Linear Regression

Lesson 3



Linear Regression

Basics of Regression

Least Squares estimation
Polynomial Regression

Basis functions Regression model
Regularized Regression

Statistical Regression

— Maximum Likelihood (ML) estimation

— Maximum A-Posteriori (MAP) estimation
— Bayesian Regression
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Basics in Regression

* Input: Set of N tuples: D = {(Xl,tl),...,(x,\, Ty )}
— % €RY isthe sample

— t; € R prediction or a value of an unknown function
over the features of x;

* Supervised technique

22

» Goal: create a functiony : Vx, e D : y(x,0)=~t,
—inone dimensiony : R — R

—inddimensions y: RY — R

O is the (unknown) set of parameters
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Graphical Example of Regression
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Graphical Example of Regression
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Graphical Example of Regression
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Linear regression:
The case of 1-dimensional data

., Tlarget t

. Input dataset

. a ) D:{(Xl’tl)"“’(XN’tN)}

Xi cR (one feature)

10 20
Input x
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Linear regression:
The case of 1-dimensional data

Input dataset

D ={(x,t,),....(Xy.ty )}

., Tlarget t

O_

Xi cR (one feature)

0 1'0 2'0
Input x

Predictor: Evaluate line y(X, W) =W, + W, X;
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Linear regression:
The case of 1-dimensional data

. Input dataset
D ={(x,t,),....(Xy,ty )}

Learning: Estimating the regression

> coefficients {w,, w,} which are the
| | weights of the linear equation
0 10

Input x ?
" YW=l
soas VX, e D I w, +wWX
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Least squares linear fit to data

* Most popular estimation method is least squares.

 Determine linear weights w that minimize the sum of
squared loss (SSL):

3W)= 23 (00w~ F = 3 (o + i, —t, )

2 1=1 I=1

e Use standard differential calculus:

— differentiate SSL with respect to w,, w,
— find zeros of each partial differential equation

— solve for w,, w,
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Derivatives of parameters:
N
o) _ ZW +W, X —t. =0=> Nw, +WZX —Zt
OW, )

Y

6‘J(W):ZN:(W +Wx —t )% =0=w Zx +WZX _let,
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More dimensions (d>1) x e R°

264

244

224

205

w

 There are d+1 linear weights for describing
the regression function y(x, w)
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* Linear regression model

d

Y(X, W) =Wy + WX, +...4+ Wy Xy =Wy + > WX;

e Alternative representation
y(x, w)=w"X
where w=|w, W, ... W, |

X =[1% ...x,]
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Sum of Squared Error (SSE)

* How can we quantify the error?




Sum of Squared Error (SSE)

Observation

t
y(x, w)

Prediction
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* How can we quantify the error?

1 & . 1
J(W):EZ( R =t )2 :EHXW_THZ
=1

J(W):%(XW—T)T(XW—T)

1 X1 Xy T=[t1 tN]T

1 Xy, o Xag | W=Wo W, ... [
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Finding good parameters

* Want to find parameters w which minimize the error

e Think of a cost “surface”: error residual for that w...

W, J(w)

W =argmin J(w)

W

W
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SSE Minimization

* Consider a simple problem
— One feature (d=1), two data points (N>2)

— Two unknowns: w,, W,
— Two equations:
d O

t1 =W, + W, X;
@

tz =W, + W, X,

» Can solve this system directly (X : 2x2 ):
T=Xw = W=XT

- However, most of the time, N > d+1
— There may be no linear function that hits all the data exactly
— Instead, solve directly for minimum of SSE function
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The general case °9

J(w)= %HXW—THZ = %(XW—T)T(XW—T)

V., J(W)=0= X" (Xw-T)=0
 Reordering, we take

XTXW=XTT =W, =(XTX)'X'T
Least Squares estimator
¢ (XTX)1XT is called the “pseudo-inverse”
« |f X7 is square and independent, this is the inverse X1
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Optimization methods of SSE

Even when (X" X) is invertible, might be computationally
expensive if X is huge.

Treat as an optimization problem:
W = arg min J(w) = arg mianXw—TH2
W w2

How to find an estimator?

J(w) is convex in w
J(w,)
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Gradient Descent Optimization

* Steepest Descent

Function decreases Jw) | | e % Gradient
most quickly in the ﬂ
direction of the negative /

radient. - v i Global cost minimum
g | i// "min(w)

n: learning rate (new) _ \,,(old) 0J (W)

W =w —p
(or step-size) oW
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Effect of step-size (n)

J(w) 3(w)

* Large n: fast convergence but larger residual error. May cause
oscillations

 Small n: slow convergence but small residual error.
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1. Gradient descent Optimization scheme

* Since J(w) is convex, move along negative of gradient

+ Initialize: (t=0) W¥

i w©
oo m s m s s s N W N =
/ \ ' )

°i Update rule: ! !
8J (w |
| W(new) _ W(old) —n ( ) i
| OW |, :
LW e XT(XwOD —T)

-------------------------------------------------

e Stop: when some criterion is met (e.g. fixed # iterations) or

when 8] (W) ..

