Kernel Methods

[1]. Gaussian Processes (GP’s)
[2]. Relevant Vector Machines (RVM’s)

Lesson /



Linear regression example

e Assume M basis functions:

¢(X) — (¢1(X)1 9, (X) ’’’’’ Y (X))
+ Linear model: Y(X)=wW"¢(x)= Z w, 4, ()

where w is a M-dimensional weight vector
* An isotropic Gaussian prior over w

p(w\a):N(w\O,a‘ll)
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* For any w obtain a particular function y(x).

* Intuitively, we take a probability distribution
over function y(x)
y = (Y04 ) y(x; ). y(xy )

* Linear model: Y = OwW
where O=[ @, = d,(x;) ] the design matrix.

» Remark: y is a linear combination of Gaussians
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+ yis also Gaussian p(y)=N(y|0,K)
Ely|=E|ow|=®E|w|=0

covy]=Ely-Elyy-Ely) |- Elyy']-

- E|(ow)aw)' |= oE[w o7 = échDT - K

where K is a kernel matrix (Gram matrix) :
1
Kij — k(Xi X ): g¢(xi )T ¢(Xj)
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v’ This is a particular example of Gaussian Process
(GP) model

v A GP provides a probability distribution over
functions y(x), such that the set of values y(x)
evaluated at (x,, ..., x,} jointly have a Gaussian
distribution

v A GP provides a stochastic process y(x) that gives
the joint distribution for any set of values

(Y(X1)y--r Y (Xp))

v’ In 2-dimensional input case GP is known as
Gaussian Random Field
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* |n Gaussian Process the joint of y’s is specified
completely by second-order statistics (mean
and variance)

* Usually, we don’t have any knowledge of mean
and thus we set it to zero (0) . (equivalent to
zero-mean prior of w : p(w|a)=N(w]|0,al))

* Thus, GP is then defined by giving the
covariance of y(x), given by the kernel function

Eb’(xi )Y(Xj )J: k(xi ’ Xj)
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Gaussian Processes for Regression

° Training set: D = {(Xl,tl), .o -,(XN 1tN )}

y(x)~ GP
* Generative model for targets: ti — yi +gi
Yi = Y(Xi)

* where:
g ~ N(O,/B_l) random noise variable
(B : precision of noise)

* Therefore: p(’[i | yi)= N(ti | yi’ﬂ—l)
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* Join distribution of N target values T=(t,t,,...,t,)
p(T‘Y):N(T‘Y,IB_llN) [y : NXN unit matrix
where Y=(y, VY, Yn)

e Assuming that Yis a GPs, p(Y) is a zero-mean
Gaussian with kernel (covariance) matrix K:

p(Y)=N(Y |0,K)

» Kernel function K;; = k(x, x;) is chosen to express
the correlation level of the corresponding values

y(x) , y(x)
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Marginal distribution of target values T=(t,t,,...,t,)

p(T)= [ p(TY)p(Y )dY

2.3. The Gaussian Distribution 93

[ ] [ ]
U Sl ng t h e p ro pe rt I eS Of Marginal and Conditional Gaussians
: Given a marginal Gaussian distribution for x and a conditional Gaussian distri-
G a u SS I a n s We ta ke t h at bution for y given x in the form

p(x) N(x|p, A (2.113)
p(ylx) = N(y|]Ax+b, LY (2.114)

the marginal distribution of ¥ and the conditional distribution of x given y are
given by

ply) = N(y|Ap+b, L1+ AATAT) (2.115)
p(xly) = N(Z{ATL(y —b)+ Au},X) (2.116)

where B
S =(A+ATLA) L (2.117)
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Marginal distribution of target values T=(t,t,,...,t,)

p(T)= [ p(TY)p(Y )dY

2.3. The Gaussian Distribution 93

Using the properties of
Gaussians we take that

Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distri-
bution for ¥ given x in the form

p(Y)=N(Y [0,K)
p(TIY)=N(Y |Y, g1, o)

N(x|p, A (2.113)
N(y|Ax+b,L71) (2.114)

the marginal distribution of ¥ and the conditional distribution of x given y are

given by
p I — N I O (: <€ ply) = N(y|Ap+b, L1+ AATAT) (2.115)
] pixly) = N(xZ{ATL(y —b)+ Au}.X) (2.116)
where a
Y =(A+ATLA) . (2.117)

where

[C]ij = C(Xi X ): k(Xi X )"'13_150'
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Regression Problem: Make prediction

* Predict the target t,,, for a new input x,,,, given
the target values T

p(tN+1 ‘T) ?

