
Machine Learning 

Kernel Methods 
[1]. Gaussian Processes (GP’s) 

[2]. Relevant Vector Machines (RVM’s) 
 

Lesson 7 



• Assume M basis functions: 

 
 

• Linear model: 
  

 where w is a M-dimensional weight vector  
 

• An isotropic Gaussian prior over w  
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Linear regression example 
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• For any w obtain a particular function y(x).  

• Intuitively, we take a probability distribution 
over function y(x) 

 

 

• Linear model: 
 

 where Φ=[  Φik = φk( xi ) ] the design matrix. 
 

Remark: y is a linear combination of Gaussians 
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• y is also Gaussian 

 

 

 

 

 

 where K is a kernel matrix (Gram matrix) : 
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This is a particular example of Gaussian Process 
(GP) model 
 

A GP provides a probability distribution over 
functions y(x), such that the set of values y(x) 
evaluated at (x1, …, xN} jointly have a Gaussian 
distribution 
 

A GP provides a stochastic process y(x) that gives 
the joint distribution for any set of values 
(y(x1),…,y(xN)) 
 

 In 2-dimensional input case GP is known as 
Gaussian Random Field    
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• In Gaussian Process the joint of y’s is specified 
completely by second-order statistics (mean 
and variance) 
 

• Usually, we don’t have any knowledge of mean 
and thus we set it to zero (0) . (equivalent to 
zero-mean prior of w : p(w|a)=N(w|0,a-1I)) 
 

• Thus, GP is then defined by giving the 
covariance of y(x), given by the kernel function 
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• Training set: 

 
 

• Generative model for targets: 
 

• where: 
  

  
 

• Therefore: 
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Gaussian Processes for Regression 
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• Join distribution of N target values T=(t1,t2,…,tN) 

 
where Y=(y1,y2,…,yN) 

  

• Assuming that Y is a GPs, p(Y) is a zero-mean 
Gaussian with kernel (covariance) matrix K: 

 
 

Kernel function Kij = k(xi, xj) is chosen to express 
the correlation level of the corresponding values 
y(xi) , y(xj) 
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Marginal distribution of target values T=(t1,t2,…,tN) 
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Using the properties of  
Gaussians we take that 



Marginal distribution of target values T=(t1,t2,…,tN) 
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where 



Regression Problem: Make prediction 
 

• Predict the target tN+1 for a new input xN+1 given 
the target values T  

 

 

• Joint distribution of TN+1 = (t1 , …, tN , tN+1 ) 

 

 

 covariance matrix is of size (N+1) x (N+1) with 
elements from kernel function on N+1 inputs 
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• Target: find the conditional distribution 

 

• Solution: 

Partition the covariance matrix 

 

where 

– covariance matrix C is of size N x N 

– k is a vector with elements k(xi, xN+1), i=1, …, N  

– c = k(xN+1 , xN+1) + β-1  
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Exploit the Gaussian properties 
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Exploit the Gaussian properties 
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Gaussian Process regression model 
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[1]. Useful remark 

• A necessary constraint is that the covariance 
matrix  

 

 must be positive definite. 

• If λi is an eigenvalue of kernel matrix K, then 
matrix C will have as eigenvalue λi + β-1 .  

• Thus, it is sufficient K be positive semidefinite 
so that λ ≥ 0. 

• Need for constructing valid kernels… 
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[2]. Useful remark 

 

 

 

 

 where 
 

• If kernel k(. , .) is Gaussian, then we obtain a 
radial basis function (RBF) network model.  

• Note that inversion of matrix C requires O(N3) 
computational cost. 
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• Use a parametric (θ) kernel function in the 
covariance matrix. An example: 
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Learning the Gaussian process 
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Θ={ θ0 , θ1 , θ2 , θ3 } is the set 
of the unknown kernel  
parameters.  
These can be estimated using 
training examples. 



• Learning: fit the Gaussian process to the data.  

• Use the log likelihood function as a measure. 

