

 
 

• Other information about the problem 
– e.g. location, age, … 

• Polynomial functions 
– Features [1, x, x2, x3, …] 

• Other functions 
– 1/x,  sqrt(x), x1 * x2, … 

 

• Regression remains “Linear” = linear in the parameters 
– Features we can make as complex as we want! 
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Polynomial basis functions 

 

 

• These are global  

• A small change in x affect 
all basis functions. 

Examples of Basis Function 
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Gaussian basis functions 

 

 

 

• These are local  

• A small change in x only 
affect nearby basis functions.  

• Parameters μj and s control 
location and scale (width). 

• Related to kernel methods. 
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Sigmoid basis functions 
 

 
where 

 

 
• Also these are local: a small 
change in x only affect 
nearby basis functions.  

• Parameters μj and s control 
location and scale (slope). 
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• The basis functions can capture various properties of 
the inputs (e.g. qualitative)  

• These are called “Additive models” 

• For example: we can try to rate documents based on 
text descriptors 

Additive models 
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• We can view the additive models graphically in terms 
of simple “units” and “weights”. 
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Overfitting 
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Overfitting 
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Overfitting and complexity 
• More complex models will always fit the training data 

better 

• But they may “overfit” the training data, learning 
complex relationships that are not really present 
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• Plot MSE as a function     of 

model complexity 
– Polynomial order 

 

• Decreases 
– More complex function 

fits training data better 

 

• What about new data? 
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Polynomial order 

New, “test” data 

 

• Low order 

– Error decreases 

– Underfitting 

• Higher order 

– Error increases 

– Overfitting 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML1 ( 43 ) 



Dealing with Overfitting 

Use more data 

Use a tuning set 

Regularization 

Be a Bayesian 
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1. Avoiding overfitting: Cross-validation 

• Cross-validation allows us to estimate the 
generalization error based on training examples 
alone 
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• Leave-one-out cross-validation treats each 
training example in turn as a test example: 

 

 

 

 

 where            are the least squares estimates of 
the parameters without the ith training example. 
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Polynomial Regression example 
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2. Regularization 

• Overfitting is reduced by imposing a constraint 
on the overall magnitude of the parameters.  
 

• Objective function is modified 

 
 

 

 λ : regularization parameter 
 

• Ew(w) set constraints to linear weights 
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L2-Regularization or Ridge Regression 

• The regularization term is quadratic 

 
 that penalize large weights 

• Objective function  
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Regularization Derivation 

    0ˆˆ0 wTwwJ T

W 

  TIw T  ˆ

• Ridge regression or weight decay 

• Since the squared weights is compatible with 
the squared error function, we get a nice closed 
form solution for the optimal weights. 

 

Identity matrix (m x m) 
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• Several regularized regression models  

More general regularizers 
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L1 Regularization (LASSO) 

• The regularization term is 

 
• Objective function  

 

 

 

• Ability to create sparse models that are more 
easily interpreted 
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Constrained formulation of the L1 Regularization 

 

 

 

• Least Absolute Selection and Shrinkage 
Operator (LASSO) 

• Several optimization techniques for solving the 
problem 
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An Optimization Scheme: Sequentially added sign 
constraints 

 

 

• Examine all possible combinations of the signs 
of the elements of w. 
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Tibshirani, R. (1996). Regression 
shrinkage and selection via the 
lasso. Journal of Royal. Statist. Soc 
B., Vol. 58, No. 1, pages 267-288).  
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L2 vs. L1 regularization 



 

.  
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L2 regularized regression L1 regularized regression  

Quadratic regularization has 
the advantage that the 
solution is in closed form (not 
appeared in non-quadratic 
regularizers). 

Lasso represents a convex 
optimization problem solved 
by quadratic programming or 
other convex optimization 
methods 

L2 regularization shrinks 
coefficients towards (but not 
to) zero, and towards each 
other. 

L1 regularization shrinks 
coefficients to zero at 
different rates; different 
values of  give models with 
different subsets of features.  

L2 vs. L1 regularization 



Model Likelihood and Empirical Risk 

• Two related but distinct ways to look at a 
model. 
 

– Empirical Risk: “How much error does the 
model have on the training data?” 
 

