
Chapter 6: 

Association Rules



Association rule mining

 Proposed by Agrawal et al in 1993. 

 It is an important data mining model.

 Transaction data (no time-dependent)

 Assume all data are categorical. No good 

algorithm for numeric data.

 Initially used for Market Basket Analysis to find 

how items purchased by customers are related.

Bread  Milk [sup = 5%, conf = 100%]
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Association rule mining

 Ανάλυση συσχετίσεων: 

 Η διαδικασία ανακάλυψης συσχετίσεων μεταξύ 

αντικειμένων σε μεγάλο όγκο δεδομένων, type 

“market basket”.

 Οι κανόνες συσχέτισης προσφέρουν μία 

απεικόνιση συσχετίσεων της μορφής:

Α  Β  (ύπαρξη συσχέτισης)

 Εφαρμογές σε bioinformatics, web mining, 

medical diagnosis, etc.
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The model: data representation

 I = {i1, i2, …, im}: a set of items. (alphabet)

 Transaction t : 

 t a set of items, and t  I.

 Transaction data, itemset (στοιχειοσύνολο)

from set Ι.

 Transaction set T = {t1, t2, …, tn}.
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Transaction data: supermarket data

 Market basket transactions:

t1: {bread, cheese, milk}

t2: {apple, eggs, salt, yogurt}

… …

tn: {biscuit, eggs, milk}

 Concepts:

 An item: an item/article in a basket

 I: the set of all items sold in the store

 A transaction: items purchased in a basket; it may 
have TID (transaction ID)

 A transactional dataset: A set of transactions
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Transaction data: a set of  documents

 A text document data set. Each document 

is treated as a “bag” of keywords

doc1: Student, Teach, School 

doc2: Student, School 

doc3: Teach, School, City, Game 

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator  

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game 
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The model: rules

 A transaction t contains X, a set of items 
(itemset) in I, if X  t.

 An association rule is an implication of the 
form:

X  Y, where X, Y  I, and X Y = 

 An itemset is a set of items.

 E.g., X = {milk, bread, cereal} is an itemset.

 A k-itemset is an itemset with k items.

 E.g., {milk, bread, cereal} is a 3-itemset
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Rule strength measures

 Support count of an itemset X:

σ(X) = { ti | X  ti , ti  T }

 Number of transactions having itemset X

 Frequency of X.
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Rule strength measures

X  Y, where X, Y  I, and X Y = 

 Support of a rule: The rule holds with support
sup in T (the transaction data set) if sup% of 
transactions contain X  Y. 

 relative frequency of joint appearance of 
union of X, Y. 
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Rule strength measures

 Confidence of a rule: The rule holds in T with 
confidence conf if conf % of tranactions that 
contain X also contain Y.

 Conditional frequency of appearance of Y 
given X.
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Rule strength measures

 Why use support and confidence?

 Rules with low support may occur simply by 
change

 A low support rule is not interesting from a 
business perspective.

 Confidence measures the reliability of the 
inference made by a rule.
 The higher the confidence, the more likely it is for Y to 

be present in transactions containing X.
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Goal and key features

 Assume transaction set T = {t1, t2, …, tn}

 Goal: Find all rules that satisfy user-specified 

 minimum support (minsup) and 

 minimum confidence (minconf).

 Key Features

 Completeness: find all rules.

 No target item(s) on the right-hand-side
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An example (I)

 Transaction data

 Assume:
minsup = 30%

minconf = 80%

 An example frequent itemset:

{Chicken, Clothes, Milk}    [sup = 3/7]

 Association rules from the itemset:
Clothes  Milk, Chicken [sup = 3/7, conf = 3/3]

… …

Clothes, Chicken  Milk, [sup = 3/7, conf = 3/3]

t1: Beef, Chicken, Milk

t2: Beef, Cheese

t3: Cheese, Boots

t4: Beef, Chicken, Cheese

t5: Beef, Chicken, Clothes, Cheese, Milk

t6: Chicken, Clothes, Milk

t7: Chicken, Milk, Clothes



An example (II)
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Mining Association Rules

 Two-step approach: 

1. Frequent Itemset Generation

– Generate all itemsets whose support  minsup 

– Large itemsets

2. Rule Generation

– Generate high confidence rules from each frequent itemset, 

where each rule is a binary partitioning of a frequent itemset

 Frequent itemset generation is computationally 

expensive
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Step 1: Mining all frequent itemsets

 For a set with k items

 2k–1 possible itemsets

 We can use a lattice 

structure consisting of 

all possible itemsets.

 Each of these is 

called candidate

frequent itemset.