OW yold)
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2. Stochastic Gradient descent

* Previous scheme was a batch gradient descent: all training
examples are participated at every step

T
W(new) _ W(O|d) . 77 X T (XW(O|d) _T): W(0|d) . W(O|d) Xi _ti )Xi

* Stochastic gradient descent scheme repeatedly examines a single
example at every step:

for1=1...,N

.
ey eld) _ U(W(old) X —t )Xi

* Advantage: often gets w close to the minimum much faster than
batch mode.

* Itis preferred over batch when training set is large.
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3. Newton-Raphson Optimization scheme

_______________________________________________________________________
»” Ss

Id -1 ’
Update rule: W(new) = W(O ) _ HVJ (W)
where H: Hessian matrix (second derivatives of J(w))

VI(w)=XTXw—-X'T

et e e
p R ——

S 7’
_________________________________________________________________________

* By substituting the previous we obtain the rule:

wnew) _ p(old) _ (X Ty )_1()( Ty ©9) _ T-I-)
= (XTX)'XTT

* Thisis the least-squares solution and is exact solution in one step
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Effects of SSE (/2 error) choice

e Sensitivity to outliers

18
16

14| 162 cost for this one datum

2;
' Heavy penalty for large errors
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Use the sum of absolute error (SAE) (/1 error)

J(W)zZN:‘WtY(i ~t|

1=1

18

L2, original data

! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18 20
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Use the sum of absolute error (SAE) (/1 error)

J(W)zZN:‘WtY(i ~t|

1=1

18

L2, original data

L1, original data

! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18 20
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Use the sum of absolute error (SAE) (/1 error)

J(W)zZN:‘WtX’i —ti‘
=1

18 L2, original data

L1, outlier data

L1 is more robust to
outliers. However, the
solution is unstable and
the optimization problem
is harder (use pattern
search schemes, e.g.
,--;--SJ‘IVI PLEX).

L 4
0 | | | | | | | |

I
0 2 4 6 8 10 12 14 16 1%,
L 4

a

N
‘0
®agmns®
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Non-linear Regression

Order 1 polynomial
T T T

18

[
[
T

* Consider non-linear regression

141
12

10

— Ex: higher-order polynomials !

r r r r r r r r r
0 2 4 6 8 10 12 14 16 18 20

Order 2 polynomial Order 3 polynomial
T T T T 18 T T T T

18
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Polynomial Regression

Y(X, W)= W, + WX +...+ W X" =W, +iWka = w'¢(x)

J(w)=

1

1

AN

X{

Yo,
XN

k=1

2> (Wglx) -t F = jow-T|

T :[tl tN]T

w=[w, W, ... w, [
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 Example:
Use 3d polynomial. Single feature x, predict target t:

D ={(x,t )} y(X) =W, + WX + W, X2 +w, X

\U, Add features: ‘U’

D — {(<Xi (% (x, )3>’ti )} y(X) = Wy + WX, + W, X, +W,X,

[
Linear regression in new features

e Sometimes useful to think of “feature transform”
y(¥)=w'g(x)  #(x)=[L x x?,x°]
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Learning polynomial regression coefficients

* Using Least-squares:

/N _1

W =(@"®) @'T
* Using Gradient descent update rule:

W(new) _ \y(0ld) _ " o7 (cDW(old) —T)
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Linear Basis Function Models

In general, can use any feature set we think is useful

HX)=[(X)..... 4, (x)]

Other information about the problem ¢j (X)Z R >R

— e.g. location, age, ... basis functions
Polynomial functions

— Features [1, x, X3, X3, ...]

Other functions y(X) = Zm: Wj ¢j (X) = WT ¢(X)

— 1/x, sqrt(x), x; * x,, ...

Regression remains “Linear” = linear in the parameters

— Features we can make as complex as we want!
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Examples of Basis Function

Polynomial basis functions
gbj (ZU) — LCj.

* These are global

* A small change in X affect
all basis functions.
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Gaussian basis functions

bj(x) = eXp{(x_'uj)Q} |

252

* These are local 0.75 |

* A small change in X only

affect nearby basis functions.
| 025

0.5

* Parameters u; and S contro
location and scale (width). 0

-1
e Related to kernel methods.
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Sigmoid basis functions

pj(x) =0 (x _Sﬂj>

where 1

1
7(a) = 1+ exp(—a)

0.75}

05|
* Also these are local: a small
change in X only affect 0-257
nearby basis functions.

