Chapter 06:

Association Rules

Association rule mining

Proposed by Agrawal et al in 1993.
It Is an important data mining model.

Transaction data (no time-dependent)

Assume all data are categorical. No good
algorithm for numeric data.

Initially used for Market Basket Analysis to find
how items purchased by customers are related.

Bread - Milk [sup = 5%, conf = 100%]

Association rule mining

AvAAUON CUCXETIOEWV:

o H diadikaoia avakaAuywnsg CUCXETIOEWY UETACU
QVTIKEIMEVWYV O€ NEYAAO OYKO DEOONEVWY, type
“market basket”.

O1 KavOVEC OUOXETIONG TTPOCPEPOUV [ia
QATTEIKOVION OUOXETIOEWV TNG MOPPNC:

A — B (UtTapg¢n cuoXETiong)

EpappoyeEc o€ bioinformatics, web mining,
medical diagnosis, etc.

The model: data representation
| ={i, I, ..., 1.} & set of items. (alphabet)
Transactiont :

aotasetofitems, andt c .

o Transaction data, itemset (OTOIXEI0GUVOAO)
from set |.

Transactionset T ={t;, t,, ..., L.}.

Transaction data: supermarket data

Market basket transactions:
t1: {bread, cheese, milk}
t2: {apple, eggs, salt, yogurt}

tn: {biscuit, eggs, milk}
Concepts:
o An item: an item/article in a basket

o I: the set of all items sold in the store

o Atransaction: items purchased in a basket; it may
have TID (transaction ID)

o A transactional dataset: A set of transactions

Transaction data: a set of documents

A text document data set. Each document
is treated as a “bag” of keywords

docl:
doc?2:
doc3:
doc4:
doch:
doc6:
doc7:

Student, Teach, School
Student, School

Teach, School, City, Game
Baseball, Basketball
Basketball, Player, Spectator
Baseball, Coach, Game, Team
Basketball, Team, City, Game

The model: rules

A transaction t contains X, a set of items
(itemset) In |, If X c t.

An association rule Is an implication of the
form:

X->Y,where X, Ycl,and XnY =J

An itemset IS a set of items.
o E.g., X ={milk, bread, cereal} is an itemset.

A k-itemset Is an itemset with k items.
o E.g., {milk, bread, cereal} is a 3-itemset

Rule strength measures

Support count of an itemset X:
o(X)={t|Xct, T}
Number of transactions having itemset X

Frequency of X.

Rule strength measures

X->Y,where X, Ycl,and XnY =

Support of a rule: The rule holds with support
sup In T (the transaction data set) if sup% of
transactions contain X U Y.

o(XuUY
support=s(X - Y)= (v) _ P(X UY)

relative frequency of joint appearance of
union of X, V.

Rule strength measures

Confidence of a rule: The rule holds In T with
confidence conf if conf % of tranactions that
contain X also contain Y.

confidence =c(X - Y)= G(X(;(J)Y) =P(Y | X)

Conditional frequency of appearance of Y
given X.

10

Rule strength measures

Why use support and confidence?

o Rules with low support may occur simply by
change

o Alow support rule is not interesting from a
business perspective.

o Confidence measures the reliability of the
Inference made by a rule.

The higher the confidence, the more likely it is for Y to
be present in transactions containing X.

11

‘ Goal and key features

= Assume transactionset T = {t;, t,, ..., t.}

= Goal: Find all rules that satisfy user-specified

o minimum support (minsup) and

o minimum confidence (minconf).

s Key Features
o Completeness: find all rules.
o No target item(s) on the right-hand-side

12

tl: Beef, Chicken, Milk
Aﬂ example <I> t2: Beef, Cheese

t3: Cheese, Boots
/ t4: Beef, Chicken, Cheese
t5: Beef, Chicken, Clothes, Cheese, Milk

Transaction data t6: Chicken, Clothes, Milk
Assume: t7: Chicken, Milk, Clothes

minsup = 30%
minconf = 80%

An example frequent itemset:
{Chicken, Clothes, Milk} [sup = 3/7]