 

 

 

• Non-convex function => a lot of local maxima 
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Learning the Gaussian process 
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Calculating the derivatives  

 

 

• Useful relations: 
  

  

 

• Let θ=( θi ) be the set of parameters. Then  
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Calculating the derivatives  

 

 

• Useful relations: 
  

  

 

• Let θ=( θi ) be the set of parameters. Then  
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• Bayesian estimation: Model the posterior 
probability 

 

• Adapt Gaussian Process model to classification 
problems 

 

• Transform the output of GPs using an 
nonlinear activation function 
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Gaussian processes for Classification  

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML7 ( 23 ) 



Consider a binary classification problem 
 

Define a GP over a function a(x) 
 

Use a logistic sigmoid function so as to obtain 
y  [0, 1] 

  
 

Probability distribution over target is Bernoulli 
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Problem formulation 
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• Training set  
 

Introduce a GP over the a’s 

 

 

Generative (or transformation) scheme  
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Prediction with Gaussian processes 
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• Test point xN+1 with unknown class  

• Goal is to determine the posterior 

 
Joint distribution of aN+1 = (a1 , …, aN , aN+1 ) 
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Prediction with Gaussian processes 
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• For 2-class problems we want to predict the 

 

 

 
 

 

 where 

 

 

 27 

Prediction with Gaussian processes 
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Obtaining from GP regression 



Remember GP regression 
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Approximation methods for integral calculation  

 

 
 

 

• Laplace approximation [Barber & Williams] 

• Variational methods [Gibbs & MacKay] 

• Expectation-Propagation [Minka & Ghahramani] 

• MCMC sampling [Neal] 
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Summary 
 

• GP’s provide a structured method of model 
and parameter selection. 

• The key ingredient of a GP is the covariance 
function; a recipe to construct covariance 
matrices. 

• Learning takes the form of setting the hyper-
parameters, using the marginal likelihood. 

• GP’s can be used for regression or 
classification. However require approximate 
inference techniques. 

30 Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML7 ( 30 ) 



Further reading on Gaussian Processes 

 

Many more topics and code: 
 
http://www.gaussianprocess.org/ 
 

31 Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML7 ( 31 ) 

http://www.gaussianprocess.org/
http://www.gaussianprocess.org/


• The relevance vector machine (RVM) is a 
Bayesian sparse kernel method for regression 
and classification.  

• It covers many applications 

• Solves problems with the SVM 

32 

 
Relevance Vector Machine – RVM 

 
Michael E. Tipping, “Sparse Bayesian Learning and the 

Relevance Vector Machine”, JMLR, 2001 
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Support Vector Machines (SVM) 
 

• A non-probabilistic decision machine: Returns 
point estimate for decision 

• Makes decisions based on the function: 

 

 

 where K is the kernel function  

• Attempts to minimize the error while 
simultaneously maximize the margin between 
the two classes  
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SVM “Problems” 
 

Non-probabilistic predictions. 

Requires estimation of error/margin trade-off 
parameters 

The kernel function K(x, xi) must satisfy 
mercer’s condition: 

 K must be a positive definite function 
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Relevance Vector Machines – RVM’s 
 

• Apply Bayesian treatment to SVM 

• The kernel functions in RVM are treated simply 
as a set of basis functions without many 
restrictions imposed on SVM kernels 

• Sparseness: Posterior distributions of the 
majority of weights are peaked around zero. 
Training vectors associated with the non-zero 
weights are the ‘relevant vectors’. 