* Joint distribution of T, = (t,, ..., ty, ty,: )

p(Ty..)=N(T wo Cyi1)

C,.. covariance matrix is of size (N+1) x (N+1) with
elements from kernel function on N+1 inputs
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* Target: find the conditional distribution p(t,,.|T)

* Solution: C Kk
Partition the covariance matrix ~ Cy,; R

where

— covariance matrix C is of size N x N

— k is a vector with elements k(x, x,,,), i=1, ..., N
—Cc=k(Xp,q1, Xyo1) + 67
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Exploit the Gaussian properties

Xa
X (K.b) . (2.65)

We also define corresponding partitions of the mean vector g given by

“ 2.66
H ( .ﬂb) (=.66)
and of the covariance matrix X given by
E|:||:| E-u.b
X (Eba ¥ ) (2.67)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(x,|xs)

Hape = Hg + EabE.'_-._bl r::':b — J‘I’b:} {EEI]
Bap = oo — ZapEp Tha (2.82)

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML7 ( 13)




Exploit the Gaussian properties

Xb

X ("ﬂ). Tha =

We also define corresponding partitions of the mean vecto

" (P‘a) Hna = ° = °

He Hy 0
and of the covariance matrix X given by T
c Kk
v E|:||:| E-u.b C N +1 —
Yoo )’ k C

From these we obtain the following expressions for the mean and covariance of the

conditional distribution p(x,|xs) T ~_1
} m(x,.,)=k'C™'T
Habp — Hga + EabE.'_-.r, (:{h - .“'.b] +

= — . 2 T -1
E”_ b Eaa Edbzbh Eb”-' G (XN +1) — C - k C k

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML7 ( 14 ) 14




Gaussian Process regression model
p(tN+1 ‘T): N(tN+1 ‘ m(XN+1)’ GI3I+1(XN+1))
m(X,.,)=k'C™T
(X, )=Cc—k'Ck




[1]. Useful remark
A necessary constraint is that the covariance

matrix [C]ij _ C(Xi | Xj): k(Xi : Xj)‘l‘ ,B_lé}j

must be positive definite.

If A, is an eigenvalue of kernel matrix K, then
matrix C will have as eigenvalue A + 81 .

Thus, it is sufficient K be positive semidefinite
so that A > 0.

Need for constructing valid kernels...
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296

6. KERNEL METHODS

Techniques for Constructing New Kernels.

Given valid kernels %, (x, x') and k2(x, x). the following new kernels will also

be valid:

k(x,x")
k(x,x")
k(x,x")
k(x,x")
k(x,x')
k(x,x)
k(x,x")
k(x,x")
k(x,x)
k(x,x')

cky (x,x")

f(x)kr (x, %) f(x)

q (kl l::l-:, x;}}
Exp{kl(xrxlrj}
By(x.x") + ko (x, x7)
k(3,3 )k (3, ')

ks (b(), B(x')
xTAx'

kﬂ{xﬂrx;} + kb(xb:ij}
K (Xa, Xg ) (3, X3

(6.13)
(6.14)
(6.15)
(6.16)
(6.17)
(6.18)
(6.19)
(6.20)
(6.21)
(6.22)

where ¢ > (is aconstant, f(-) is any function, g(-) is a polynomial with nonneg-
ative coefficients, ¢(x) is a function from x to BM, k4(-,-) is a valid kernel in
BM Aisa symmetric positive semidefinite matrix, x, and x; are variables (not
necessarily disjoint) with x = (x,, %), and k, and k&, are valid kernel functions

over their respective spaces.

Equipped with these properties, we can now embark on the construction of more
complex kernels appropriate to specific applications. We require that the kernel
k(x, x") be symmetric and positive semidefinite and that it expresses the appropriate
form of similarity between x and x' according to the intended application. Here we
consider a few common examples of kernel functions. For a more extensive discus-

sion of ‘kernel engineering’, see Shawe-Taylor and Cristianini (2004).

3 e o
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[2]. Useful remark

m( N+1) k'C™T = Zak( Xi N+1)

where . = [C _1T] i

* |f kernel k(., .) is Gaussian, then we obtain a
radial basis function (RBF) network model.

