
based on slides of
Pascal Vincent

Introduction to
Machine Learning

Montreal Institute for Learning Algorithms

What is machine learning ?
Historical perspective

• Born from the ambitious goal
of Artificial Intelligence

• Founding project:
The Perceptron (Frank Rosenblatt 1957)
First artificial neuron learning form examples

• Two historically opposed approaches to AI:

Neuroscience inspired:
➪ neural nets learning from
examples for artificial
perception

Classical symbolic AI:
Primacy of logical reasoning capabilities
➪ No learning (humans coding rules)
➪ poor handling of uncertainty

Learning and probabilistic models largely won ➪ machine learning
Got eventually fixed (Bayes Nets...)

Computer science

Artificial Intelligence

Neurosciences

artifi
cial n

eural n
etworks

&

computatio
nal neurosciences

Statistics

Physics

Statistical physics

Information
theory

Machine Learning

Current view of ML founding disciplines

 Opimization
+

control

What is machine-learning?

A scientific field that

• researches fundamental principles

• and develops algorithms

• capable of leveraging collected data to (automatically)
produce accurate predictive functions
applicable to similar data (in the future!)

(may also yield informative descriptive functions of data)

• Collected from nature... or industrial processes.

• Comes stored in many forms (and formats...), strucutred,
unstructured, occasionally clean, usually messy, ...

• In ML we like to view data as a list of examples
(or we’ll turn it into one)

➡ ideally many examples of the same nature.

➡ preferably with each example a vector of numbers
(or we’ll first turn it into one!)

The key ingredient of
machine learning is... Data!

Training data set (training set)

“horse”

“horse”

“cat”

etc...

inputs:
(what we observe)

targets:
(what we must predict)

{n

Number of
examples:

X

?New test
point:

{ dInput
dimensionality:

inputs:
(input feature vector)

targets:
(label)

(3.5, -2, ... , 127, 0, ...) +1

(-9.2, 32, ... , 24, 1, ...) -1

(6.8, 54, ... , 17, -3, ...) +1

etc...

X Y
X1

Xn

Y1

Yn

X n,2{

Dn

preprocessing,
feature

extraction

Turn it into
a nice data
matrix...

+1x = (5.7, -27, ... , 64, 0, ...)

x ∈ Rd

fθ

Importance of the

Problem dimensions

• Number of examples: n
(sometimes several millions)

• Input dimensionality: d
number of input features characterizing each example
(often 100 to 1000, sometimes 10000 or much more)

• Target dimensionality ex. number of classes m
(often small, sometimes huge)

Determines which learning algorithms will be practically applicable
(based on their algorithmic complexity and memory requirements).

➩

Data suitable for ML will often be organized
as a matrix: n x (d+1) ou n x (d+m)

Turning an example into an
input vector
Raw input representation: x = (0, 0, ..., 54, 120, ..., 0, 0)

x = (125, 125, ..., 250, ...)

OR some preprocessed representation:

x = (, , , , )

Bag of words for «The cat jumped»: x = (... 0... ,0, 1, ...0... , 1, 0, 0,, 0, 0, 1, 0, ...0...)
th

e

ju
m

pe
d

ju
m

pi
ng

ru
n

ca
t

do
g

ho
rs

e

el
ep

ha
nt

w
e

x ∈ Rd

OR vector of hand-engineered features:
ex: Histograms of Oriented Gradients

x = (feature 1, ... , feature d)

input
x{ {

target
(label)
y

n
ex

am
pl

es x1 x2 x3 x4 x5 t
0.32 -0.27 +1 0 0.82 113

-0.12 0.42 -1 1 0.22 34
0.06 0.35 -1 1 -0.37 56
0.91 -0.72 +1 0 -0.63 77
.

∈ IRd

1
0
1
1

Dataset imagined as a point cloud
in a high-dimensional vector space

?

x1

x2

Each input is a point in
 a d-dimensional vector spacex3 , ..., xd

x ∈ Rd

BLUE!

Training set

x?

Ex: nearest-neighbor classifier

For test point x:

Find nearest neighbor of x
among the training set
according to some distance
measure
(eg: Euclidean distance).

Predict that x has the same
class as this nearest neighbor.

Algorithm:

• y represents a category or “class”
 ➠classification

• y is a real-value number
➠ regression

Machine learning categories
Supervised learning = predict a target y from input x

Unsupervised learning: no explicit prediction target y
• model the probability distribution of x

➠ density estimation

• discover underlying structure in data
➠ clustering
➠ dimensionality reduction
➠ (unsupervised) representation learning

Descriptive
modeling}
Predictive
models}

Reinforcement learning: taking good sequential decisions to maximize the
reward from the environment

y ∈ R or y ∈ Rm

binary :y ∈ {−1,+1} or y ∈ {0, 1}
multiclass :y ∈ {1,m} or y ∈ {0,m− 1}

Model-Based Learning

• Training: we learn a predictive function fθ by optimizing
it so that it predicts well on the training set.