Step 1: Mining all frequent itemsets

Frequent item generation

 The brute-force approach

 Compute the support and confidence for every 

possible k-itemset

 Prohibitively expensive
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Step 1: Mining all frequent itemsets
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Step 1: Mining all frequent itemsets

 Several ways to reduce the computational 

complexity:

 Reduce the number of candidate itemsets by 

pruning the itemset lattice (Apriori Algorithm)

 Reduce the number of comparisons by using 

advanced data structures to store the candidate 

itemsets or to compress the dataset (FP Growth)
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A-priori algorithm

Key idea: 

 any subset of a frequent itemset is also 

frequent itemset

 Any subset of a non-frequent itemset is also 

non-frequent

 Pruning procedure that reduce searching



Reducing Number of  Candidates: Apriori

 Apriori principle:

 If an itemset is frequent, then all of its subsets must also 

be frequent

 Apriori principle holds due to the following property 

of the support measure:

 Support of an itemset never exceeds the support of its 

subsets

 This is known as the anti-monotone property of support

)()()(:, YsXsYXYX 
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Found to be 

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle (I)
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned 

supersets
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Illustrating Apriori Principle (II)
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The A-priori Algorithm

 Find frequent itemsets of size k=1 (1-itemset) F1
with support >= nminsup.

 repeat
 k=k+1

 Create candidate itemsets of size k Ck given Fk-1

 Discover those itemsets that are actually frequent Fk , 

Fk Ck satisfying the support threshold (need to 
scan the database once) .

 until Fk = 

 Frequent itemsets F = k Fk
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The A-priori Algorithm

 Find frequent itemsets of size k=1 (1-itemset) F1
with support >= nminsup.

 repeat
 k=k+1

 Create candidate itemsets of size k Ck given Fk-1

 Discover those itemsets that are actually frequent Fk , 

Fk Ck satisfying the support threshold (need to 
scan the database once) .

 until Fk = 

 Frequent itemsets F = k Fk
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Details: the algorithm

Algorithm Apriori(T)

C1  init-pass(T);  

F1  {f | f  C1, σ(f)  Ν*minsup};    // n: no. of transactions in T

for (k = 2; Fk-1  ; k++) do

Ck  candidate-gen(Fk-1);

for each transaction t  T do

for each candidate c  Ck do

if c is contained in t then

σ(c)=σ(c)+1

end

end

Fk  {c  Ck | σ(c)  N*minsup}

end

return F  k Fk;
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Example –

Finding frequent itemsets

Dataset T TID Items

T100 1, 3, 4

T200 2, 3, 5

T300 1, 2, 3, 5

T400 2, 5
itemset:count

1. scan T  C1: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3

 F1: {1}:2, {2}:3, {3}:3,             {5}:3

 C2:        {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

2. scan T  C2: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2

 F2:                    {1,3}:2,               {2,3}:2, {2,5}:3, {3,5}:2

 C3: {2, 3,5}

3. scan T  C3: {2, 3, 5}:2  F3: {2, 3, 5}

minsup=0.5
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Candidate generation methods

 Brute-force: examine all possible itemsets
candidates and then delete useless. 

 weakness: too many candidates

 Fk-1 x F1 : extend frequent k-1 itemsets found 
from previous step with the frequent 1-
itemsets.

 weakness: it is possible to create copies of 
candidate itemsets, ex. {a,b}  {c} , {b,c}  {a}
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A possible solution: ordering of  items

 The items are sorted in lexicographic order (which 

is a total order). 

 {w[1],w[2],…,w[k]} : a k-itemset w consisting of k items 

where w[1]<w[2]<…<w[k] according to the total 

lexicographic order.

 Then, k-1 itemsets can be extended only to items 

which are lexicographically higher than its own,   

e.g. {a,b}{c} is allowed but not {a,c}{b}

 weakness: again, numerous of possible useless 

candidates itemsets, e.g. merge {a,b} {c} is useless since 

itemset {a,c} is not frequent.
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A-priori candidate generation

 A-priori uses Fk-1 x Fk-1 method:

 Examines all possible pairs of Fk-1 itemsets and 
keeps only those having k-2 common items. 

 A, B are merged iff ai=bi i=1, …, k-2 and ak-2  bk-2 .