* Note that inversion of matrix C requires O(N?3)
computational cost.
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Learning the Gaussian process

Use a parametric (0) kernel function in the
covariance matrix. An example:

k( )6’e2

(o
T U0, + 03X X,

(1,00, 4.00, 0.00, 0.00) (9.00, £.00, 0.00, 0.00) (1.00, 64.00, 0.00, 0.00)

0={0,,6,,0,,0;}is the set
of the unknown kernel I I R
parameters. C imesmemow  ovmwmow
These can be estimated using :
training examples.

-3 -9 4
2105 0 05 1 -1 -05 0 05 | -1 -5 0 05 1

Figure 6.5 Samples from a Gaussian process prior defined by the covariance function (6.63). The title above
each plot denotes (.. .. 8. 6-1.
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Learning the Gaussian process

e Learning: fit the Gaussian process to the data.
e Use the log likelihood function as a measure.

Inp(T |6)= —%In(Zn)—%ln\C\—%TTC‘lT

 Non-convex function => a lot of local maxima
6 =argmax,{In p(T | 6)}
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Calculating the derivatives
In p(T |6’):—%In\C\—%TTC‘1T

e Useful relations:

C. PROPERTIES OF MATRICES

Similarly
i A B
—(AB) = —B+ A —. (C.20)
i tx tx

The derivative of the inverse of a matrix can be expressed as

i LHA

— (A=A —A (C.21)
ir * or

as can be shown by differentiating the equation A ' A = T using (C.20) and then

right multiplying by A1, Also

A

Z A= Tr (A '—) (C.22)
dr . dr

* Let 8=( 0, ) be the set of parameters. Then
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Calculating the derivatives
In p(T |6’):—%In\C\—%TTC‘1T

Useful relations: S 0 a2
%ln Al Tr(A '%) (©.22)
Let 6=( O, ) be the set of par ers. Then
olnp(T |6 1 ,0C ) 1 4, 0C
pT10)_ L [c29C ) LyrcaC oy
00 2 00 | 2 00
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Gaussian processes for Classification

* Bayesian estimation: Model the posterior
probability

e Adapt Gaussian Process model to classification
problems

* Transform the output of GPs using an
nonlinear activation function

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML7 ( 23)




Problem formulation

» Consider a binary classification problem t {0,1}
» Define a GP over a function a(x)

» Use a logistic sigmoid function so as to obtain
y €[0, 1]

1
y=o(a)= o

» Probability distribution over target is Bernoulli

p(t|a)=o(a) (1-o(a))”
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Prediction with Gaussian processes

* Training set D = {(Xl,t1 ), e (XN 1y )} (input, output pairs)

> Introduce a GP over the a’s a={a(x,),...,a(x, )}

pla)=Nloc) ot ﬂx')

» Generative (or transformation) scheme

activation Bernoulli
GP . .
function experiment
X > >

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML7 ( 25)

25




Prediction with Gaussian processes

* Test point x,,, with unknown class T,
* Goal is to determine the posterior

p(tNH‘T) T=(t,...,ty)

» Joint distribution of a,,, = (a,, ..., ay, ay,, )

Ay = {a(xl )’ P a(XN )’ a(XN +1 )}

p(aN+1): N (aN+1 |0, CN+1)
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Prediction with Gaussian processes

For 2-class problems we want to predict the
D(tN+1 :1‘T) p(tN+1:O|TN):1_ p(tN+1:l|TN)

p(tN+1 :1|T):
:j p(tN+1 =1| a(XN+1))p(a(XN+1)\T)da(xN+l)

where  p(t, ., =1|a(x,,,))=ol(a(x,.,))

o(a(XN +1) T ) = N (a(XN +1)| m(XN +17 GIEI +1 (XN +1 )))

Obtaining from GP regression
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Remember GP regression

p(tN+1 ‘T): N(tN+1 ‘ m(XN+1)’ GI%I+1(XN+1))
m(X,.,)=k'C™T
(X, )=Cc—k'Ck
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Approximation methods for integral calculation

p(tN+1 =1[T ) - ja(a(XN+1))N (a(XN+1) My Gliﬂ)da(xml) =

:EN(

)[G(a(XN 1 ))

Laplace approximation [Barber & Williams]
Variational methods [Gibbs & MacKay]
Expectation-Propagation [Minka & Ghahramani]
MCMC sampling [Neal]

2
MnONH
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Summary

GP’s provide a structured method of model
and parameter selection.

The key ingredient of a GP is the covariance
function; a recipe to construct covariance
matrices.

Learning takes the form of setting the hyper-
parameters, using the marginal likelihood.

