based on slides of
Pascal Vincent

Montreal Institute for Learning Algorithms

VVhat is machine learning

Historical perspective

® Born from the ambitious goal /éT)
of Artificial Intelligence ‘s

® Founding project:

The Perceptron (Frank Rosenblatt I957)

First artificial neuron learning form examples

® Jwo historically opposed approaches to Al:

Neuroscience inspired:

> neural nets learning from
examples for artificial
perception

Classical symbolic Al:
Primacy of logical reasoning capabilities

= No learning (humans coding rules)
= poor handling of uncertainty
Got eventually fixed (Bayes Nets...)

Learning and probabilistic models largely won = machine learning

Current view of ML founding disciplines

Opimization
+
control

Computer science

Informatio Artificial Intelligey
theory

Statistics =

Physics

A scientific field that
® researches fundamental principles

® and develops algorithms

® capable of leveraging collected data to (automatically)
produce accurate predictive functions
applicable to similar data (in the future!)

(may also yield informative descriptive functions of data)

® Collected from nature... or industrial processes.

® Comes stored in many forms (and formats...), strucutred,
unstructured, occasionally clean, usually messy, ...

® |n ML we like to view data as a list of examples
(or we'll turn it into one)

= ideally many examples of the same nature.

= preferably with each example a vector of numbers
(or we'll first turn it into one!)

Input d
D Training data set (training set) dimensionality:
T

—
Inputs: X

(input feature vector)

Inputs:
(what we observe)

X, 1 @35,-2..,127,0, ..

Turn it into

a nice data
Number of matrix...
examples:

(-9.2,32,...,24,1, ...

n
preprocessing,
feature
extraction
Xn (6'8, 541 ree oy 17, -3, .
New test f@
pornt: X = (57,-27,..,64,0,.) — 41

x € R?

Importance of the

—> Determines which learning algorithms will be practically applicable
(based on their algorithmic complexity and memory requirements).

® Number of examples: n
(sometimes several millions)

® |nhput dimensionality: d
number of input features characterizing each example
(often 100 to 1000, sometimes 10000 or much more)

o Target dimensionality ex. number of classes m
(often small, sometimes huge)

== Data suitable for ML will often be organized
as a matrix:n x (d+1) ou n x (d+m)

Raw input representation: x=(0,0,...54,120, .
x = (125, 125, s 250, ...)

300 1 r \
250 /

200

150

100
50
0

0 5000 10000 15000 20000

OR some preprocessed representation:

‘.j .' ~ ‘ '..’ ‘:t'. . :‘é
— SOODf $ 1-0000_ — 15000 = 't?OOOO
b'O W
S & o
v @ &8s F&s§
=5 5.33 3T I
Bag of words for «The cat jumped»: x=(...0... 0,1, ..0...,1,0,0,,0,0,1,0,...0

OR vector of hand-engineered features: x = (feature 1, ... , feature d)
ex: Histograms of Oriented Gradients

Dataset imagined as a point cloud
in a high-dimensional vector space

| target
Input (label)
x € R y

7] X1 X9 X3 X4 X5

= 032|027 +1] 0] 082 1
c (012|042 1| 1] 022 0
S | 006 035 -1| 1)-0.37| 1
O [091 [-072|+1] 0]-063] !
c

Xo X & Rd
t .
o 7 : °
$X1

Each input is a point in
a d-dimensional vector space

Ex: nearest-neighbor classifier

Algorithm:

For test point x:

I Find nearest neighbor of x
among the training set
according to some distance
measure
(eg: Euclidean distance).

"1 Predict that x has the same
class as this nearest neighbor.

Training set

Supervised learning = predict a target y from input x

® vy represents a category or “‘class”
mclassification binary :y € {—1,+1} or y € {0,1}

multiclass :y € {1,m} ory € {0,m — 1} Predictive
® vy is a real-value number odels
" regression yeR or yeR"™
Unsupervised learning: no explicit prediction target y
® model the probability distribution of x
% density estimation
, , , Descriptive
® discover underlying structure in data .
modeling

s clustering
m dimensionality reduction
% (unsupervised) representation learning

Reinforcement learning: taking good sequential decisions to maximize the
reward from the environment

® Training: we learn a predictive function fy by optimizing
it so that it predicts well on the training set.

® Use for prediction: we can then use fp on new (test) inputs
that were not part of the training set.

=> The GOAL of learning is NOT to learn perfectly (memorize)
the training set.

=> What’s important is the ability for the predictor to
generalize well on new (future) cases.

=X: 1D regression

target (label)
1 4

......................... 1. Collect training data

Fevusesetitenezetetet ” """"""" . 2 Leam d fUﬂCtiOn (predictor)
s ; nput — target
_______ EHIE | 3. Use learned function

on New iNputs

.