• Use for prediction: we can then use fθ on new (test) inputs
that were not part of the training set.

What’s important is the ability for the predictor to
generalize well on new (future) cases.

➩ The GOAL of learning is NOT to learn perfectly (memorize)
the training set.

➩

0.55

Ex: 1D regression

0.7

1
target (label)

input0

0.5

0.25

0.9

0.4

1. Collect training data

2. Learn a function (predictor)
 input → target

3. Use learned function
 on new inputs

0.75

0.25

fθ

Original slide by Olivier Delalleau

input
x{ {

target
(label)
y

Supervised task:
n

ex
am

pl
es

predict y from x

target y{
input x

x1 x2 x3 x5x4

Learn a function fθ that will
minimize prediction errors
as measured by cost (loss) L.

-0.12 0.42 -1 1 0.22 34

x1 x2 x3 x4 x5 t
0.32 -0.27 +1 0 0.82 113

-0.12 0.42 -1 1 0.22 34
0.06 0.35 -1 1 -0.37 56
0.91 -0.72 +1 0 -0.63 77
.

∈ IRd

Training set Dn

fθ : paramters

output fθ(x)

loss function L(fθ(x),y)

A machine learning algorithm
usually corresponds to a combination of

the following 3 elements:
(either explicitly specified or implicitly)

✓the choice of a specific function family: F
(often a parameterized family)

✓a way to evaluate the quality of a function f∈F
(typically using a cost (or loss) function
L mesuring how wrongly f predicts)

✓a way to search for the «best» function f∈F
(typically an optimization of function parameters to
minimize the overall loss over the training set).

Evaluating the quality of a function f∈F
and

Searching for the «best» function f∈F

Evaluating a predictor f(x)
The performance of a predictor is often evaluated using
several different evaluation metrics:

• Evaluations of true quantities of interest ($ saved,
#lifes saved, ...) when using predictor inside a more
complicated system.

• «Standard» evaluation metrics in a specific field
(e.g. BLEU (Bilingual Evaluation Understudy) scores in translation)

• Misclassification error rate for a classifier (or precision
and recall, or F-score, ...).

• The loss actually being optimized by the ML algorithm
(often different from all the above...)

Standard loss-functions

• For a density estimation task:

negative log likelihood loss:

• For a regression task:

squared error loss:

• For a classification task:

misclassification error loss:

f : Rd → R

f : Rd → {0, . . . ,m− 1}

L(f(x), y) = (f(x)− y)2

L(f(x), y) = I{f(x)�=y}

L(f(x)) = − log f(x)

f : Rd → R+ a proper probability
mass or density function

Surrogate loss-functions
• For a classification task:

misclassification error loss:
f : Rd → {0, . . . ,m− 1}
L(f(x), y) = I{f(x)�=y}

Problem: it is hard to optimize the misclassification loss directly
(gradient is 0 everywhere. NP-hard with a linear classifier) Must use a surrogate loss:

Binary classifier Multiclass classifier

Probabilistic
classifier

Outputs probability of class 1
 g(x) ≈ P(y=1 | x) Probability for class 0 is 1-g(x)
Binary cross-entropy loss:
L(g(x),y) = -(y log(g(x)) + (1-y) log(1-g(x))
Decision function: f(x) = Ig(x)>0.5

Outputs a vector of probabilities:
g(x) ≈ (P(y=0|x), ..., P(y=m-1|x))
Negated conditional log likelihood loss
L(g(x),y) = -log g(x)y

Decision function: f(x) = argmax(g(x))

Non-
probabilistic
classifier

Outputs a «score» g(x) for class 1.
score for the other class is -g(x)
Hinge loss:
L(g(x),t) = max(0, 1-tg(x)) where t=2y-1
Decision function: f(x) = Ig(x)>0

Outputs a vector g(x) of real-valued
scores for the m classes.
Multiclass margin loss
L(g(x),y) = max(0,1+max(g(x)k)-g(x)y)
Decision function: f(x) = argmax(g(x))

k≠y

Expected risk v.s. Empirical risk
Examples (x,y) are supposed drawn i.i.d. from an unknown
true distribution p(x,y) (from nature or industrial process)

• Generalization error = Expected risk (or just «Risk»)
«how poorly we will do on average on the infinity of future
examples from that unknown distribution»

• Empirical risk = average loss on a finite dataset
«how poorly we’re doing on average on this finite dataset»

R(f) = Ep(x,y)[L(f(x),y)]

where |D| is the number of examples in D

R̂(f,D) =
1

|D|
�

(x,y)∈D

L(f(x),y)

