Ensemble Learning
Class Imbalance

Multiclass Problems

General |Idea

Step 1:
Create Multiple
Data Sets

Step 2:
Build Multiple
Classifiers

Step 3:
Combine
Classifiers

Original
D Training data

!

«— U @

v

4t U <
4

<

O

—~

44—

@)

—

<
-

—

Why does It work?

* Suppose there are 25 base classifiers
— Each classifier has error rate, € = 0.35
— Assume classifiers are independent

— Probability that the ensemble classifier makes
a wrong prediction (more than 12 classifiers

wrong): .
Z(Z_S}a‘i (1-¢)*"' =0.06

i—13\ |

Examples of Ensemble Methods

 How to generate an ensemble of
classifiers?

— Bagging
— Boosting

— Several combinations and variants

Bagging

Sampling with replacement
Training Data
Data ID -

Original Data 3 7 8

Bagging (Round 1) 10 10 10

RN

Bagging (Round 2) 9 2 7

SININE,
w|w|o]o

=
~[nvol5

alw|a|o

[EEY
Y] ES

QAN

Bagging (Round 3) 1 5 6

Each sample has probability (1 — 1/n)" of
being selected as test data

1- (1 — 1/n)" : probability of sample being
selected as training data
Build classifier on each bootstrap sample

The 0.632 bootstrap

* This method is also called the 0.632 bootstrap

— A particular example has a probability of 1-1/n
of not being picked

— Thus its probabillity of ending up in the test
data (not selected) Is:

1 n
(1— ﬁj ~e*=0.368

— This means the training data will contain
approximately 63.2% of the instances

« Qut-of-Bag-Error (estimate generalization using

the non-selected points)
6

Example of Bagging

Assume that the training data is:

+1 1 +1

v

0.3 0.41t0 0.7: 0.8

Goal: find a collection of 10 simple thresholding classifiers that
collectively can classify correctly.

- Each weak classifier is decision stump (simple thresholding):
(eg. x < thr - class = +1 otherwise class =-1)

Bagging Round 1:

X 01 |102 | 02| 03| 04|04)| 05|06 |09 |09

y 1 1 1 1 -1 -1 -1 -1 1 1
Bagging Round 2:

X 01 | 02| 03| 04| 05| 08 | 09 1 1 1

y 1 1 1 -1 -1 1 1 1 1 1
Bagging Round 3:

X 01 |02 | 03| 04 | 04|05 07|07 | 08 |09

Y 1 1 1 -1 -1 -1 -1 -1 1 1
Bagging Round 4:

X 01 | 041 02 | 04 | 04 |05 | 05 |07 | 08 |09

y 1 1 1 -1 -1 -1 -1 -1 1 1
Bagging Round 5:

X 01 | 04 02 | 05 | 06 | 06 | 06 1 1 1

Y 1 1 1 -1 -1 -1 -1 1 1 1
Bagging Round 6:

X 02 |04 | 05| 06 | 07|07 | 07| 08| 09 1

y 1 -1 -1 -1 -1 -1 -1 1 1 1
Bagging Round 7:

X 01 |04 |04 | 06 | 07 | 08 | 09 | 09 | 09 1

¥ 1 -1 -1 -1 -1 1 1 1 1 1
Bagging Round 8:

X 04 |02 | 05| 05| 05|07 | 07|08 | 09 1

Y 1 1 -1 -1 -1 -1 -1 1 1 1
Bagging Round 9:

X 01 |03 | 04 | 04 | 06 | 07 | 0.7 | 08 1 1

Y 1 1 -1 -1 -1 -1 -1 1 1 1
Bagging Round 10:

X 041 | 0d 01 | 04 03 | 03 08 (08 | 09 | 09

y 1 1 1 1 1 1 1 1 1 1

Figure 5.35. Example of bagging.