> Input

*k K X AARA

Original slide by Olivier Delalleau

. (- i)
[Supervised task: J Learn a function fy that will
minimize prediction errors
_as measured by cost (loss) L

predict y from x

N

loss function L(f@ (X)7 Y)

, target
Input (label)
d

X <€ R Y
g X1 X9 X3 X4 X5 t [j
r 0.32 | -0.27 | +1 0] 0.82 | 113
c | -012 | 042 | -1 1| 0.22 34
f>‘<’ 0.06 | 0.35 | -1 1| -0.37 56 f
Q 0.91 | -0.72 | +1 0| -0.63 7 .
- ~ 9 :paramters

Training set Dn ['012 . OQQJ
g target y

A machine learning algorithm
usually corresponds to a combination of

the following 3 elements:
(either explicitly specified or implicitly)

\/the choice of a specific function family: F
(often a parameterized family)

s/a way to evaluate the quality of a function feF
(typically using a cost (or loss) function

L mesuring how wrongly f predicts)

\/ a way to search for the «best» function feF
(typically an optimization of function parameters to
minimize the overall loss over the training set).

of a function feF
and

function fel

The performance of a predictor is often evaluated using
several different evaluation metrics:

® Evaluations of true quantities of interest ($ saved,
tlifes saved, ...) when using predictor inside a more
complicated system.

® «Standard» evaluation metrics in a specific field
(€.8. BLEU (Bilingual Evaluation Understudy) SCOI€S in translation)

® Misclassification error rate for a classifier (or precision
and recall, or F-score, ...).

® The loss actually being optimized by the ML algorithm

. . . . od + a proper probability
® For a density estimation task: f : R™ = R™ 0 tensity function

negative log likelihood loss: L(f(x)) = —log f(x)

® For aregression task: f:R* - R

squared error loss: L(f(z),y) = (f(z) — y)?

® For a classification task: f:R*—={0,...,m—1}

misclassification error loss: L(f(x),y) = I)2y

® For a classification task: f:R*—={0,...,m—1}
misclassification error loss: L(f(x),y) = I f(2)24)

Problem:
(gradient is 0 everywhere. NP-hard with a linear classifier) Must use a surrogate loss:

Binary classifier Multiclass classifier
Outputs probability of class 1 Outputs a vector of probabilities:
g(x) = P(y=1 | x) Probability for class 0 is 1-g(x) g(x) = (P(y=0lx), ..., P(y=m-1lx))
ELZE;\:’;ESICK Binary cross-entropy loss: Negated conditional log likelihood loss
L(g(x).y) = -(y log(g(x)) + (1-y) log(1-g(x)) |L(g(x).y) = -log gx)y
Decision function: f(x) = I,(x)>05 Decision function: f(x) = argmax(g(x))
Outputs a «score» g(x) for class 1. Outputs a vector g(x) of real-valued
Non. score for the other class is -g(x) scorgs for the m classes.
orobabilistic Hinge loss: Multiclass margin loss
classifier L(g(x),t) = max(0, 1-1g(x)) where r=2y-1 |L(g(x),y) = maX(OJ*‘I}{l%X(g (X)i)-g(x)y)
Decision function: f(x) = I5x)>0 Decision function: f(x) = argmax(g(x))

Expected risk vs. Empirical risk

Examples (x,y) are supposed drawn i.i.d. from an unknown
true distribution p(x.,y) (from nature or industrial process)

® Generalization error = Expected risk (or just «Risk»)
«how poorly we will do on average on the infinity of future
examples from that unknown distributiony

R(f) =

ﬂp(X,y) [L(f(x)v Y)]

® Empirical risk = average loss on a finite dataset
«how poorly we're doing on average on this finite dataset»

A

R(f,

ZL

(x,y)ED

where |DI| is the number of examples in D

Examples (X,y) are supposed drawn i.i.d. from an unknown
true distribution p(X,y) (nature or industrial process)

® We'd love to find a predictor that
(the expected risk)

® But (expectation over unknown distribution)

Instead: Empirical risk minimization principle
«Find predictor that minimizes average loss over a trainset»

f(Dtrain) — argmin é(f7 Dtrain)

JeF

This is the training phase in ML

P We can’t compute expected risk R(f)
p But R(f,D) isa good estimate of R(f) provided:

®] was not used to find/choose f
otherwise estimate is biased => can’t be the training set!

® D is large enough (otherwise estimate is too noisy); drawn from p

B Must keep a separate test-set Diesi #Dirain to properly
estimate generalization error of f’(Dirain) -

R(]E(Dtrain)) ~ R(f(Dtrain)a Dtest)

generalization average error on
error test-set (never used for training)

This is the test phase in ML

Training
set

* Provided large enough

dataset D drawn from p(x.y)
* Make sure examples are in
random order.
* Split dataset in twos

D irain and Diegt

® Use Diinto choose/
optimize/find best

predictor f = f(Dirain)

® Use Diest to evaluate
generalization performance
of predictor f.

Model selection

Choosing a specific

function family F

Ex. of parameterized function families

Polynomial predictor (of degree p): HNEE

—b P 4awx +. .. P
f®)=btarx+an’+as el [T

I linear

F polynomial p

Linear (affine) predictor: fg(x) = wx+b
(«linear regression»)

of | [I1[][]]|
J .I Fconst

= : Constant predictor: fo(x)=b

. I ll.lll where 60={b}
(always predict the same value or class!)

function family F'.