Assoclation rules from the itemset:
Clothes — Milk, Chicken [sup = 3/7, conf = 3/3]

Clothes, Chicken — Milk, [sup = 3/7, conf = 3/3]

13

‘ An example (1I)

° ItemSEt I — {ilp iz: LY in}

* Find all rules X = Y such that:

— min _support = 50%

— min_conf = 50%

A=D (25%,33.3%) X
A= B (25%,33.3%) X
A=C (50%,667%) v
C=>A (50%,100%) v

T1 A,B, C
T2 A, C
T3 A D
T4 B, E F

14

Mining Association Rules

Two-step approach:

1. Frequent Itemset Generation
Generate all itemsets whose support > minsup
Large itemsets

2. Rule Generation

Generate high confidence rules from each frequent itemset,
where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is computationally
expensive

15

Step 1: Mining all frequent itemsets

null

For a set with k items
o 2k=1 possible itemsets

We can use a lattice
structure consisting of
all possible itemsets. /7~

Each of these is \\i; D ;
called candidate é{

AECD F«E-CE AED'E AEDE BCDE

frequent itemset. ~2 J/ _

AECDE

ltemset lattice

16

Step 1: Mining all frequent itemsets

Frequent item generation

The brute-force approach

o Compute the support and confidence for every
possible k-itemset

Prohibitively expensive

17

Step 1: Mining all frequent itemsets

Frequent Itemset Generation

Tl Bread, milk

T2 Bread, diaper, beer, eggs
T3 Milk, diaper, beer, coke
T4 Bread, milk, diaper, beer

Candidates
T5 Bread, milk, diaper, coke

W

Compare each candidate against every transaction
Complexity: O(NMw)

Step 1: Mining all frequent itemsets

Several ways to reduce the computational
complexity:

o Reduce the number of candidate itemsets by
pruning the itemset lattice ()

o Reduce the number of comparisons by using
advanced data structures to store the candidate
itemsets or to compress the dataset ()

19

A-priori algorithm
Key Idea:

any subset of a frequent itemset Is also
frequent itemset

Any subset of a non-frequent itemset Is also
non-frequent

Pruning procedure that reduce searching

20

Reducing Number of Candidates: Apriori

Apriori principle:

o If an itemset Is frequent, then all of its subsets must also
be frequent

Apriori principle holds due to the following property
of the support measure:

VX,Y (X YY) = s(X)>s(Y)

o Support of an itemset never exceeds the support of its
subsets

a This is known as the anti-monotone property of support

21

[lustrating Apriori Principle (I)
(o)

Found to be !
Infrequent \

N\
Pruned °
supersets == _

—————

22

Tllustrating Apriori Principle (IT)

The A-priori Algorithm

Find frequent itemsets of size k=1 (1-itemset) F,

with support >= nminsup.

repeat

o k=k+1

o Create candidate itemsets of size k C, given F, 4

o Discover those itemsets that are actually frequent F,

F. < C, satisfying the support threshold (need to
scan the database once) .

until F, = &
Frequent itemsets F = ¢ F,

24

The A-priori Algorithm

Find frequent itemsets of size k=1 (1-itemset) F,
with support >= nminsup.

repeat

g

g

a

k=k+1

Create candidate itemsets of size k C, given F,_4

'Discover those itemsets that are actually rrequent -, ,

F. < C, satisfying the support threshold (need to
scan the database once) .

untlF, = O
Frequent itemsets F = ¢ F,

25

Details: the algorithm

Algorithm Apriori(T)
C, < Init-pass(T);
F, < {f|fe Cy offy> N*'minsup}; // n: no. of transactions in T
for (k =2; F,_, #J; k++) do
C, < candidate-gen(F,_,);
for each transactiont € T do
for each candidate c € C, do
If ¢ is contained in t then
o(c)=o(c)+1
end
end
F. < {c € C, | o(c) > N*minsup}
end
return F « U, Fy;