#<=035=>y=1
X=035=>y=-1

X<=0B5=>y=1
X=>085=>y=1

X<=035=>y=1
X>035==>y=-1

Xx<=03=>y=1
X=03=>y=-1

x==035==>y=1
®>035=>y=-1

X<=075 =>y=-1
X=>075==>y=1

*¥<=075=>y=-1
X=075=y=1

X<=0.75=>y=-1
*¥=075==>y=1

X<=075 ==>y=-1
X=075=>y=1

¥ <=0.05=>y=-1
X=005===y=1

Bagging (applied to training data)

x=0.1 | x=0.2 | x=0.3| x=0.4| x=0.5| x=0.6 |x=0.7 | x=0.8 | x=0.9| x=1.0

1

Round

10

Sum

Sign

True Class

Figure 5.36. Example of combining classifiers constructed using the bagging approach.

Accuracy of ensemble classifier: 100% ©

Out-of-Bag error (OOB)

For each pair (x;, Y,) in the dataset:
— Find the boostraps D, that do not include this pair.

— Compute the class decisions of the corresponding
classifiers C, (trained on D,) for input x;

— Use voting among the above classifiers to compute the
final class decision.

— Compute the OOB error for x, by comparing the above
decision to the true class Y,

OOB for the whole dataset is the OOB average for all x;

OOB can be used as an estimate of generalization error of the
ensemble (cross-validation could be avoided).

Bagging- Summary

Increased accuracy because
averaging reduces the variance

Does not focus on any particular instance
of the training data

— Therefore, less susceptible to model over-
fitting when applied to noisy data

Parallel implementation

Out-of-Bag-Error can be used to estimate
generalization

How many classifiers?

Boosting

* An iterative procedure to adaptively
change selection distribution of
training data by focusing more on
previously misclassified records

— Initially, all N records are assigned equal
weights

— Unlike bagging, weights may change at the
end of a boosting round

Boosting

* Records that are wrongly classified will
nave their weights increased

* Records that are classified correctly will
nave their Welghts decreased

Original Data 1 3 4 5 6
Boosting (Round 1) 7 3 8 7

w

\l
wlh|jo|©

&
o

2 9
Boosting (Round 2) 5 4 9 4 2 5
8 5

Boosting (Round 3) @__@ 10 @

e Example 4 is hard to classify

e |ts weight is increased, therefore it is more likely
to be chosen again in subsequent rounds

Boosting

Equal weights 1/N are assigned to each training
instance at first round

After a classifier C. is trained, the weights are
adjusted to allow the subsequent classifier C,, to
pay more attention” to data that were misclassified
by C..

Final boosted classifier C* combines the votes of
each individual classifier (weighted voting)

— Weight of each classifier’ s vote is a function of its
accuracy

Adaboost — popular boosting algorithm

AdaBoost (Adaptive Boost)

* |nput:
— Training set D containing N instances
— T rounds
— A classification learning scheme
* QOutput:
— An ensemble model

Adaboost: Training Phase

Training data D contain labeled data (X,,y,), (X,,y,),
(X3,¥3),--(XpoYn)

Initially assign equal weight 1/N to each data pair
To generate T base classifiers, we apply T rounds

Round t: N data pairs (X,,y;) are sampled from D with
replacement to form D, (of size N) with probability
analogous to their weights wi(t).

Each data’ s chance of being selected in the next
round depends on its weight:
— At each round the new dataset is generated directly from

the training data D with different sampling probability
according to the weights

Adaboost: Training Phase

Base classifier C,, is derived from training data of D,

Weights of training data are adjusted depending on
how they were classified

— Correctly classified: Decrease weight
— Incorrectly classified: Increase weight

Weight of a data point indicates how hard it is to
classify it

Weights sum up to 1 (probabilities)

Adaboost: Testing Phase

The lower a classifier error rate (g,< 0.5) the more
accurate it is, and therefore, the higher its weight for
voting should be

. , . 1, [1-¢g
Importance of a classifier C/svote is a, =—1In
2 &,
Testing:

— For each class ¢, sum the weights of each classifier that
assigned class c to X (unseen data)

— The class with the highest sum is the WINNER

T
C*(Xtest) =arg maxzat5(ct(xtest) — y)
y t=1

AdaBoost

« Base classifiers: C,, C,, ..., C;

« Error rate: (t= index of classifier,
] = index of instance)

N
£ :ijﬁ(Ct(xJ);é yj)
j=
or
1 N
5t :NZWjé(Ct(xj);t yj)
=1

* Importance of a classifier:

1 [1—6}]
a :Eln p
t

Adjustlng the Weights in AdaBoost

» Assume: N training data in D, T rounds, (x;,y;) are
the training data, C,, o, are the classifier and its
weight of the t™ round respectively.

