
Chapter 6:

Association Rules

Association rule mining

 Proposed by Agrawal et al in 1993.

 It is an important data mining model.

 Transaction data (no time-dependent)

 Assume all data are categorical. No good

algorithm for numeric data.

 Initially used for Market Basket Analysis to find

how items purchased by customers are related.

Bread  Milk [sup = 5%, conf = 100%]

2

Association rule mining

 Ανάλυση συσχετίσεων:

 Η διαδικασία ανακάλυψης συσχετίσεων μεταξύ

αντικειμένων σε μεγάλο όγκο δεδομένων, type

“market basket”.

 Οι κανόνες συσχέτισης προσφέρουν μία

απεικόνιση συσχετίσεων της μορφής:

Α  Β (ύπαρξη συσχέτισης)

 Εφαρμογές σε bioinformatics, web mining,

medical diagnosis, etc.

3

4

The model: data representation

 I = {i1, i2, …, im}: a set of items. (alphabet)

 Transaction t :

 t a set of items, and t  I.

 Transaction data, itemset (στοιχειοσύνολο)

from set Ι.

 Transaction set T = {t1, t2, …, tn}.

5

Transaction data: supermarket data

 Market basket transactions:

t1: {bread, cheese, milk}

t2: {apple, eggs, salt, yogurt}

… …

tn: {biscuit, eggs, milk}

 Concepts:

 An item: an item/article in a basket

 I: the set of all items sold in the store

 A transaction: items purchased in a basket; it may
have TID (transaction ID)

 A transactional dataset: A set of transactions

6

Transaction data: a set of documents

 A text document data set. Each document

is treated as a “bag” of keywords

doc1: Student, Teach, School

doc2: Student, School

doc3: Teach, School, City, Game

doc4: Baseball, Basketball

doc5: Basketball, Player, Spectator

doc6: Baseball, Coach, Game, Team

doc7: Basketball, Team, City, Game

7

The model: rules

 A transaction t contains X, a set of items
(itemset) in I, if X  t.

 An association rule is an implication of the
form:

X  Y, where X, Y  I, and X Y = 

 An itemset is a set of items.

 E.g., X = {milk, bread, cereal} is an itemset.

 A k-itemset is an itemset with k items.

 E.g., {milk, bread, cereal} is a 3-itemset

8

Rule strength measures

 Support count of an itemset X:

σ(X) = { ti | X  ti , ti  T }

 Number of transactions having itemset X

 Frequency of X.

9

Rule strength measures

X  Y, where X, Y  I, and X Y = 

 Support of a rule: The rule holds with support
sup in T (the transaction data set) if sup% of
transactions contain X  Y.

 relative frequency of joint appearance of
union of X, Y.

   YXP
N

YX
YXs 




) (
support



10

Rule strength measures

 Confidence of a rule: The rule holds in T with
confidence conf if conf % of tranactions that
contain X also contain Y.

 Conditional frequency of appearance of Y
given X.

   XYP
X

YX
YXcconfidence |

) (

) (









11

Rule strength measures

 Why use support and confidence?

 Rules with low support may occur simply by
change

 A low support rule is not interesting from a
business perspective.

 Confidence measures the reliability of the
inference made by a rule.
 The higher the confidence, the more likely it is for Y to

be present in transactions containing X.

12

Goal and key features

 Assume transaction set T = {t1, t2, …, tn}

 Goal: Find all rules that satisfy user-specified

 minimum support (minsup) and

 minimum confidence (minconf).

 Key Features

 Completeness: find all rules.

