
Ensemble Learning

Class Imbalance

Multiclass Problems

General Idea

Original

Training data

....
D

1
D

2 D
t-1

D
t

D

Step 1:

Create Multiple

Data Sets

C
1

C
2

C
t -1

C
t

Step 2:

Build Multiple

Classifiers

C*

Step 3:

Combine

Classifiers

Why does it work?

• Suppose there are 25 base classifiers

– Each classifier has error rate,  = 0.35

– Assume classifiers are independent

– Probability that the ensemble classifier makes

a wrong prediction (more than 12 classifiers

wrong):


=

− =−






25

13

25 06.0)1(
25

i

ii

i


Examples of Ensemble Methods

• How to generate an ensemble of

classifiers?

– Bagging

– Boosting

– Several combinations and variants

Bagging

• Sampling with replacement

• Each sample has probability (1 – 1/n)n of

being selected as test data

• 1- (1 – 1/n)n : probability of sample being

selected as training data

• Build classifier on each bootstrap sample

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Training Data
Data ID

6

The 0.632 bootstrap
• This method is also called the 0.632 bootstrap

– A particular example has a probability of 1-1/n

of not being picked

– Thus its probability of ending up in the test

data (not selected) is:

– This means the training data will contain

approximately 63.2% of the instances

• Out-of-Bag-Error (estimate generalization using

the non-selected points)

368.0
1

1 1 =







− −e

n

n

Example of Bagging

0.3 0.8 x

+1
+1

-1

Assume that the training data is:

0.4 to 0.7:

Goal: find a collection of 10 simple thresholding classifiers that

collectively can classify correctly.

- Each weak classifier is decision stump (simple thresholding):

(eg. x ≤ thr → class = +1 otherwise class = -1)

Bagging (applied to training data)

Accuracy of ensemble classifier: 100% ☺

Out-of-Bag error (OOB)

• For each pair (xi, Yi) in the dataset:

– Find the boostraps Dk that do not include this pair.

– Compute the class decisions of the corresponding
classifiers Ck (trained on Dk) for input xi

– Use voting among the above classifiers to compute the
final class decision.

– Compute the OOB error for xi by comparing the above
decision to the true class Yi

• OOB for the whole dataset is the OOB average for all xi

• OOB can be used as an estimate of generalization error of the
ensemble (cross-validation could be avoided).

Bagging- Summary

• Increased accuracy because

averaging reduces the variance

• Does not focus on any particular instance
of the training data

– Therefore, less susceptible to model over-
fitting when applied to noisy data

• Parallel implementation

• Out-of-Bag-Error can be used to estimate
generalization

• How many classifiers?

Boosting

• An iterative procedure to adaptively

change selection distribution of

training data by focusing more on

previously misclassified records

– Initially, all N records are assigned equal

weights

– Unlike bagging, weights may change at the

end of a boosting round

Boosting

• Records that are wrongly classified will

have their weights increased

• Records that are classified correctly will

have their weights decreased
Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more likely
to be chosen again in subsequent rounds

Boosting

• Equal weights 1/N are assigned to each training
instance at first round

• After a classifier Ci is trained, the weights are
adjusted to allow the subsequent classifier Ci+1 to
“pay more attention” to data that were misclassified
by Ci.

• Final boosted classifier C* combines the votes of
each individual classifier (weighted voting)
– Weight of each classifier’s vote is a function of its

accuracy
• Adaboost – popular boosting algorithm

AdaBoost (Adaptive Boost)

• Input:

– Training set D containing N instances

– T rounds

– A classification learning scheme

• Output:

– An ensemble model

Adaboost: Training Phase

• Training data D contain labeled data (X1,y1), (X2,y2),
(X3,y3),….(XN,yN)

• Initially assign equal weight 1/N to each data pair
• To generate T base classifiers, we apply T rounds
• Round t: N data pairs (Xi,yi) are sampled from D with

replacement to form Dt (of size N) with probability
analogous to their weights wi(t).

• Each data’s chance of being selected in the next
round depends on its weight:
– At each round the new dataset is generated directly from

the training data D with different sampling probability
according to the weights

Adaboost: Training Phase

• Base classifier Ct, is derived from training data of Dt

• Weights of training data are adjusted depending on
how they were classified

– Correctly classified: Decrease weight

– Incorrectly classified: Increase weight

• Weight of a data point indicates how hard it is to
classify it

• Weights sum up to 1 (probabilities)

Adaboost: Testing Phase

• The lower a classifier error rate (εt< 0.5) the more

accurate it is, and therefore, the higher its weight for

voting should be

• Importance of a classifier Ct’s vote is

• Testing:

– For each class c, sum the weights of each classifier that

assigned class c to X (unseen data)

– The class with the highest sum is the WINNER

11
ln

2

t
t

t






 −
=  

 

()
1

*() arg max ()
T

test t t test
y t

C x C x y 
=

= =

AdaBoost
• Base classifiers: C1, C2, …, CT

• Error rate: (t= index of classifier,

j = index of instance)

or

• Importance of a classifier:

()
1

()
N

t j t j j

j

w C x y 
=

= 

11
ln

2

t
t

t






 −
=  

 

()
1

1
()

N

t j t j j

j

w C x y
N

 
=

= 

Adjusting the Weights in AdaBoost
• Assume: N training data in D, T rounds, (xj,yj) are

the training data, Ct, αt are the classifier and its
weight of the tth round, respectively.