GP’s can be used for regression or
classification. However require approximate
inference techniques.
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Further reading on Gaussian Processes

Carl Edward Rasmussen and Chris
Williams, MIT Press, 2006

Many more topics and code:

http://www.gaussianprocess.org/

Carl Edward Rasmussen and Chnstopher K. 1, Williams
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Relevance Vector Machine — RVM

Michael E. Tipping, “Sparse Bayesian Learning and the
Relevance Vector Machine”, JMLR, 2001

 The relevance vector machine (RVM) is a
Bayesian sparse kernel method for regression
and classification.

* |t covers many applications
* Solves problems with the SVM
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Support Vector Machines (SVM)

* A non-probabilistic decision machine: Returns
point estimate for decision

* Makes decisions based on the function:
N
y(x,w)= ZWiK(X’ X )+ W
i=1

where K is the kernel function

* Attempts to minimize the error while
simultaneously maximize the margin between
the two classes

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML7 ( 33)




SVM “Problems”

» Non-probabilistic predictions.

» Requires estimation of error/margin trade-off
parameters

» The kernel function K(x, x;) must satisfy
mercer’s condition:

K must be a positive definite function
_[ j f(x)f(y)K(x,y)dxdy>0 (vf eL,)

j_j f(x) dx <o
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Relevance Vector Machines — RVM’s

Apply Bayesian treatment to SVM

The kernel functions in RVM are treated simply
as a set of basis functions without many
restrictions imposed on SVM kernels

Sparseness: Posterior distributions of the
majority of weights are peaked around zero.
Training vectors associated with the non-zero
weights are the ‘relevant vectors'.

Uses significantly fewer kernel functions than
SVM.
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RVM for regression

* Training set D = {(x tl) ,,,,, (XN’tN)}

* Generative model
t=y(X)+e=wg(x)+e

* Assuming zero mean Gaussian noise

~N(0, 8%

* We take the conditional distribution of target

p(t]x,w, 8) = N(t| W' ¢(x )ﬂ )
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RVM for regression

e “Classical linear regression” assumes a linear
combination with M nonlinear basis functions

y<x>=wT¢<x>=i“”zlwi¢i<x>

* RVM assumes N kernels, one for each training
example:
y(x)=
=1

* |t has the same structure of SVM, except that
coefficients a; are now denoted as w; .

w k (X, X, )+ w,

M=
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* Likelihood function for the set of N target values

p(TIX,W,ﬂ)=]_N_1[p(tiIXi,W,ﬂ)=N(T|<DW,ﬂ1')

2 ( )
o7 1w 6)=[ 2" expl- 2 7 -
T . 2 )
where T = (t11t2 ----- tN) W= (Wo Wiy WN)




* ARD Prior: Gaussian prior for weights defining a
separate hyperparameter a, V w, :

fla)- [T 10.0)- N{ulo A°)

A=diag(a,,...,a, )
* a:is a vector of N+1 hyperparameters

* Introduce an hyperprior over a and precision 3

p(a)= liﬂOIGamma(ai | a2, b)

p(3)=Gamma(|c,d)
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* Introduce sparse weights: integrate out the
precision a and take the marginal weight prior

p(Wi):j p(w; | a; )p(a; )da, =
- j N(Wi O,o:i‘l)Gamma(ogi la,b)de; =

a 1 1
g F(a+ 2) N
= b+—- Student-t

1
(272 )5 F(a) 2 distribution
° l =h=() = 1
Speual c€ase \{vhere a=b=0 => p(Wi) L
Uninformative priors W. ‘
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Student-t distribution (Gosset1908) 1 ~ T

0.40

n _

+ . EM)=0 VAR(M=—7 |
025

_ 1 s =0.20}

* - Iimf (t)=—¢e ? 0.15
N300 n() /272_ N(Oll) 0.10

0.05}

pdf: 0.00




Student-t

- Gaussian

Figure 6: LEFT: an example Gaussian prior p(w|a) in two dimensions. RIGHT: the prior
p(w). where the hyperparameters have been integrated out to give a product of
Student-t distributions. Note that the probability mass is concentrated both at
the origin and along “spines” where one of the two weights is zero.
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Priors - graphical model




Priors - graphical model

L/

p(a):lﬁ[Gamma(ai |, b) .:

i=0

o(5)~ Gammal ] .) ()
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Priors - graphical model

p(5)=Gamma(s|c,d)
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Priors - graphical model

p(T |W,ﬂ)=H Nt [ w' g(x;), - : ! observations

p(5)=Gamma(s|c,d)
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Inference — posterior over w