• Uses significantly fewer kernel functions than 
SVM. 
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• Training set  
 

• Generative model 

 

 

• Assuming zero mean Gaussian noise 

 

• We take the conditional distribution of target 
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RVM for regression 
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• “Classical linear regression” assumes a linear 
combination with M nonlinear basis functions 
 

 
• RVM assumes N kernels, one for each training 

example: 

 
 

• It has the same structure of SVM, except that 
coefficients ai are now denoted as wi .   
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RVM for regression 

Machine Learning 2017  – Computer Science & Engineering, University of Ioannina – ML7 ( 37 ) 

     



M

i

ii

T xwxwxy
1



    0

1

, wxxkwxy
N

i

ii 




• Likelihood function for the set of N target values 

 

 
 

 

 

where 
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• ARD Prior: Gaussian prior for weights defining a 
separate hyperparameter ai  wi : 

 

 
• a: is a vector of N+1 hyperparameters 

 

• Introduce an hyperprior over a and precision β 
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• Introduce sparse weights: integrate out the 
precision a and take the marginal weight prior 

 

 

 

 

 

 
 

• Special case where a=b=0 => 
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Student-t  
distribution 

Uninformative priors 



Student-t distribution (Gosset 1908)  

 

• . 

 

• . 

 

pdf: 
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Priors - graphical model 
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Priors - graphical model 
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Priors - graphical model 
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Priors - graphical model 
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• The posterior over the weights w 
 

 
 

 

• Since all distributions are Gaussian, we can 
obtain analytical expression for the posterior 
pdf: 
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Inference – posterior over w 
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• product of two Gaussians 
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C. M. Bishop, “Pattern Recognition and Machine Learning”, page 689 
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• Posterior distribution: product of two Gaussians 
 
 
 
 
 

 
  
 

C. M. Bishop, “Pattern Recognition and Machine Learning”, page 689 
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• Posterior distribution of weights 
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2 approaches 
1st approach 
 

• Maximum A-Posteriori (MAP) estimation problem 
 

 
 
 

• Maximizing the log-likelihood (e.g. using EM algorithm) 
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Estimation of model parameters 

    Twpw |,,lnmax,,  
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Using EM algorithm for Maximizing the MAP log-likelihood 
 
• Treat weights as hidden variables and maximize 
 
 
  
• Update rules: 
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2nd approach 
 
• Obtaining the marginal likelihood of targets 

 
 
 
 

• Maximum likelihood estimation problem 

Estimation of model parameters 
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• Marginal likelihood 
 
 
 
 
 

 
  
 

C. M. Bishop, “Pattern Recognition and Machine Learning”, page 689 
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• Marginal likelihood 
 
 
 
 
 

 
  
 

C. M. Bishop, “Pattern Recognition and Machine Learning”, page 689 
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Maximize marginal log-likelihood 
 
 
 

 
• Maximizing wrt ln(α) and log(β) and using 
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• Taking derivatives equal to zero: 

 
 
 
 
 
 
 

• Alternative rule using the quantities: 
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• Alternative rule using the quantities: 
 

  
 
  
 
• Quantities γi  [0,1] show how well-determined 

parameter w is by the data (MacKay, 1992). 
 
– If ai is large (wi doesn’t fits the data)  => Σii  αi

-1 and 
thus γi  0  
 

– If ai is small (wi  fits the data) => γi  1  
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• Taking derivatives equal to zero: 

 
 
 
 

• Using the fact that 
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• Given a new input x* make a prediction of its 
target t*. This is equivalent on estimating 
posterior distribution 
 

 
• Marginalizing we take: 

 
 
 

 Integration of two Gaussians 
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Inference – Making predictions 
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Predictive distribution (cont.) 
 

 
 
 

 
 
 
 
 
 
  
 
 
where: 
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Predictive distribution (cont.) 
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• Predictive distribution: 

 
 

• Prediction: 
 

 
• Variance:  

 
 

 noise variance + uncertainty on the prediction  
       of the weights 
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• Consider a binary classification problem 

 

• Output is calculated using a logistic sigmoid 
function 

 

• ARD prior over the weights 

 

 

• Obtain the posterior distribution of weights 
65 

RVM for classification 
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• Posterior distribution over w: 

 

 

• Class conditional distribution of inputs 

 

 

• Log-likelihood 
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RVM for classification 
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• Maximization problem 

 

 

• Use Newton-Raphson optimization scheme 

 
 

• We obtain: 
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