* Parameters y; and s control
location and scale (slope).
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Additive models

* The basis functions can capture various properties of
the inputs (e.g. qualitative)

e These are called “Additive models”

* For example: we can try to rate documents based on
text descriptors

X = text document (collection of words)

b:(x) 1 if word i| appears in the document
(0 — :
| 0 otherwise

flx;w) = wo+ Z w;0;(X)

iewords
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We can view the additive models graphically in terms
of simple “units” and “weights”.

T f(x;w)
I.’(f _]\ (Y la/ .-_\\,I
N N A
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Overfitting

(@) / \
{ / \ t
O / \.\\
/ G o )
\
Or / / 0
\ /
\_\\ 0 /

0 ; I 0
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Overfitting
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Overfitting and complexity

 More complex models will always fit the training data
better

* But they may “overfit” the training data, learning
complex relationships that are not really present

Simple model omplex model

X X
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Training versus test error

Plot MSE as a function of
model complexity

— Polynomial order

Decreases

— More complex function
fits training data better

What about new data?

Low order

— Error decreases
— Underfitting
Higher order

— Error increases
— Overfitting

30

25

Mean squared error

N
o
T

Training data

~—_

!

]

Low

Polynomial order

high
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Dealing with Overfitting

v'Use more data
v'Use a tuning set
v'Regularization
v'Be a Bayesian
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1. Avoiding overfitting: Cross-validation

* Cross-validation allows us to estimate the
generalization error based on training examples

alone

T T T 1
I
I
I \ \ |_| run 4
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run 3




e Leave-one-out cross-validation treats each
training example in turn as a test example:

where W' are the least squares estimates of
the parameters without the it training example.
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Polynomial Regression example

*

'

-1

o
X

1

2

.-'1- 4

+

.,
",

+*

B

_E,E

degree =5, CV =6.0 degree =7, CV =156
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2. Regularization

* Overfitting is reduced by imposing a constraint
on the overall magnitude of the parameters.

* Objective function is modified

J (W) =Ep (W)"' AEy, (W)

Data term + Regularization term
A : regularization parameter

* E (w) set constraints to linear weights
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L2-Regularization or Ridge Regression

* The regularization term is quadratic
1 1M
By (W)=Sww=>3 W,
2 253

that penalize large weights
e Objective function

N
JW)=23 (W g )t f + S ww=
2= 2
= ow-T| + Zww
2 2
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Regularization Derivation
VyuJW)=0= 0" doW—D'T + W =0=
W= (D D+ A1 DT

Identity matrix (m x m)

* Ridge regression or weight decay

* Since the squared weights is compatible with
the squared error function, we get a nice closed

form solution for the optimal weights.
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More general regularizers

e Several regularized regression models

| |
q = 0.5 g=1 q=2 q=4

Lasso Quadratic
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L1 Regularization (LASSO)

* The regularization term is

£, ()=, - Z\W \

* Objective function

1 > A
20~ jow-T + %

* Ability to create sparse models that are more
easily interpreted
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Constrained formulation of the L1 Regularization

(

1 3
EHCI)W—TH; - st w| =0

min-

.

e [east Absolute Selection and Shrinkage
Operator (LASSO)

* Several optimization techniques for solving the
problem
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An Optimization Scheme: Sequentially added sign

* Examine all possible combinations of the sign-:---:

constraints

. |1
min{3lxw-T[E} st <L

of the elements of w.

Algorithm 1 Tibshirani’s Method

Lo R T e O

+uwi 1wy
g -
+wy —wy +
-y -
-+ +
—y +wy -

=iy =iy —

w = LS(}f. y) Tibshirani, R. (1996). Regression

constraints = {null}
while ||u)|[; <Ldo

add sign(w) to constraints
Xw — y||3 subject to constraints

W = My,
end while

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML1 ( 54 )

shrinkage and selection via the
lasso. Journal of Royal. Statist. Soc
B., Vol. 58, No. 1, pages 267-288).