 No target item(s) on the right-hand-side

13

An example (I)

 Transaction data

 Assume:
minsup = 30%

minconf = 80%

 An example frequent itemset:

{Chicken, Clothes, Milk} [sup = 3/7]

 Association rules from the itemset:
Clothes  Milk, Chicken [sup = 3/7, conf = 3/3]

… …

Clothes, Chicken  Milk, [sup = 3/7, conf = 3/3]

t1: Beef, Chicken, Milk

t2: Beef, Cheese

t3: Cheese, Boots

t4: Beef, Chicken, Cheese

t5: Beef, Chicken, Clothes, Cheese, Milk

t6: Chicken, Clothes, Milk

t7: Chicken, Milk, Clothes

An example (II)

14

Mining Association Rules

 Two-step approach:

1. Frequent Itemset Generation

– Generate all itemsets whose support  minsup

– Large itemsets

2. Rule Generation

– Generate high confidence rules from each frequent itemset,

where each rule is a binary partitioning of a frequent itemset

 Frequent itemset generation is computationally

expensive

15

16

Step 1: Mining all frequent itemsets

 For a set with k items

 2k–1 possible itemsets

 We can use a lattice

structure consisting of

all possible itemsets.

 Each of these is

called candidate

frequent itemset.

Step 1: Mining all frequent itemsets

Frequent item generation

 The brute-force approach

 Compute the support and confidence for every

possible k-itemset

 Prohibitively expensive

17

Step 1: Mining all frequent itemsets

18

Step 1: Mining all frequent itemsets

 Several ways to reduce the computational

complexity:

 Reduce the number of candidate itemsets by

pruning the itemset lattice (Apriori Algorithm)

 Reduce the number of comparisons by using

advanced data structures to store the candidate

itemsets or to compress the dataset (FP Growth)

19

20

A-priori algorithm

Key idea:

 any subset of a frequent itemset is also

frequent itemset

 Any subset of a non-frequent itemset is also

non-frequent

 Pruning procedure that reduce searching

Reducing Number of Candidates: Apriori

 Apriori principle:

 If an itemset is frequent, then all of its subsets must also

be frequent

 Apriori principle holds due to the following property

of the support measure:

 Support of an itemset never exceeds the support of its

subsets

 This is known as the anti-monotone property of support

)()()(:, YsXsYXYX 

21

Found to be

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle (I)
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned

supersets

22

23

Illustrating Apriori Principle (II)

24

The A-priori Algorithm

 Find frequent itemsets of size k=1 (1-itemset) F1
with support >= nminsup.

 repeat
 k=k+1

 Create candidate itemsets of size k Ck given Fk-1

 Discover those itemsets that are actually frequent Fk ,

Fk Ck satisfying the support threshold (need to
scan the database once) .

 until Fk = 

 Frequent itemsets F = k Fk

25

The A-priori Algorithm

 Find frequent itemsets of size k=1 (1-itemset) F1
with support >= nminsup.

 repeat
 k=k+1

 Create candidate itemsets of size k Ck given Fk-1

 Discover those itemsets that are actually frequent Fk ,

Fk Ck satisfying the support threshold (need to
scan the database once) .

 until Fk = 

 Frequent itemsets F = k Fk

26

Details: the algorithm

Algorithm Apriori(T)

C1  init-pass(T);

F1  {f | f  C1, σ(f)  Ν*minsup}; // n: no. of transactions in T

for (k = 2; Fk-1  ; k++) do

Ck  candidate-gen(Fk-1);

for each transaction t  T do

for each candidate c  Ck do

if c is contained in t then

σ(c)=σ(c)+1

end

end

Fk  {c  Ck | σ(c)  N*minsup}

end

return F  k Fk;

27

Example –

Finding frequent itemsets

Dataset T TID Items

T100 1, 3, 4

T200 2, 3, 5

T300 1, 2, 3, 5

T400 2, 5
itemset:count

1. scan T  C1: {1}:2, {2}:3, {3}:3, {4}:1, {5}:3

 F1: {1}:2, {2}:3, {3}:3, {5}:3

 C2: {1,2}, {1,3}, {1,5}, {2,3}, {2,5}, {3,5}

2. scan T  C2: {1,2}:1, {1,3}:2, {1,5}:1, {2,3}:2, {2,5}:3, {3,5}:2

 F2: {1,3}:2, {2,3}:2, {2,5}:3, {3,5}:2

 C3: {2, 3,5}

3. scan T  C3: {2, 3, 5}:2  F3: {2, 3, 5}

minsup=0.5

28

Candidate generation methods

 Brute-force: examine all possible itemsets
candidates and then delete useless.

 weakness: too many candidates

 Fk-1 x F1 : extend frequent k-1 itemsets found
from previous step with the frequent 1-
itemsets.

 weakness: it is possible to create copies of
candidate itemsets, ex. {a,b}  {c} , {b,c}  {a}

29

A possible solution: ordering of items

 The items are sorted in lexicographic order (which

is a total order).