« Weight update of all training data in D:
exp ™ ifC(x,)=Y,

Wj(t+1) _ W}t)) o
exp™ 1T C(X;) =Y,

(_t+1)

(t+1) _ "7} -
w, T = S (weights sum up to 1)
t+1

Z.., 1s the normalization factor

.
& *(Xtest) = arg max Zat5(ct (Xtest) = y)
y t=1

Algorithm 5.7 AdaBoost algorithm.

w={w; =1/N|j=12...,N}. {Initialize the weights for all N examples.}
2: Let k& be the number of boosting rounds.
3: fori=1to k do

4: Create training set [2; by sampling (with replacement) from D according to w.
5: Train a base classifier C; on D;.
6: Apply C; to all examples in the original training set, D.
6= [ZJ w; 6(Ci(z;) #v;)] {Caleulate the weighted error.}
& if ¢ > 0.5 then
9: w={w;, =1/N|j=12...,N}. {Reset the weights for all N examples.}
10: Go back to Step 4.
11: end if
120 ;= %ln %’51
13: Update the weight of each example according to Equation 5.69.
14: end for

15: C*(x) = argmax Zil a;0(C5(x) = y)).

Y

lllustrating AdaBoost

Boosting Round 1:

~x |01][04 o5 [06]06 0707 07 08][1 |
B2 I T T O B I

Boosting Round 2;
01 | 01 |02 |02 [02|02 0303 03 03

X
|L___1|11!11_i'11|1|11|

Boosting Round 3: .
x {02 02 04 0404|0405 06]06]o07]|
y 1 1A A A A

{a) Training records chosen during boosting

| Round |x=0.1 [x=0.2 |x=0.3 x=0.4 x=0.5 |x=0.6 |¥=0.7 |x=0.8 |x=0.9 |x=1.0 |
L 01 | 01 | 01 | 01 | 04 | 04 | 04 | 01 | 01 | 01 |

|' 2 |o0.311 lCLSH 0.311 | 0.01 | 0.01 |"r3_m 0.01 | 0.01 | 0.01 | 0.01
E 0.029 |0.029 |0.029 lo.228 |0.008 [0.228 |0.228 |0.009 |0.009 |0.008

(b} Weights of training records

Figure 5.38. Example of boosting.

lllustrating AdaBoost

Pl) LA LLEL pALASE ol ey TETER TN URNY - N

| Round ISplit Point iLeft Class !Fl'lght Class | G |

T 1 | ors | | 1 1738 |

"7 2 | 005 | 1 | 1 | 27784 |

3 | 03 | 1 4 | anes |
(&)

S

[Round | x=0.1 | x=0.2 |x=0.3 | x=0.4 | x=0.5 | x=0.6 |x=0.7 | x=0.8 | x=0.9 [x=1.0

I —
i | 1
K S O N
2 1] 1 1 (1|1 10 N

3 | 1| 1 | -1 ‘e R
'Sum | 516 | 5.16 | 5.16 | -3.08 | -3.08 | -3.08 | -3.08 0.397 | 0.397 | 0.397 |
[T | |
| Sign 11 1 4] - R T

(B

Figure 5.39. Example of combining classifiers constructed using the AdaBoost approach.