How «big, rich, flexible, expressive, complex» that family
is, defines what is informally called the «capacity» of the
ML algorithm.

One can come up with several formal measures of
«capacity» for a function family / learning algorithm
(e.g. VC-dimension Vapnik—Chervonenkis)

One rule-of-thumb estimate, is the number of adaptable
parameters: i.e. how many scalar values are contained in 6.

Notable exception: chaining many linear mappings is still a linear mapping!

The «effective» capacity of a ML algo is controlled by:

Choice of ML algo, which determines big family F

Hyper-parameters that further specify F
e.g.: degree p of a polynomial predictor; Kernel choice in SVMs;

#of layers and neurons in a neural network

Hyper-parameters of «regularization» schemes

e.g. constraint on the norm of the weights w
(=> ridge-regression; L, weight decay in neural nets);
Bayesian prior on parameters; noise injection (dropout); ...

Hyper-parameters that control early-stopping of the

iterative search/optimization procedure.
(=> won’t explore as far from the initial starting point)

Capacity-control Learned
Algo
hyperparameters parameters
logistic regression :
(L regularized) strength of L2 regularizer w,b
linear SVM C w,b
ernel SYM C; kernel choice & params support vector

(0 for RBF; degree for polynomal)

weights: o

neural network

layer sizes; early stop; ...

layer weight matrices

decision tree

depth

the tree (with index and
threshold of variables)

k-nearest neighbors

k; choice of metric

memorizes
trainset

Tuning the capacity (model order)

® (Capacity must be optimally tuned to ensure good generalization
® by choosing Algorithm and hyperparameters

® to avoid under-fitting and over-fitting.

Ex: ID regression with polynomial predictor

iﬁﬁ!ﬁi IR EEER

HNNEEEN RRRERERER
capacity too low

capacity too high optimal capacity
Dunder-fitting =>over-fitting =>good generalisation

performance on training set is not a good estimate of generalization,
because as capacity increases, the loss (error) in the training set decreases.

Ex: 2D classification ® Function family too poor

(too inflexible)

Linear classifier e = Capacity too low for this problem

(relative to number of examples)

® => Under-fitting

largeur

22‘: saumon bar

20 .ot

]8;- ¢« . .

oot

16} S
H———————————" luminosité

2 4 6 8 10

® Function family too rich
(too flexible)

e = Capacity too high for this problem

(relative to the number of examples)

® => QOverfitting

largeur

224 _ saumon

2ap L,

0f .. "

oL

sf

15} o

]4:"""""'"""""""’lumz’nOSité
2 4 6 8 10

number of errors: 0

o Optimal capacity for this problem
(par rapport a la quantité de donnees)

® => Best generalization
(on future test points)

largeur

224 saumon bar

20 .

]8_ ° ‘o

7y

16 | .
> uminosité

2 4 6 8 10

* Generalization: successful predictions on unseen examples
* Occam’s razor:

— Preferthe simplest model that fits well to the data.
* Alternatively: Bias variance dilemma

— generalization error = bias + variance

— Bias: how well the model fits the training data {small for
large models)

— Variance: how small perturbations in the training set affect
the training results (large for large models)

bias-variance dilemma

Choosing richer F': capacity |
o> bias |, but

Choosing smaller F' : capacity |,
= but bias .

Optimal compromise... will depend on number of examples

Bigger n =

So we can afford to increase capacity (to lower the bias)
L) can use more expressive models

The best regularizer 1s more data!

Training
set
Dirain

Validation
set

Dyvalid

Test set
DtGSt

Make sure examples are in random order

Spllt data D in 3: Dtrain Dva]id Dtest

4 . .)
Model selection meta-algorithm:

For each considered model (ML algo) A:
For each considered hyper-parameter config A:

* train model A with hyperparams A on Diain
fA>\ — A)\(Dtrain)
* evaluate resulting predictor on /Jy.id
(with preferred evaluation metric)

CA, = R(fAA7 Vahd)
Locate A", A" that yielded best €A,
Either return f* — fAi*

Or retrain and return

f* — (Dtraln U Dvalld) y
— N

" Finally: compute unbiased estimate of
generalization performance of f* using Dies

R(f*a Dtest)

Diest must never have been used during training or

_model selection to select, learn, or tune anything.

Ex of model hyper-parameter selection

©O Training set error
O Validation set error

6,0

4,5 ;

3,0

1,5

1 3 @ 7 9 1 13 15

Hyper-parameter value

Hyper-parameter value which yields smallest error on validaiton set is 5
(it was 1 for the training set)

Model/hyperparameter selection
using validation set

Figure by Nicolas Chapados

» K-fold cross-validation (K-CV):

— Split dataset D into K disjoint subsets (folds) D,,..., D, (usually
K=10).

— Foreach subset D, (i=1,..., K), train a model using D-D; as
training set and compute generalization error (ge;) using D; as
testset.

— Computege = average(ge)

— Depends {somehow) on initial splitting

 Leave-one-out (K=N): deterministic, more reliable, but
computationally expensive

* We use cross-validation to select the best model (e.g. network
architecture).

* Thefinal solution is obtained by training the selected model on
the whole dataset.