 {w[1],w[2],…,w[k]} : a k-itemset w consisting of k items

where w[1]<w[2]<…<w[k] according to the total

lexicographic order.

 Then, k-1 itemsets can be extended only to items

which are lexicographically higher than its own,

e.g. {a,b}{c} is allowed but not {a,c}{b}

 weakness: again, numerous of possible useless

candidates itemsets, e.g. merge {a,b} {c} is useless since

itemset {a,c} is not frequent.

30

A-priori candidate generation

 A-priori uses Fk-1 x Fk-1 method:

 Examines all possible pairs of Fk-1 itemsets and
keeps only those having k-2 common items.

 A, B are merged iff ai=bi i=1, …, k-2 and ak-2  bk-2 .

 Example (assume lexicographic order):

F2 = {a,c}, {b,c}, {b,d}, {c,d}

then candidate

C3 = {b,c,d} merging {b,c} with {b,d}

31

A-priori candidate generation

 Two steps:

 join step: Generate all possible candidate
itemsets Ck of length k

 prune step: Remove those candidates in Ck that
cannot be frequent.

32

Candidate-gen function

Function candidate-gen(Fk-1)

Ck  ;

forall f1, f2  Fk-1

with f1 = {i1, … , ik-2, ik-1}

and f2 = {i1, … , ik-2, i’k-1}

and ik-1 < i’k-1 do

c  {i1, …, ik-1, i’k-1}; // join f1 and f2
Ck  Ck  {c};

for each (k-1)-subset s of c do

if (s  Fk-1) then

delete c from Ck; // prune

end

end

return Ck;

33

An example

 F3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4},

{1, 3, 5}, {2, 3, 4}}

 After join

 C4 = {{1, 2, 3, 4}, {1, 3, 4, 5}}

 After pruning:

 C4 = {{1, 2, 3, 4}}

because {1, 4, 5} is not in F3

(and so {1, 3, 4, 5} is removed)

34

Step 2: Generating rules from frequent

itemsets

 Frequent itemsets  association rules

 Every k-itemset Y generates 2k-2 possible rules.

 Every association rule divides the k-itemset Y
into two non-empty subsets, X and Y-X

X  Y-X

satisying that c(XY-X) ≥ minconf

 Important: every possible rule satisfies the
minsup threshold.

35

Step 2: Generating rules from frequent

itemsets (cont.)

An example

3-itemset Y={a,b,c}

6 possible rules: {a, b}  {c}

{a, c}  {b}

{b, c}  {a}

{a}  {b, c}

{b}  {a, c}

{c}  {a, b}

36

Generating rules: an example

 Suppose {2,3,4} is frequent, with sup=50%

 Proper nonempty subsets: {2,3}, {2,4}, {3,4}, {2}, {3}, {4}, with

sup=50%, 50%, 75%, 75%, 75%, 75% respectively

 These generate these association rules:

 2,3  4, confidence=100%

 2,4  3, confidence=100%

 3,4  2, confidence=67%

 2  3,4, confidence=67%

 3  2,4, confidence=67%

 4  2,3, confidence=67%

 All rules have support = 50%

37

Generating rules: complexity

 In order to obtain A  B, we need to have
support(A  B) and support(A).

 But, all the required information for
confidence computation has already been
recorded in itemset generation. No need to
see the data T any more.

 This step is not as time-consuming as
frequent itemsets generation.