26

Dataset T
minsup=0.5

Finding frequent itemsets

Example —

itemset:count
1.scan T =>» C,: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3
= F.: {1}:2, {2}:3, {3}:3, {5}:3
= C,: {1,2}, {1,3}, {15}, {2.3}, {2,5}, {3.5}

TID

ltems

T100

1,3,4

T200

2,3,5

T300

1,2,3,5

T400

2,5

2.scan T =>» C,: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2
= F, {1,3}:2, {2,3}:2, {2,5}:3, {3,5}:2

= C;: {2, 3,5}
3.scan T =>» C;: {2,3,53:2=> F5. {2,3,5}

27

Candidate generation methods

Brute-force: examine all possible itemsets
candidates and then delete useless.

o weakness: too many candidates

F.., X F, . extend frequent k-1 itemsets found
from previous step with the frequent 1-
itemsets.

0 weakness: it is possible to create copies of
candidate itemsets, ex. {a,b} U {c}, {b,c} U {a}

28

A possible solution: ordering of items

The items are sorted in lexicographic order (which

IS a total order).

o {w[1],w[2],...,w[K]} : a k-itemset w consisting of k items
where w[l]<w[2]<...<w[k] according to the total
lexicographic order.

Then, k-1 itemsets can be extended only to items
which are lexicographically higher than its own,
e.g. {a,b}u{c} is allowed but not {a,ch{b}

o weakness: again, numerous of possible useless

candidates itemsets, e.g. merge {a,b} {c} is useless since
itemset {a,c} is not frequent.

29

A-priort candidate generation

A-priori uses F, ;, x F,_; method:

Examines all possible pairs of F,_; itemsets and
keeps only those having k-2 common items.

o A, B are merged iff a=b, I1=17, ..., k-2 and a,., #b, , .

Example (assume lexicographic order):
F, ={a,c}, {b,c}, {b,d}, {c,d}
then candidate
C; = {b,c,d} merging {b,c} with {b,d}

30

A-priort candidate generation

Two steps:

0 join step: Generate all possible candidate
itemsets C, of length k

o prune step: Remove those candidates in C, that
cannot be frequent.

31

Candidate-gen function

Function candidate-gen(F, ,)

C, I
forall f;, f, € F;
with f; = {iy, ..., I, I,.1}
and f, ={i;, ..., i o, .1}
and i, </, do
C<«{ly, --vy gy Fth /' join f; and f,
C, <« C,u{c};

for each (k-1)-subset s of c do
If (s ¢ F,) then
delete c from C,; /I prune
end
end
return C;

32

An example

Fs={{1,2, 3}%{1, 2, 4}{1, 3, 4},
{1, 3, 5} {2, 3, 4}

After join
0 C,={{1, 2, 3, 4}, {1, 3, 4, 5}}
After pruning:
0 C,={{1, 2, 3, 4}}
because {1, 4, 5}isnotin F;

(and so {1, 3, 4, 5}is removed)

33

Step 2: Generating rules from frequent
itemsets
Frequent itemsets # association rules

Every k-itemset Y generates 2k-2 possible rules.

Every association rule divides the k-itemset Y
Into two non-empty subsets, X and Y-X

X > Y-X
satisying that c(X—>Y-X) = minconf

Important: every possible rule satisfies the
minsup threshold.

34

Step 2: Generating rules from frequent

itemsets (cont.)

An example

3-itemset Y={a,b,c}
6 possible rules:

{a, b} = {c}
{a, ¢} — {b}
b, ¢} —1{a;
1a =1, c}
b} =14, ¢}
{C} —=1{a, b}

35

Generating rules: an example

Suppose {2,3,4} is frequent, with sup=50%

o Proper nonempty subsets: {2,3}, {2,4}, {3,4}, {2}, {3}, {4}, with
sup=50%, 50%, 75%, 75%, 75%, 75% respectively

o These generate these association rules:
2,3 >4, confidence=100%
2,4 — 3, confidence=100%
3,4 > 2, confidence=67%
2 — 3,4, confidence=67%
3> 24, confidence=67%

4 — 2.3, confidence=67%
All rules have support = 50%

36

Generating rules: complexity

In order to obtain A — B, we need to have
support(A v B) and support(A).