1wy <

ugi

e1_1‘~

<t
t
t
wy <t
t
wy <1

<t

t

wy <



L2 vs. L1 regularization

w2 a w2 a
Iso-contours
of data term Ey(w)
w* \"
Iso-contour of
regularization term E,, (w)
5 >
un w1
Quadratic Lasso
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L2 vs. L1 regularization

L2 regularized regression |L1 regularized regression

Quadratic regularization has Lasso represents a convex

the advantage that the optimization problem solved
solution is in closed form (not by quadratic programming or
appeared in non-quadratic other convex optimization
regularizers). methods

L2 regularization shrinks L1 regularization shrinks
coefficients towards (but not coefficients to zero at

to) zero, and towards each different rates; different
other. values of A give models with

different subsets of features.
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Model Likelihood and Empirical Risk

* Two related but distinct ways to look at a
model.

— Empirical Risk: “How much error does the
model have on the training data?”

— Model Likelihood: “What is the likelihood
that a model generated the observed data?”
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Statistical view of linear regression

* Assumption: (Generative model)

Observed output = constructive function + stochastic noise

t=y(x,W)+e

 Whatever we cannot capture t i
with our chosen family of ol
functions will be interpreted as
noise Ea—

bk L o u
o
+
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Statistical view of linear regression
t=y(x,w)+e

* |f we consider (white) Gaussian noise

1 o e
1 _ 1 precision or
g~N (O,IB ) where § = 52 inverse variance

then we introduce the stochastic model:
tfx~ N(y(x,W), ﬁ‘l)
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Model Likelihood

* Training set: D = {(xl,tl), , ”’(XN ,tN )}
+ Generative model: €=, 3}

o, 1%.0)= N 1061 5)= 32 xpl -2 (. w)- 1 |
e Likelihood function:

N N

p(D16)=] p(t; | x HN( t|wig(x) A7)

=1 B

assuming Independently Identically distributed (iid) data
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* Log-likelihood:

L(@):mpmw):im olt, [ ,.0)

L(H)z—%ln2n+—ln,6— i(( W)t F

=1

* assuming a linear regression model of m basis functions

L(H={w,,8})=—%ln2ﬂ+—|nﬂ— Z(vv #(x)-t,
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 Maximum Likelihood (ML) estimation
L(H:{W,@}):—%In2n+ﬁlnﬂ——2(w p(x)-t,f

e Partial derivative of linear weights (w):

L) B3 a7

wiqﬁ(xi)w(xi>—zti¢T<xi>=o:@T@W:@TT

=1 =1

Wy, = (@) DT =W,
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 Maximum Likelihood (ML) estimation
L(H:{W,H}):—Eln2n+—ln,8— Z(W¢ —t,f

 Partial derivative of inverse variance (6):

LO) N L35G (x) 1 F =0

28 25

o
1 & 2 0y
=2 (W px) - f =y, T

=1

ﬂML

Mean prediction squared error
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MAP estimation of Linear Regression

 MAP derivation of linear regression assumes a prior
distribution over linear weights w:

p(w|e)=N (W| 0, ): (Zﬁjwz exp{—%wTw}

7T

a: is a hyperparameter over w and is the precision or
inverse variance of the distribution.

* Then, the posterior distribution is obtained as

p(w| X, T,a, B)x p(T | X,w, B)p(w| )
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Optimize the Bayesian posterior

p(w| X, T,a, B)oc p(T | X,w, B)p(w| )

* Set the MAP log-likelihood function:

LMAP(Q): In p(T | X’W’IB)+In p(W\ 0‘)

likelihood + prior
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Optimize the Bayesian posterior

p(w| X, T,a, B)oc p(T | X,w, B)p(w| )

* Set the MAP log-likelihood function:

LMAP(Q): In p(T | X’W’ﬁ)+|n p(W\ 0‘)
likelihood
L (0)=Inp(T | X,w, 5)= Zlnpt %, W, )=

__%In2ﬂ+—ln,3 Z(W¢ )
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Optimize the Bayesian posterior

p(w| X, T,a, B)oc p(T | X,w, B)p(w| )

* Set the MAP log-likelihood function:

LMAP(Q): In p(T | X’W’ﬁ)+|n p(W\ 0‘)

prior
Inp(w|a)=InN(w|0,a1)=

M M o
= In274+—Ina——=w'w

2 2 2
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Optimize the Bayesian posterior

* |gnoring terms that do not depend on w :

LMAP(W): In p(-L | X1W1ﬁ)+|n p(W\ 0()2
z-g;(WW(Xi)—ti)z _EWw

2
* MAP estimation of linear weights: A :%
oL, (W .
we (W) _ Wy = (@@ + A1 JDTT
OW

“Thus regularized (ridge) L2 regression reflects a 0-mean
isotropic Gaussian prior on the weights”
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A summary of the Linear Regression techniques

Deterministic approaches Statistical approaches

Least squares Maximum Likelihood (ML)

E S W' dx. )— 2 5~N(O’IB_1)
2;( ¢( i) ti) p(t|W”3):N(WT¢(X),,B_1)
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A summary of the Linear Regression techniques