38

Generating rules: complexity

 Important: Confidence does not have
monotonic property

 Rule A  B can have less, equal or greater than
confidence of any rule A’  B’ , where A’ A and
B’ B.

 However, if rule X  Y-X does not cover the
confidence threshold, then any rule X’  Y-X’ ,
X’X does not cover confidence threshold, too

(s(X’) ≥ s(X))

A-priori Rule generation

 A-priori creates rules incrementally with

respect to ”then” part of rule.

 Considering k-itemsets fk
 Initially, we examine all rules with m=1 items

in “then part” of rule:

for each frequent k-itemset fk (k≥2) do

H1 = {i | i  fk } 1-item then part

ap_genrules(fk, H1)

end

39

e.g.

{a,c.d}{b}

{a,b,d}{c}

Recursive procedure ap_genrules(fk, Hm)

k=|fk| (number of frequent k-itemsets)

m=|Hm| (number of then part of rule)

if k>m+1

Hm+1 = apriori-gen(Hm) */ create candidates by merging */

for hm+1  Hm+1

conf(fk – hm+1  hm+1) = sup(fk) / sup(fk – hm+1)

if conf ≥ minconf

accept rule fk – hm+1  hm+1

else

delete hm+1

endif

endfor

ap_genrules(fk, Hm+1)

endif

40

e.g.

{a,c.d}{b}

{a,d}{b,c}

{a,b,d}{c}

41

More: Compact representation of

frequent itemsets

 Number of frequent itemsets produced can

be very large.

 Need for a small representative set of

itemsets from which all other itemsets can be

derived.

 Two such representations

 Maximal frequent itemsets

 Closed frequent itemsets

42

Maximal frequent itemsets

 A Maximal frequent itemset is defined as a

frequent itemset for which none of its

immediate supersets are frequent.

 It stands in the border between frequent and

non-frequent supersets.

 Smallest set of itemsets from which all frequent

itemsets can be derived.

 However, they do not contain the support

information of their subsets.

43

Maximal frequent itemsets

44

Closed frequent itemsets

 An itemset is closed if none of its immediate

supersets has exactly the same support count.

 Furthermore, a closed frequent itemset is a

closed itemset where its support is ≥ minsup.

 Useful for removing redundant association rules:

 Rule X’  Y’ is redundant if rule X  Y has the same

support and confidence, where X’ X and Y’  Y.

45

Closed frequent itemsets

Closed not necessary

being maximal

46

Relationships

All maximal frequent itemsets are closed since none of the

maximal frequent itemsets can have the same support count as

their Immediate supersets.

ECLAT: Another Method for Frequent Itemset

Generation

 ECLAT: for each item, store a list of transaction

ids (tids); vertical data layout

TID Items

1 A,B,E

2 B,C,D

3 C,E

4 A,C,D

5 A,B,C,D

6 A,E

7 A,B

8 A,B,C

9 A,C,D

10 B

Horizontal

Data Layout

A B C D E

1 1 2 2 1

4 2 3 4 3

5 5 4 5 6

6 7 8 9

7 8 9

8 10

9

Vertical Data Layout

TID-list

47

ECLAT: Another Method for Frequent Itemset

Generation
 Determine support of any k-itemset by intersecting tid-

lists of two of its (k-1) subsets.

 3 traversal approaches:
 top-down, bottom-up and hybrid

 Advantage: very fast support counting

 Disadvantage: intermediate tid-lists may become too
large for memory

A

1

4

5

6

7

8

9

B

1

2

5

7

8

10

 

AB

1

5

7

8

48

49

FP–Growth Algorithm

 Encodes the data using a compact data

structure called as FP-tree.

 Extracts frequent itemsets directly from this

structure

 uses a recursive divide-and-conquer approach to mine

the frequent itemsets.

50

FP–Tree representation

 Sequentially mapping each transaction onto a

path in the FP-tree (the more the paths

overlap the more compression we achieve).

 Each node in the tree contains the label of an

item along with a counter that shows the

number of transactions mapped onto the

given path (frequency).

