MACHINE LEARNING

Generative Models




What is a Generative Model?

= Approach for unsupervised learning analysis of data

= Model that learn a simulator of data - a source that produce data
= Model that allow for density estimation

Techniques for Generative Modeling
= Explicit density estimation: Directly estimating the distribution of
training data.

= [mplicit density estimation: Indirect estimation of the data distribution
through direct learning of the data generation mechanism.
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Deep Generative Models

 Task: Given a dataset of samples D = {x4, ..., x5} find the
underlying (unknown) data distribution p(x)

* Goal: Approximate the true data distribution p(x) with a
parameterized Neural Network p,(x) using the D

* Learning problem: Find the (unknown) parameters 6 of the
Neural Network that best fit the given input data D
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Latent Variable Models

() Ethnicity

Image  x

* Only variables x are observed in the data

 Hypothesis: Existence of latent variables z that correspond to
high level features

* If zcan be found, p(x|z) could be much simpler that p(x)
* If we train this model, then we can identify features via p(z|x)
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Autoencoders
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* The hidden layer captures the compressed latent coding
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Autoencoder: a two-parts neural network structure

= Encoder (or recognition network): compress the input and converts it to a latent
representation (code), z = f(x)

= Decoder (or generation network): regenerates the input, converts the internal
representation to the outputs X = g(z)
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* The encoder compresses the input, and the decoder
(conditionally) reproduces it

' Learning is achieved by minimizing the reconstruction
error, which is the Loss function:

L(x, g(f(x))) = L(x, g,,(x))

* Mean squared error, MSE is a common loss function:
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Stochastic Autoencoders

» Consider Autoencoders as Generative Models

= Goal: capture the distribution of observed data
* Introduce latent variables z~p(z) (typically of lower dimension), which

are responsible to generate the observed data. Q @
Z

= ldea: model the joint distribution p(x, z) and integrate out the
latent variable z to obtain the marginal distribution of data p(x):

pp(x) = j p(x, 2)dz = j Po(X|2)py(2)dz
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Variational Autoencoders (VAE)
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» The distribution of latent variables p(z) = g(z|x) is chosen to be Gaussian with
parameters u, o

Stages

1. The Encoder produces the mean (v) and standard deviation (o).

2. Normaldistribution N(u, ¢°) is used to produce a sample latent vector z
3. Thisbecomes inputto the Decoder network for reproducing input
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Generative Adversarial Networks (GANS) [Goodfellow et. al. 2014]
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GAN structure
* Generative model consists of two neural networks that compete each other

= Make a sampling through p(z) and map it using a Deep Generator netto x = Gy(2)
= Instead of evaluating pg(x), use a classifier D, (x) to decide if it is real or fake
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Generative Adversarial Networks (GAN)

Generator Discriminator
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Random
input

Two collaborative and competitive neural networks:
* Discriminator tries to distinguish real from fake data created by the Generator

* Generator turns random noise into imitations of the data, in an attempt to fool
the Discriminator by creating more realistic samples
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Diffusion Models

= |dea: Estimate and analyze small step sizes (instead of a single step) that
gradually inserts noise to data using a Markov chain q(xg,X;,...,.Xn)=q(X)q(X1X,) ...
q(XylXn.,) untilreaching a final latent space that is a standard Gaussian, i.e. noise
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Reverse diffusion: remove noise

= Reverse diffusion is a denoising process

This is unknown

=" Goal of diffusion model is to learn the reverse denoising process
using information from the forward process

" |n this way, the reverse process can be used as a generative
model of new data from random noise!

" po(x¢—1]|x;) modeled as NV (x;_1|1g(x;), Zg(x)) where ug and Zg
are neural networks with 6 parameters
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