But, all the required information for
confidence computation has already been
recorded In itemset generation. No need to
see the data T any more.

This step Is not as time-consuming as
frequent itemsets generation.

37

Generating rules: complexity

Important. Confidence does not have
monotonic property

o Rule A — B can have less, equal or greater than
confidence of any rule A - B’ , where Ac A and

B'c B.

However, If rule X — Y-X does not cover the
confidence threshold, then any rule X’ — Y-X",
X'cX does not cover confidence threshold, too

(s(X) 2 s(X))

38

A-priori Rule generation

A-priori creates rules incrementally with
respect to "then” part of rule.

Considering k-itemsets f,

Initially, we examine all rules with m=1 items
in “then part” of rule:

for each frequent k-itemset f, (k=22) do e.g.
H,={i|1 € f, } 1-item then part {a,c.d}—{b}
ap_genrules(f,, H,) tab.d}-id)

end

39

Recursive procedure ap_genrules(f,, H,,)

k=|f,] (number of frequent k-itemsets)
m=|H_,| (humber of then part of rule)
if k>m+1 {a,b,d}—{c}
H,.., = apriori-gen(H,,) */ create candidates by merging */
for hm+1 = Hm+1
conf(fy = Nops = hiney) = sUp(fy) / sup(f, = hppay)
if conf = minconf
acceptrule f,—h_,; > h 44

e.g.
{a,c.d}—>{b}
{a,d}—{b,c}

else
delete h,,

endif
endfor
ap_genrules(f,, H,.1)

endif

40

More: Compact representation of
frequent itemsets

Number of frequent itemsets produced can
be very large.

Need for a small representative set of
itemsets from which all other itemsets can be
derived.

Two such representations
o Maximal frequent itemsets
o Closed frequent itemsets

41

Maximal frequent itemsets

A Maximal frequent itemset is defined as a
frequent itemset for which none of its
Immediate supersets are frequent.

It stands In the border between frequent and
non-frequent supersets.

Smallest set of itemsets from which all frequent
itemsets can be derived.

However, they do not contain the support
Information of their subsets.

42

‘ Maximal frequent itemsets

Closed frequent itemsets

An itemset is closed if none of its Immediate
supersets has exactly the same support count.

Furthermore, a closed frequent itemset is a
closed itemset where its support is 2 minsup.

Useful for removing redundant association rules:

o Rule X' — Y'is redundant if rule X — Y has the same
support and confidence, where X'c Xand Y c .

44

‘ Closed frequent itemsets

TID ltems
minsup = 40%
abc

1
2
3
4
5

_ Closed not necessary
Q Closed Frequent ltemset abcde being maximal

45

Relationships

All maximal frequent itemsets are closed since none of the
maximal frequent itemsets can have the same support count as
their Immediate supersets.

Frequent
ltemsets
/
/ Glnsed
[Freq uent
|
| ltemsets

Relationships among frequent, maximal frequent, and closed frequent itemsets.

46

ECLAT: Another Method for Frequent Itemset

(Generation

ECLAT: for each item, store a list of transaction
Ids (tids); vertical data layout

Horizontal
Data Layout Vertical Data Layout

E

Items A B C
A,BE
B,.C,D
C,E
A,C,D
A,B,C,D
AE
A,B
A,B,C
A,C,D
B

1
3
6

O~NOIT NP
©0h~,WN
© o~ NT

©CoOo~NO O b

«—

o m
5O®NDINWN RIS

TID-list

ECLAT: Another Method for Frequent Itemset

Generation

Determine support of any k-itemset by intersecting tid-
lists of two of its (k-1) subsets.

A B AB
1 1 1
4 2 5
5 /\ 5 9 7
6 I 8
7 8

8 10

9

3 traversal approaches:
o top-down, bottom-up and hybrid

Advantage: very fast support counting

Disadvantage: intermediate tid-lists may become too
large for memory

48

FP-Growth Algorithm

Encodes the data using a compact data
structure called as FP-tree.