Deterministic approaches Statistical approaches

Least squares Maximum Likelihood (ML)

E S w' dlx )— 2 5~N(O’IB_1)
2;( ¢( i) ti) p(t|W”3):N(WT¢(X),,B_1)

L2 regularized (ridge) MAP with Gaussian prior
p(W| a)z N(W| O,a‘ll)

1S 1 2 AN
Eizﬂ:(w ¢(Xi)—ti) +§Z(Wj)2 Inp(T | X,w, B)+In p(w| )

j=1
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A summary of the Linear Regression techniques

Deterministic approaches Statistical approaches

Least squares Maximum Likelihood (ML)
1& : ¢~N(0,57)
— ) W olX )t _
WA s Nwa7)
L2 regularized (ridge) MAP V\(ith G)aussi(an prior
-1
1N . s A leOl =NW|O,CZ |
Eé(w ¢(Xi)_ti) +EJZ;,(WJ)2 Inp(T | X,w, 8)+In p(w| )
L1 regularized (lasso) MAP with Laplacian prior

—z(w #x) -t f + z\w\ w~ Ce "
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Hierarchical Bayesian model

LIOMO

= (A1, A2)

£~N(0,87)

— ey,

()72)

p(a)=T(».7,)

G1’[

S

+ &

~N(0,&71)
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Alternative Regression models

» Elastic Net — Complex Prior for the weights w

W —~ Ce_ﬂi‘w‘l_l_/lz‘w‘Z
Penalization by weighted L1 and L2 norms

2
2

1 2 A A
J (W) = EHCDW_TH2 T EHW‘L + ?Z‘WH

» Weighted Least Squares: Assign for each case (x,t) a
weight v; 2 0 (the higher the more important the case)
2

LS W)t =V ew-T)
Then: W o = (CDTVCD)_lCDTVT ' O
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Bayesian Linear Regression

 The previous MLE or MAP derivation of linear
regression uses point estimates for the weight
vector, w.

* Bayesian modeling estimates the posterior
distribution of weights after receiving all
observations.

* This allows us to find the distribution of the target of
the new coming input, and thus make prediction.
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* Generative model: { = W' ¢(x)_|_ <

p(t] x,w, B)=N(t[w' g(x), 57)

* Let N observations: D = {(Xl,tl), . --1(XN ’tN )}

* Then, the join distribution of N observations T={t,, ..., t,} is:
N

p(T | X, w)=T ] pt [, w)=N(T | oW, 1)
i=1

* We treat that linear weights w as Gaussian random
variables with mean m, and covariance matrix S,

p(W)z N (mo’ So)
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* Posterior distribution: product of two Gaussians

p(w| T, X)oc p(T | X, w)p(w)= N(T |CDW,,8‘1I)N(W| My, S, )

If we have a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

p(x) = N(x|p. A7) (B.42)
p(ylx) = N(y|[Ax+b,L1) (B.43)
then the marginal distribution of ¥, and the conditional distribution of x given v, are

given by
ply) = N(y|[Ap+b,L '+ AATTAT) (B.44)
p(xly) = N(EZ{ATL(y —b)+ Au}, %) (B.45)

where

Y =(A+ATLA). (B.46)

C. M. Bishop, “Pattern Recognition and Machine Learning”, page 689
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e Substituting we take the general form of the posterior
distribution:

p(w| T, X )=N(T |@w, 871 )N(w|m,,S,)=N(w|m,,S,)
where:
S, = (A0 0+S,1 )" my =S, (fO"T +5,"m,)
* fmy,=0and S,=a!/then

S, =(p0 @ +al)’ -

my, = (B0 D +al ) fO'T = (@ D+l ) DT
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Predictive distribution

. . k . .
 Assuming a new input x we are looking for making a

prediction of its target t” . This is equivalent on estimating
the posterior distribution:

p(t*|x*,T)

 Marginalizing we take:
p(t* | x*,T):j' p(t* | x*,w)p(w\T)dW

where

=BT D+l ) g T
p(wlT)=N(wim, 5,) ™

S, =(po’d+al)’

p(t* | X, W): N(t* | WT¢(X*), ,8‘1)
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Predictive distribution (cont.)
p(t* | x*,T):j p(t* | x*,w)p(w\T)dw
p(w|T)=N(w|my,Sy) s, =(so"®+al)*
plt” X", w)= Nt [w'g(x) 5 )

e According to Gaussian properties (B.44) we receive:

p(t* | x*,T): N (t* | m, ¢(x*), o (x*))

G2 ()= A g (¢ )5 (X)
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