 Example (assume lexicographic order): 

F2 = {a,c}, {b,c}, {b,d}, {c,d}

then candidate

C3 = {b,c,d} merging {b,c} with {b,d}
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A-priori candidate generation

 Two steps:

 join step: Generate all possible candidate 
itemsets Ck of length k

 prune step: Remove those candidates in Ck that 
cannot be frequent. 
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Candidate-gen function

Function candidate-gen(Fk-1)

Ck  ; 

forall f1, f2  Fk-1

with f1 = {i1, … , ik-2, ik-1} 

and f2 = {i1, … , ik-2, i’k-1} 

and ik-1 < i’k-1 do

c  {i1, …, ik-1, i’k-1}; // join f1 and f2
Ck  Ck  {c}; 

for each (k-1)-subset s of c do

if (s  Fk-1) then

delete c from Ck; // prune

end

end

return Ck; 
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An example

 F3 = {{1, 2,  3}, {1,  2,  4}, {1,  3,  4},   

{1,  3,  5}, {2,  3,  4}}

 After join

 C4 = {{1,  2,  3,  4}, {1,  3,  4,  5}}

 After pruning:

 C4 = {{1,  2,  3,   4}}

because {1,  4,  5} is not in F3

(and so {1,  3,  4,  5} is removed) 
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Step 2: Generating rules from frequent 

itemsets

 Frequent itemsets  association rules

 Every k-itemset Y generates 2k-2 possible rules.

 Every association rule divides the k-itemset Y
into two non-empty subsets, X and Y-X

X  Y-X

satisying that c(XY-X) ≥ minconf

 Important: every possible rule satisfies the 
minsup threshold. 
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Step 2: Generating rules from frequent 

itemsets (cont.)

An example

3-itemset Y={a,b,c}

6 possible rules: {a, b}  {c}

{a, c}  {b}

{b, c}  {a}

{a}  {b, c}

{b}  {a, c}

{c}  {a, b}
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Generating rules: an example

 Suppose {2,3,4} is frequent, with sup=50%

 Proper nonempty subsets: {2,3}, {2,4}, {3,4}, {2}, {3}, {4}, with                  

sup=50%, 50%, 75%, 75%, 75%, 75% respectively

 These generate these association rules:

 2,3  4, confidence=100%

 2,4  3, confidence=100%

 3,4  2, confidence=67%

 2  3,4, confidence=67%

 3  2,4, confidence=67%

 4  2,3, confidence=67%

 All rules have support = 50%
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Generating rules: complexity

 In order to obtain A  B, we need to have 
support(A  B) and support(A).

 But, all the required information for 
confidence computation has already been 
recorded in itemset generation. No need to 
see the data T any more.

 This step is not as time-consuming as 
frequent itemsets generation.
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Generating rules: complexity

 Important: Confidence does not have 
monotonic property

 Rule A  B can have less, equal or greater than 
confidence of any rule A’  B’ , where A’ A and 
B’ B. 

 However, if rule X  Y-X does not cover the 
confidence threshold, then any rule X’  Y-X’ , 
X’X does not cover confidence threshold, too

( s(X’) ≥ s(X) )



A-priori Rule generation

 A-priori creates rules incrementally with 

respect to ”then” part of rule.

 Considering k-itemsets fk
 Initially, we examine all rules with m=1 items 

in “then part” of rule:

for each frequent k-itemset fk (k≥2) do

H1 = {i | i  fk } 1-item then part

ap_genrules(fk, H1)

end
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e.g.

{a,c.d}{b}

{a,b,d}{c}



Recursive procedure ap_genrules(fk, Hm)

k=|fk| (number of frequent k-itemsets)

m=|Hm| (number of then part of rule)

if k>m+1

Hm+1 = apriori-gen(Hm) */ create candidates by merging */

for hm+1  Hm+1

conf(fk – hm+1  hm+1 ) = sup(fk) / sup(fk – hm+1)

if conf ≥ minconf

accept rule fk – hm+1  hm+1

else

delete hm+1

endif

endfor

ap_genrules(fk, Hm+1)

endif
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e.g.

{a,c.d}{b}  

{a,d}{b,c}

{a,b,d}{c}
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More: Compact representation of  

frequent itemsets

 Number of frequent itemsets produced can 

be very large.

 Need for a small representative set of 

itemsets from which all other itemsets can be 

derived.

 Two such representations

 Maximal frequent itemsets

 Closed frequent itemsets 
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Maximal frequent itemsets

 A Maximal frequent itemset is defined as a 

frequent itemset for which none of its 

immediate supersets are frequent.

 It stands in the border between frequent and 

non-frequent supersets.

 Smallest set of itemsets from which all frequent 

itemsets can be derived.

 However, they do not contain the support 

information of their subsets.
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Maximal frequent itemsets
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Closed frequent itemsets

 An itemset is closed if none of its immediate 

supersets has exactly the same support count.

 Furthermore, a closed frequent itemset is a 

closed itemset where its support is ≥ minsup.

 Useful for removing redundant association rules:

 Rule X’  Y’ is redundant if rule X  Y has the same 

support and confidence, where X’ X and Y’  Y.
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Closed frequent itemsets

Closed not necessary

being maximal
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Relationships

All maximal frequent itemsets are closed since none of the 

maximal frequent itemsets can have the same support count as 

their Immediate supersets.  