Bagging vs Boosting

In bagging training of classifiers can be done in parallel
Out-of-Bag-Error can be used (questionable for boosting)

In boosting classifiers are built sequentially (no parallelism)

Boosting may overfit ‘focusing” on noisy examples: early
stopping using a validation set could be used

AdaBoost implements minimization of a convex error function
using gradient descent

Gradient Boosting algorithms have been proposed (mainly
using decision trees as weak classifiers), e.g. XGBoost
(eXtreme Gradient Boosting) (very successful method).

https://en.wikipedia.org/wiki/Gradient_boosting

A successful AdaBoost application:
detecting faces in images

« The Viola-Jones algorithm for training face
detectors

— Uses decision stumps as weak classifiers
— Decision stump is the simplest possible classifier

— The algorithm can be used to train any object detector

https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf

Random Forests

« Ensemble method specifically designed for
decision tree classifiers

« Random Forests grows many trees
— Ensemble of decision trees

— The attribute tested at each node of each base
classifier is selected from a random subset of the
problem attributes

— Final result on classifying a new instance: voting.
Forest chooses the classification result having the
most votes (over all the trees in the forest)

Random Forests

* |Introduce two sources of randomness:
“Bagging” and “Random attribute vectors”

— Bagging method: each tree is grown using a
bootstrap sample of training data

— Random vector method: At each node, best
split is chosen from a random sample of m
attributes instead of all attributes

Random Forests

Original

Training data

Step 2:

Use random

vector to

build multiple
decision trees

Step 3:
Combine

decision trees

Step 1:
Create random
vectors

Figure 5.40. Random forests.

Tree Growing in Random Forests

* M input features In training data, a number
m<<M Iis specified such that at each node, m
features are selected at random out of the M and
the best split on these m features is used to split
the node.

 m is held constant during the forest growing

* |n contrast to decision trees, Random Forests
are not interpretable models.

A successful RF application: Kinnect

M P € AR
w‘?}' ho KR

 http://research.microsoft.com/pubs/145347//Body
PartRecognition.pdf

synthetic (train & test)

« Random forest with T=3 trees of depth 20

http://research.microsoft.com/pubs/145347/BodyPartRecognition.pdf

Class Imbalance

Positive class (C1): few examples (N1)
Negative class (C2): plenty of examples (N2)
N1 << N2

Use Precision, Recall and F1 as performance
measures (accuracy Is not appropriate)

Class Imbalance

 Methods to deal with class imbalance

1) Undersampling of the negative class

» Keep all examples (N1) of positive class and
randomly sample N1 examples of the negative
class and build a classifier using the 2*N1 selected
examples.

* To deal with randomness and exploit more
examples of the negative class, repeat the above
procedure several times and create an ensemble
classifier

Class Imbalance

e Methods to deal with class imbalance
2) Oversampling of the positive class:

e Create a new dataset keeping all examples N2 of the
negative class and ‘creating’ N2 examples of the
positive class

e Either repeat (duplicate) each positive example a
number of times

e Or create ‘artificial’ positive examples which are close
to the original positive examples
— by adding noise

— applying SMOTE: SMOTE samples are linear
combinations of two neighboring samples from the
positive class

3) Itis also possible to combine undersampling and
oversampling

https://arxiv.org/abs/1106.1813

Class Imbalance

* Methods to deal with class imbalance
4) Use weighted examples
* Negative examples get weight=1

 Positive examples get a much larger weight (e.g.
N2/N1)

» Weights are fixed during training

* The classifier to be used should be able to handle
weighted examples

A typical ‘trick’: if the training method adds counts,
add ‘weighted counts’

« if the training method adds errors, add ‘weighted
errors’

Multi-class problems (k>2 classes)

e Several methods naturally handle more than two classes (e.g.
decision trees, naive Bayes, k-nn)

e Some methods are based on a two-class formulation (e.g.
SVM). In this case we construct several two-class classifiers
and perform voting.

e Typical approaches: one-vs-all, one-vs-one,

e ECOC (Error Correcting Output Coding): assign a n-bit binary
vector (codeword) to each class (n>k) and train n binary
classifiers with the class labels specified by each column

= ———
T Class Codeword

U TTT1T1T1T1T1
12 O 0[O0 011
3 OO0 1 ({1/0{0/|1]
14 O 110 | I | O |] | U |

How to code?

1]
]
|

e To classify a new data point, all n binary classifiers are
evaluated to obtain a n-bit output string s. We choose the
class whose codeword is closet to s as the predicted label.

http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/lecture_notes/ecoc/ecoc.pdf