–Model Likelihood: “What is the likelihood 
that a model generated the observed data?” 
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Statistical view of linear regression 

• Assumption: (Generative model) 
 

 

 
 

 

 

 

 

• Whatever we cannot capture 
with our chosen family of 
functions will be interpreted as 
noise 

  
  

   wxyt ,

Observed output = constructive function + stochastic noise 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML1 ( 58 ) 



Statistical view of linear regression 

 

 

 

 

• If we consider (white) Gaussian noise 

  
 

 then we introduce the stochastic model:  
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inverse variance 
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Model Likelihood 

• Training set: 
 

• Generative model:  
 

 

 

• Likelihood function:  

 

 

 assuming Independently Identically distributed (iid) data  
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• Log-likelihood: 
 
 

 

 

 

  

• assuming a linear regression model of m basis functions 
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• Maximum Likelihood (ML) estimation 
 

 

• Partial derivative of linear weights (w): 
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• Maximum Likelihood (ML) estimation 
 

 

• Partial derivative of inverse variance (β): 
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Mean prediction squared error 
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MAP estimation of Linear Regression 

• MAP derivation of linear regression assumes a prior 
distribution over linear weights w: 

 
 
 
 

 α: is a hyperparameter over w and is the precision or 
inverse variance of the distribution. 
 

• Then, the posterior distribution is obtained as  
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Optimize the Bayesian posterior 
 
 
 

• Set the MAP log-likelihood function: 
 
 
 
 

             likelihood        +         prior 

      |,,|,,,| wpwXTpTXwp 

      |ln,,|ln wpwXTpLMAP 
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Optimize the Bayesian posterior 
 
 
 

• Set the MAP log-likelihood function: 
 
 
 
 

 likelihood 
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Optimize the Bayesian posterior 
 
 
 

• Set the MAP log-likelihood function: 
 
 
 
 

prior 
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      |ln,,|ln wpwXTpLMAP 
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Optimize the Bayesian posterior 
 

• Ignoring terms that do not depend on w : 
 
 
 

 
• MAP estimation of linear weights:  
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“Thus regularized (ridge) L2 regression reflects a 0-mean 
isotropic Gaussian prior on the weights” 
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Deterministic  approaches Statistical approaches 

Least squares 
 
 
 

 Maximum Likelihood (ML) 

 
 
 
 

A summary of the Linear Regression techniques 
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Deterministic  approaches Statistical approaches 

Least squares 
 
 
 

 Maximum Likelihood (ML) 

L2 regularized (ridge)  
 
 
 

MAP with Gaussian prior 
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A summary of the Linear Regression techniques 
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Deterministic  approaches Statistical approaches 

Least squares 
 
 
 

 Maximum Likelihood (ML) 

L2 regularized (ridge)  
 
 
 

MAP with Gaussian prior 

L1 regularized (lasso) 
 
 
 

MAP with Laplacian prior 
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A summary of the Linear Regression techniques 
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Hierarchical Bayesian model 
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Alternative Regression models 

 Elastic Net – Complex Prior for the weights w 
 
 

 Penalization by weighted L1 and L2 norms 

 
Weighted Least Squares: Assign for each case (xi,ti) a 

weight vi ≥ 0 (the higher the more important the case)  
 
 
 

 Then:  
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Bayesian Linear Regression 

• The previous MLE or MAP derivation of linear 
regression uses point estimates for the weight 
vector, w. 
 

• Bayesian modeling estimates the posterior 
distribution of weights after receiving all 
observations. 
 

• This allows us to find the distribution of the target of 
the new coming input, and thus make prediction. 
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• Generative model: 
 
 
 

• Let N observations:  
 

• Then, the join distribution of N observations T={t1, …, tN} is: 
 
 
 
 

• We treat that linear weights w as Gaussian random  
variables with mean m0 and covariance matrix S0 
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• Posterior distribution: product of two Gaussians 
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C. M. Bishop, “Pattern Recognition and Machine Learning”, page 689 
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• Substituting we take the general form of the posterior 
distribution: 
 

 
 where: 

 
 
 

• If m0 = 0 and S0 = α-1 I then 
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Predictive distribution 
 

• Assuming a new input x* we are looking for making a 
prediction of its target t* . This is equivalent on estimating 
the posterior distribution: 
 

 
• Marginalizing we take: 

 
 
 

 where 
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Predictive distribution (cont.) 
 

 
 
 

 
 
 
• According to Gaussian properties (B.44) we receive: 
 
  
 
 
where: 
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