Extracts frequent itemsets directly from this

structure

0 uses a recursive divide-and-conquer approach to mine
the frequent itemsets.

49

FP—Tree representation

Sequentially mapping each transaction onto a
path in the FP-tree (the more the paths
overlap the more compression we achieve).

Each node in the tree contains the label of an
item along with a counter that shows the
number of transactions mapped onto the
given path (frequency).

Tree constructions depends on order

50

FP—Tree representation

Transaction null)
Data Set null
ltems
{a,b}
{b,c.d})

[a.c.d,e} b:1 d:1
iﬂ-gﬁi (i) After reading TID=1 (i) After reading TID=2
ab,c
{a.b,c.d} null
{a}
[a,b,c}
[a,b,d}
{b.c.e}

=
o

a1l r

=] T I e) B 0 L O

=k
=

(iv) After reading TID=10

FP-Tree Construction

ltems

@OO\ICDW-&OOI\)H%'

=
o

{A,B}
{B,C,D}
{A,C,D,E}
{A,D,E}
{A,B,C}
{A,B,C,D}
{B,C}
{A,B,C}
{A,B,D}
{B,C,E}

_ null
After reading TID=1.: ;)

AL

vy
|_\

After reading TID=2:

”“"R

AlQ ALk

FP-Tree Construction

ltems

@OO\ICDU'I-POOI\)Hé'

=
o

{AB}
{B,C,D}
{A,C,D,E}
{AD,E}
{AB,C}
{A,B,C,D}
{B.C}
{AB,C}
{A,B,D}
{B,C,E}

Header table

ltem

Pointer

mo O m>

Transaction
Database
B5()7 KN ~o-- _ :
,”’,” \\ /, ’]
C:3] \ % ' :
) A7 ; ;
//, ,// D:l /,’/
“““ D ,) 'E:1 Pointers are used to assist
T frequent itemset generation

53

Benefits of the FP-tree Structure

Performance study shows

o FP-growth is an order of
magnitude faster than

Apriori, and is also faster :
than tree-projection :\ o s e
Reasoning i

—

60

o No candidate generation, 0 | \

no candidate test]
o Use compact data structure 0- S
Q

Run time(sec.)

N

Eliminate repeated 0 — e
database scan o o5 1 15 2 25

Support threshold (%)
o Basic operation is counting
and FP-tree building

Evaluation of Association Patterns

B | B
Al fin | Jio | Jir
Al for | foo | for
J+1 | J+o | N

Data-driven for quality evaluation of association patterns

o Contingency Table (based on frequency counts)
o Calculate easily support and confidence measures

55

Evaluation of Association Patterns

Evaluation metrics (degree of independence)

C(A—> B)
s(B)

o Interest: (A B)=

o Lift:

s(AB) Nf,

s(A)xs(B) f,.f,
o IS Measure: IS(A, B):\/I(A, B)XG(A, B)=

56

Sequential pattern mining

Association rule mining does not consider the
order of transactions.

In many applications such orderings are
significant. E.g.,
o In market basket analysis, it is interesting to know

whether people buy some items in sequence,

e.g., buying bed first and then bed sheets some time
later.

o In Web usage mining, it is useful to find
navigational patterns of users in a Web site from
sequences of page visits of users

57

Basic concepts

Letl ={i,, I, ..., I,} be a set of items.
Sequence: An ordered list of itemsets.

ltemset/element: A non-empty set of items X c |.
We denote a sequence s by (a,a,...a,), where a Is
an itemset, which is also called an element of s.

An element (or an itemset) of a sequence is denoted
by {X1, X5, ..., X}, where x; € | is an item.

We assume without loss of generality that items in
an element of a sequence are in lexicographic
order.

58

Basic concepts (contd)

Size: The size of a sequence is the number of
elements (or itemsets) in the sequence.

Length: The length of a sequence is the number of
items In the sequence.
o Asequence of length k is called k-sequence.

A sequence s, =(a,a,...a,) IS a subsequence of
another sequence s, = (b,b,...b,), or s, is a
supersequence of s,, if there exist integers 1 < j1
o <...<jg<J<vsuchthata, c b,,a,c by, ..., a
c b;. We also say that s, contains s;.