* The posterior over the weights w

i a g PO 1w B)p(w| )
p(w|T,a, 3) To(T 1w, )] )

e Since all distributions are Gaussian, we can

obtain analytical expression for the posterior
pdf:
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e product of two Gaussians
p(W|T, e, B)oc p(T |w, B)p(w|a)=
- N(T |ow, 871 N(w|0, A™)

If we have a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

p(x) = N(x|p. A7) (B.42)
p(ylx) = N(y|[Ax+b,L7) (B.43)

then the marginal distribution of ¥, and the conditional distribution of x given v, are
given by

ply) = N(y|[Ap+b,L '+ AATTAT) (B.44)
p(xly) = NEZ{A'L(y —b)+Ap}, %) (B.45)

where
Y =(A+ATLA)L (B.46)

C. M. Bishop, “Pattern Recognition and Machine Learning”, page 689
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* Posterior distribution: product of two Gaussians
p(W|T,ex, B)oc p(T |w, B)p(w|er)=
= N(T |®w, 81N (w[0,A™)

If we have a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

b0 = Nedma ) NWIOAT) g
p(ylx) = N(y|[Ax+b,L1) N(‘|‘|q)w’ ,3—1|)B.43)

then the marginal distribution of ¥, and the conditional distribution of x given v, are

given by
p_(W|T, X)_; N(Wl :u’z)urkﬂ) (B.44)
p(xly) = N(EZ{ATL(y —b)+ Au}, %) (B.45)
where =02 CDTT
Y =(A+ATLA). u=p \13.46)

C. M. Bishop, “Pattern Recognition and Machine Learning”, page 689

> =(A+po @)
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* Posterior distribution of weights

p(w|T,a,f)=N(w| %)
p=proT

5 =(A+ DT D)
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Estimation of model parameters

2 approaches
1t approach

 Maximum A-Posteriori (MAP) estimation problem

Inp(w,a, B|T)cc
o< In p(T |w, B)p(w|a)p(er|a,b)p(B|c.d)

* Maximizing the log-likelihood (e.g. using EM algorithm)

0 ={w,a, B} =max, In p(w,a, B|T)
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Using EM algorithm for Maximizing the MAP log-likelihood

* Treat weights as hidden variables and maximize

Eoir s IN P(T [W, B)p(W] &)p(e)p(B)]

e Update rules:
1+ 2a 1+ 2a
. =

| Ew|Taﬂ[ ]+2b Yo+ uf+2b

e T =0’ ()" 3 +2d
N +2C

yi=l-a2;
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Estimation of model parameters

2"d approach

e Obtaining the marginal likelihood of targets

p(T [ X, e, B)=| p(T | X, w, B)p(W| cr)dw

 Maximum likelihood estimation problem
10 =1, pl}=max,Inp(T | X,a,p)

Machine Learning 2017 — Computer Science & Engineering, University of loannina— ML7 ( 53)




* Marginal likelihood
p(T |, B)= | p(T |w, B)p(w| a)dw

If we have a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

p(x) = N(x|p. A7) (B.42)
p(ylx) = N(y|[Ax+b,L7) (B.43)

then the marginal distribution of ¥, and the conditional distribution of x given v, are
given by

ply) = N(y|[Ap+b,L '+ AATTAT) (B.44)
p(xly) = NEZ{A'L(y —b)+Ap}, %) (B.45)

where
Y =(A+ATLA)L (B.46)

C. M. Bishop, “Pattern Recognition and Machine Learning”, page 689
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* Marginal likelihood
p(T |, B)= | p(T |w, B)p(w] a)dw

If we have a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

b0 = Nedma ) NWIOAT) g,
p(ylx) = N(y|[Ax+b,L71) N(T|q)w, ,3—1|)B.43)

then the marginal distribution of ¥, and the conditional distribution of x given v, are
given by

= N(y|[Ap+b,L7' + AATIAT) (B.44)

Tl p)=NTlOS) "
S :ﬁ_ll -|—CDA_1CDT (B.46)

where

C. M. Bishop, “Pattern Recognit
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Maximize marginal log-likelihood

N
| — _%m‘s‘_%TTS‘lT +Zln Gamma(ozi | a,b)+ In IO(,B)
=0

 Maximizing wrt In(a) and log(B) and using p(ln a):ap(a)