ECLAT: Another Method for Frequent Itemset 

Generation

 ECLAT: for each item, store a list of transaction 

ids (tids); vertical data layout

TID Items

1 A,B,E

2 B,C,D

3 C,E

4 A,C,D

5 A,B,C,D

6 A,E

7 A,B

8 A,B,C

9 A,C,D

10 B

Horizontal

Data Layout

A B C D E

1 1 2 2 1

4 2 3 4 3

5 5 4 5 6

6 7 8 9

7 8 9

8 10

9

Vertical Data Layout

TID-list
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ECLAT: Another Method for Frequent Itemset 

Generation
 Determine support of any k-itemset by intersecting tid-

lists of two of its (k-1) subsets.

 3 traversal approaches: 
 top-down, bottom-up and hybrid

 Advantage: very fast support counting

 Disadvantage: intermediate tid-lists may become too 
large for memory

A

1

4

5

6

7

8

9

B

1

2

5

7

8

10

 

AB

1

5

7

8
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FP–Growth Algorithm

 Encodes the data using a compact data 

structure called as FP-tree.

 Extracts frequent itemsets directly from this 

structure 

 uses a recursive divide-and-conquer approach to mine 

the frequent itemsets. 
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FP–Tree representation

 Sequentially mapping each transaction onto a 

path in the FP-tree (the more the paths 

overlap the more compression we achieve).

 Each node in the tree contains the label of an 

item along with a counter that shows the 

number of transactions mapped onto the 

given path (frequency).  

 Tree constructions depends on order
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FP–Tree representation



FP-Tree Construction

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:1

B:1

null

A:1

B:1

B:1

C:1

D:1

After reading TID=1:

After reading TID=2:
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FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

Pointers are used to assist 

frequent itemset generation

D:1

E:1

Transaction 

Database

Item Pointer

A

B

C

D

E

Header table
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Benefits of  the FP-tree Structure

 Performance study shows
 FP-growth is an order of 

magnitude faster than 
Apriori, and is also faster 
than tree-projection

 Reasoning
 No candidate generation, 

no candidate test

 Use compact data structure

 Eliminate repeated 
database scan

 Basic operation is counting 
and FP-tree building
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Evaluation of  Association Patterns

 Data-driven for quality evaluation of association patterns

 Contingency Table (based on frequency counts)

 Calculate easily support and confidence measures
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Evaluation of  Association Patterns

 Evaluation metrics (degree of independence)

 Lift:

 Interest:

 IS Measure: 
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Sequential pattern mining

 Association rule mining does not consider the 
order of transactions. 

 In many applications such orderings are 
significant. E.g., 

 in market basket analysis, it is interesting to know 
whether people buy some items in sequence, 
 e.g., buying bed first and then bed sheets some time 

later. 

 In Web usage mining, it is useful to find 
navigational patterns of users in a Web site from 
sequences of page visits of users 



58

Basic concepts

 Let I = {i1, i2, …, im} be a set of items.  

 Sequence: An ordered list of itemsets. 

 Itemset/element: A non-empty set of items X  I. 

We denote a sequence s by a1a2…ar, where ai is 

an itemset, which is also called an element of s.  

 An element (or an itemset) of a sequence is denoted 

by {x1, x2, …, xk}, where xj  I is an item. 

 We assume without loss of generality that items in 

an element of a sequence are in lexicographic 

order.
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Basic concepts (contd)

 Size: The size of a sequence is the number of 

elements (or itemsets) in the sequence. 

 Length: The length of a sequence is the number of 

items in the sequence. 

 A sequence of length k is called k-sequence. 

 A sequence s1 = a1a2…ar is a subsequence of 

another sequence s2 = b1b2…bv, or s2 is a 

supersequence of s1, if there exist integers 1 ≤ j1 < 

j2 < … < jr1 < jr  v such that a1  bj1, a2  bj2, …, ar 

 bjr. We also say that s2 contains s1. 
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An example

 Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9}. 

 Sequence {3}{4, 5}{8} is contained in (or is a 

subsequence of) {6} {3, 7}{9}{4, 5, 8}{3, 8}

 because {3}  {3, 7}, {4, 5}  {4, 5, 8}, and {8}  {3, 

8}. 

 However, {3}{8} is not contained in {3, 8} or vice 

versa. 

 The size of the sequence {3}{4, 5}{8} is 3, and the 

length of the sequence is 4. 
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Objective

 Given a set S of input data sequences (or 
sequence database), the problem of mining 
sequential patterns is to find all the 
sequences that have a user-specified 
minimum support. 

 Each such sequence is called a frequent 
sequence, or a sequential pattern. 

 The support for a sequence is the fraction of 
total data sequences in S that contains this 
sequence. 
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Example
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Example (cond)
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GSP mining algorithm

 Very similar to the Apriori algorithm
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Candidate generation
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An example