59

An example

Let1={1,2,3,4,5,6,7,8, 9}.

Sequence ({344, 5{8}) Is contained In (or is a

subsequence of) ({6} {3, 7H{9K4, 5, 83, 8}

o because {3} < {3, 7}, {4, 5} < {4, 5, 8}, and {8} c {3,
8}).

o However, ({348} Is not contained in ({3, 8}) or vice
versa.

o The size of the sequence ({34, 58} is 3, and the
length of the sequence is 4.

60

Objective

Given a set S of input data sequences (or
sequence database), the problem of mining
sequential patterns is to find all the
sequences that have a user-specified
minimum support.

Each such sequence is called a frequent
sequence, or a sequential pattern.

The support for a sequence is the fraction of
total data sequences in S that contains this
sequence.

61

Example

Table 1. A set of transactions sorted by customer ID and transaction time

Customer ID | Transaction Time [Transaction (items bought)

1 July 20, 2005 30

1 July 25, 2005 90

2 July 9, 2005 10, 20
2z July 14, 2005 30

2 July 20, 2005 40, 60, 70
3 July 25, 2005 a0, 50, 70
4 July 25, 2003 30

4 July 29, 2003 40, 70
4 August 2, 2005 90

o July 12, 2005 90

62

Example (cond)

Table 2. Data sequences produced from the transaction databasze 1n Table 1.

Customer ID Data Sequence
1 ({30} {90}
2 ({10, 20} {30} {40, 60, 701
3 /{30, 50, 701
4 ({30} {40, 70} {90}
5 ({90}

Table 3. The final output sequential patterns

Sequential Patterns with Support =2 25%

1-sequences

130V, ({401, {70V, (Jo0)

2-sequences

{30} {40}, ({30} {70}, ({30} {90}), ({40, 70},

3-sequences

({30} {40, 70}

63

‘ GSP mining algorithm

= Very similar to the Apriori algorithm

Algorithm GSP(S)

1 ()« init-pass(S): // the first pass over S

2 Fi« {{{}) fe Ci ficount/n =z minsup}. // nis the number of sequences in §
3 for(k=2;Fi# 3 k) do // subsequent passes over S

4 C; < candidate-gen-SPM(Fj_):

5 for each data sequence s € S do // scan the data once

6 for each candidate ¢ = C; do

7 if ¢ 1s contained in s then

8 c.count++:; // increment the support count
0 end

10 end

11 Fp« {c € C; c.count/n =z minsup}

12 end

13 return |, F

_Fig. 12, The GSP Algorithm for generating sequential patterns

64

‘ Candidate generation

Function candidate-gen-SPM(Fj_;)

1. Join step. Candidate sequences are generated by joining Fj—; with Fi—;. A se-
quence s; joins with s, if the subsequence obtained by dropping the first item
of 51 15 the same as the subsequence obtained by dropping the last item of s;.
The candidate sequence generated by joining sy with s, 1s the sequence s5; ex-
tended with the last item in 5,. There are two cases:
¢ the added item forms a separate element if it was a separate element in s,.

and is appended at the end of sy in the merged sequence, and
¢ the added item is part of the last element of 5 in the merged sequence oth-
erwise.
When joining F; with Fi, we need to add the item in s; both as part of an
itemset and as a separate element. That is, joining ({x}) with {{v}) gives us
both {{x. ¥} and {{x} {v}). Note that x and y in {x. v} are ordered.

2. Prune step. A candidate sequence is pruned if any one of its (k—1)-

subsequence is infrequent (without minimum support).

Fig. 13. The candidate-gen-SPM() function

65

An example

Table 4. Candidate generation: an example

Frequent Candidate 4-sequences

3-sequences | after joining | after pruning

{1.24) | {1.2{4.9) | {1.2}{4 o)
1.2 | {1,23{4} {6}

{1144, o)

{1, 4}{6)

({2} {4, op

{2} {4} {6}