• Weight update of all training data in D:

(1) ()

(1)

(1)

1

1

exp if ()

exp if ()

 (weights sum up to 1)

 is the normalization factor

t

t

t j jt t

j j

t j j

t

jt

j

t

t

C x y
w w

C x y

w
w

Z

Z





−

+

+

+

+

+

 =
= 



=

()
1

*() arg max ()
T

test t t test
y t

C x C x y 
=

= =

Illustrating AdaBoost

Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744

Illustrating AdaBoost

Bagging vs Boosting

• In bagging training of classifiers can be done in parallel
• Out-of-Bag-Error can be used (questionable for boosting)

• In boosting classifiers are built sequentially (no parallelism)
• Βoosting may overfit ‘focusing’ on noisy examples: early

stopping using a validation set could be used

• AdaBoost implements minimization of a convex error function
using gradient descent

• Gradient Boosting algorithms have been proposed (mainly
using decision trees as weak classifiers), e.g. XGBoost
(eXtreme Gradient Boosting) (very successful method).

https://en.wikipedia.org/wiki/Gradient_boosting

A successful AdaBoost application:

detecting faces in images

• The Viola-Jones algorithm for training face
detectors

– Uses decision stumps as weak classifiers

– Decision stump is the simplest possible classifier

– The algorithm can be used to train any object detector

https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-cvpr-01.pdf

Random Forests

• Ensemble method specifically designed for

decision tree classifiers

• Random Forests grows many trees

– Ensemble of decision trees

– The attribute tested at each node of each base

classifier is selected from a random subset of the

problem attributes

– Final result on classifying a new instance: voting.

Forest chooses the classification result having the

most votes (over all the trees in the forest)

Random Forests

• Introduce two sources of randomness:

“Bagging” and “Random attribute vectors”

– Bagging method: each tree is grown using a

bootstrap sample of training data

– Random vector method: At each node, best

split is chosen from a random sample of m

attributes instead of all attributes

Random Forests

Tree Growing in Random Forests

• M input features in training data, a number
m<<M is specified such that at each node, m
features are selected at random out of the M and
the best split on these m features is used to split
the node.

• m is held constant during the forest growing

• In contrast to decision trees, Random Forests
are not interpretable models.

A successful RF application: Kinnect

• http://research.microsoft.com/pubs/145347/Body
PartRecognition.pdf

• Random forest with T=3 trees of depth 20

http://research.microsoft.com/pubs/145347/BodyPartRecognition.pdf

Class Imbalance

• Positive class (C1): few examples (N1)

• Negative class (C2): plenty of examples (N2)

• N1 << N2

• Use Precision, Recall and F1 as performance
measures (accuracy is not appropriate)

Class Imbalance

• Methods to deal with class imbalance

1) Undersampling of the negative class

• Keep all examples (N1) of positive class and
randomly sample N1 examples of the negative
class and build a classifier using the 2*N1 selected
examples.

• To deal with randomness and exploit more
examples of the negative class, repeat the above
procedure several times and create an ensemble
classifier

Class Imbalance
• Methods to deal with class imbalance

2) Oversampling of the positive class:

• Create a new dataset keeping all examples N2 of the
negative class and ‘creating’ N2 examples of the
positive class

• Either repeat (duplicate) each positive example a
number of times

• Or create ‘artificial’ positive examples which are close
to the original positive examples

– by adding noise

– applying SMOTE: SMOTE samples are linear
combinations of two neighboring samples from the
positive class

3) It is also possible to combine undersampling and
oversampling

https://arxiv.org/abs/1106.1813

Class Imbalance
• Methods to deal with class imbalance

4) Use weighted examples

• Negative examples get weight=1

• Positive examples get a much larger weight (e.g.
N2/N1)

• Weights are fixed during training

• The classifier to be used should be able to handle
weighted examples

• A typical ‘trick’: if the training method adds counts,
add ‘weighted counts’

• if the training method adds errors, add ‘weighted
errors’

Multi-class problems (k>2 classes)
• Several methods naturally handle more than two classes (e.g.

decision trees, naïve Bayes, k-nn)

• Some methods are based on a two-class formulation (e.g.
SVM). In this case we construct several two-class classifiers
and perform voting.

• Typical approaches: one-vs-all, one-vs-one,

• ECOC (Error Correcting Output Coding): assign a n-bit binary
vector (codeword) to each class (n>k) and train n binary
classifiers with the class labels specified by each column

How to code?

• To classify a new data point, all n binary classifiers are
evaluated to obtain a n-bit output string s. We choose the
class whose codeword is closet to s as the predicted label.

http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/lecture_notes/ecoc/ecoc.pdf