 Tree constructions depends on order

51

FP–Tree representation

FP-Tree Construction

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

null

A:1

B:1

null

A:1

B:1

B:1

C:1

D:1

After reading TID=1:

After reading TID=2:

52

FP-Tree Construction

null

A:7

B:5

B:3

C:3

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

TID Items

1 {A,B}

2 {B,C,D}

3 {A,C,D,E}

4 {A,D,E}

5 {A,B,C}

6 {A,B,C,D}

7 {B,C}

8 {A,B,C}

9 {A,B,D}

10 {B,C,E}

Pointers are used to assist

frequent itemset generation

D:1

E:1

Transaction

Database

Item Pointer

A

B

C

D

E

Header table

53

Benefits of the FP-tree Structure

 Performance study shows
 FP-growth is an order of

magnitude faster than
Apriori, and is also faster
than tree-projection

 Reasoning
 No candidate generation,

no candidate test

 Use compact data structure

 Eliminate repeated
database scan

 Basic operation is counting
and FP-tree building

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

Support threshold(%)

R
u

n
 t

im
e
(s

e
c
.)

D1 FP-grow th runtime

D1 Apriori runtime

54

Evaluation of Association Patterns

 Data-driven for quality evaluation of association patterns

 Contingency Table (based on frequency counts)

 Calculate easily support and confidence measures

55

Evaluation of Association Patterns

 Evaluation metrics (degree of independence)

 Lift:

 Interest:

 IS Measure:

 
)(Bs

BAc 

 
 

11

11

)()(

,
,







ff

Nf

BsAs

BAs
BAI

     
 

 BA
BsAs

BAs
BABAIBAIS ,cos

)()(

,
,,, 


 

56

57

Sequential pattern mining

 Association rule mining does not consider the
order of transactions.

 In many applications such orderings are
significant. E.g.,

 in market basket analysis, it is interesting to know
whether people buy some items in sequence,
 e.g., buying bed first and then bed sheets some time

later.

 In Web usage mining, it is useful to find
navigational patterns of users in a Web site from
sequences of page visits of users

58

Basic concepts

 Let I = {i1, i2, …, im} be a set of items.

 Sequence: An ordered list of itemsets.

 Itemset/element: A non-empty set of items X  I.

We denote a sequence s by a1a2…ar, where ai is

an itemset, which is also called an element of s.

 An element (or an itemset) of a sequence is denoted

by {x1, x2, …, xk}, where xj  I is an item.

 We assume without loss of generality that items in

an element of a sequence are in lexicographic

order.

59

Basic concepts (contd)

 Size: The size of a sequence is the number of

elements (or itemsets) in the sequence.

 Length: The length of a sequence is the number of

items in the sequence.

 A sequence of length k is called k-sequence.

 A sequence s1 = a1a2…ar is a subsequence of

another sequence s2 = b1b2…bv, or s2 is a

supersequence of s1, if there exist integers 1 ≤ j1 <

j2 < … < jr1 < jr  v such that a1  bj1, a2  bj2, …, ar

 bjr. We also say that s2 contains s1.

60

An example

 Let I = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

 Sequence {3}{4, 5}{8} is contained in (or is a

subsequence of) {6} {3, 7}{9}{4, 5, 8}{3, 8}

 because {3}  {3, 7}, {4, 5}  {4, 5, 8}, and {8}  {3,

8}.

 However, {3}{8} is not contained in {3, 8} or vice

versa.

 The size of the sequence {3}{4, 5}{8} is 3, and the

length of the sequence is 4.

61

Objective

 Given a set S of input data sequences (or
sequence database), the problem of mining
sequential patterns is to find all the
sequences that have a user-specified
minimum support.

 Each such sequence is called a frequent
sequence, or a sequential pattern.

 The support for a sequence is the fraction of
total data sequences in S that contains this
sequence.

62

Example

63

Example (cond)

64

GSP mining algorithm

 Very similar to the Apriori algorithm

65

Candidate generation

66

An example