N
LZ—%{In‘S‘-FTTSlT}-FZ (alna, —be;)+cln g —dp
=0

where

S=437"'1+0A"D'
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* Taking derivatives equal to zero:

oL
dlne,

:%[1—ai(yi2+2”)]+a—bai =0=

B 1+?2a
| W +3 . +2b  T=(A+poT0)’

* Alternative rule using the quantities: 14 =1- alZ“
MacKay 1992

ew  Jj t2a
1’ +2b

.

i faster convergence
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* Alternative rule using the quantities: y=l-aX.
I /A |

ew )i t2a
BT i E=(ArpoTo)

* Quantities y; € [0,1] show how well-determined
parameter w is by the data (MacKay, 1992).

—If a; is large (w; doesn’t fits the data) => 3. ~a: ! and
thusy, =0

— If a;is small (w; fits the data) => y; ~ 1
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* Taking derivatives equal to zero:

oL 1[N

—Z| =T —®u| -Tr(s@'®)|+c-dB =0
T -l i) | o-dp -0

e Using the fact that Tr(ZCI)TCD): ,B‘lzi V.

yi=l-a;

5 =(A+po @)
then:

new HT (DIUH + 2d
('B ) N — Z. v, +2C
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Inference — Making predictions

* Given a new input X" make a prediction of its
target t*. This is equivalent on estimating
posterior distribution

plt” 1T ={t,.. 1 })= X7, )

* Marginalizing we take:

p(t* | x*,T,o?,,é):J p(t* | x*,w,ﬁ)p(w\T,&,ﬁ)dw

Integration of two Gaussians
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p(t* | x*,T,a,,B):j p(t* | x*,w,,é)p(w|T,é,,3)dw

where

p(t* | X7, w, ,B): N (t* | WT¢(X*), ,6‘1)

pw|T, @, 5)=NW| 1)
p=pEO'T Zz(A+,5’d)T®)_l
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Predictive distribution (cont.)

p(t” | x*,T,a,,B)zf p(t* | x*,w,,é)p(wﬁ,é,,é)dw

p(x) = N(x|p, A" (B.42)
p(ylx) = N(y|[Ax+b,L7) (B.43)

then the marginal distribution of y, and the conditional distribution of x given y, are
given by

p(y) = N(y|[Ap+b, L'+ AATAT (B.44)
p(xly) = NEZ{A'L(y —b)+Au},X) (B.45)
where
Y =(A+A'LA). (B.46)
where:
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Predictive distribution (cont.)

(\xTa,B) Ip( Fe W,B)(W| éﬁ)d
p(x) = N(x|u, A7) ( T, ,3) (W|ﬂ,2)
p(ylx) = N(y|Ax+b,L) (B.43)
then the marginal distribution of y, and the conditio p(t |X ’W) ( |W ¢( ) )

given by

= N(y|Ap+b, L' + AAT'AT) (B.44)

TN L) o ()

(A +-ALA) ~. (B.40)

o*(X)= 57 +¢" (X olx)
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where:




 Predictive distribution:

p(t* | x*,T)z N(t* | yT¢(x*), az(x*))

 Prediction:
N

Y5 )= 179X )= 3 pukx, )

=1
e Variance:

2(* -1 T(* *
o*(xX')= B +4" (X JEglx)
noise variance + uncertainty on the prediction
of the weights
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RVM for classification

Consider a binary classification problem t € {0,1}

Output is calculated using a logistic sigmoid

function y(X) _ cy(WT ¢(X))

ARD prior over the weights

p(w| a)=l_ﬁ1[ N(w[0,a")=N(w|0,A™)

Obtain the posterior distribution of weights
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RVM for classification

* Posterior distribution.over w: p(w|a)= N(WI 0, A_l)

p(w|T,a)= ELLIWPI
(T | a)

* Class conditional distribution of inputs
N
p(T W)=y @y  vi=cwex)
=1

* Log-likelihood

In p(w|T,a)c ZNll{ti Iny. +(1—t )In(l-y, )}—%WTAW
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* Maximization problem y, = o(w'é(x,))
(N
max,,d ¥ {t; Iny; +(1-t;)In(l-y;, )}—%WT AW
Li=1

* Use Newton-Raphson optimization scheme

. J
4

we) = W) _HAVE(wW)  H =VVE(w)
 We obtain:

VE(W)=®"(T -Y)- Aw
VVE(W) = —(CDT BO + A) B = [bi =Y (1_ Yi )]
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