Empirical risk minimization
Examples (x,y) are supposed drawn i.i.d. from an unknown
true distribution p(x,y) (nature or industrial process)

• We’d love to find a predictor that minimizes the
generalization error (the expected risk)

• But can’t even compute it! (expectation over unknown distribution)

• Instead: Empirical risk minimization principle
«Find predictor that minimizes average loss over a trainset»

This is the training phase in ML

f̂(Dtrain) = argmin
f∈F

R̂(f,Dtrain)

Evaluating the generalization error
‣ We can’t compute expected risk

‣ But is a good estimate of provided:

• D was not used to find/choose f
otherwise estimate is biased ➩ can’t be the training set!

• D is large enough (otherwise estimate is too noisy); drawn from p

➡ Must keep a separate test-set Dtest ≠Dtrain to properly
estimate generalization error of :

R̂(f,D) R(f)

R(f)

f̂(Dtrain)

R(f̂(Dtrain)) ≈ R̂(f̂(Dtrain), Dtest)

generalization
error

average error on
test-set (never used for training)

This is the test phase in ML

Simple train/test procedure
• Provided large enough

dataset D drawn from p(x,y)
• Make sure examples are in

random order.
• Split dataset in two:

 Dtrain and Dtest

• Use Dtrain to choose/
optimize/find best
predictor f =

• Use Dtest to evaluate
generalization performance
of predictor f.

}
}

(x1, y1)
(x2, y2)

...

(xN , yN)

D=

Training
set
Dtrain

Test set
Dtest

f̂(Dtrain)

Choosing a specific

function family F

Model selection

Ex. of parameterized function families

Q: what is the simplest
predictor fθ(x) ?

Constant predictor: fθ(x)=b
where θ={b}

(always predict the same value or class!)

Fconst

Linear (affine) predictor:
(«linear regression»)

Flinear

Polynomial predictor (of degree p):

Fpolynomial p

(in 1 dimension)

Model Selection

Model Selection

Capacity of a learning algorithm
• Choosing a specific Machine Learning algorithm

means choosing a specific function family F.

• How «big, rich, flexible, expressive, complex» that family
is, defines what is informally called the «capacity» of the
ML algorithm.
 Ex: capacity(Fpolynomial 3) > capacity(Flinear)

• One can come up with several formal measures of
«capacity» for a function family / learning algorithm
(e.g. VC-dimension Vapnik–Chervonenkis)

• One rule-of-thumb estimate, is the number of adaptable
parameters: i.e. how many scalar values are contained in θ.
Notable exception: chaining many linear mappings is still a linear mapping!

Effective capacity, and
capacity-control hyper-parameters

• Choice of ML algo, which determines big family F

• Hyper-parameters that further specify F
e.g.: degree p of a polynomial predictor; Kernel choice in SVMs;

 #of layers and neurons in a neural network

• Hyper-parameters of «regularization» schemes
e.g. constraint on the norm of the weights w
(➩ ridge-regression; L2 weight decay in neural nets);
Bayesian prior on parameters; noise injection (dropout); ...

• Hyper-parameters that control early-stopping of the
iterative search/optimization procedure.
(➩ won’t explore as far from the initial starting point)

The «effective» capacity of a ML algo is controlled by:

Popular classifiers
their parameters and hyper-parameters

Algo Capacity-control
hyperparameters

Learned
parameters

logistic regression
(L2 regularized)

strength of L2 regularizer w,b

linear SVM C w,b

kernel SVM C; kernel choice & params
(σ for RBF; degree for polynomal)

support vector
weights: α

neural network layer sizes; early stop; ... layer weight matrices

decision tree depth the tree (with index and
threshold of variables)

k-nearest neighbors k; choice of metric memorizes
trainset

Tuning the capacity (model order)

Model SelectionModel Selection

Model Selection

• Capacity must be optimally tuned to ensure good generalization

• by choosing Algorithm and hyperparameters

• to avoid under-fitting and over-fitting.

capacity too low
➩under-fitting

capacity too high
➩over-fitting

optimal capacity
➩good generalisation

performance on training set is not a good estimate of generalization,
because as capacity increases, the loss (error) in the training set decreases.

Ex: 1D regression with polynomial predictor

11• Deux variables

• vecteurs de traits, espace de traits, frontière de décision

2 4 6 8 10

14

15

16

17

18

19

20

21

22 saumon bar

largeur

luminosité

Linear classifier

Ex: 2D classification • Function family too poor
(too inflexible)

• = Capacity too low for this problem
(relative to number of examples)

• => Under-fitting

12• Choix de fonction

• surapprentissage (overfitting): classe de fonctions trop riche

?

2 4 6 8 10

14

15

16

17

18

19

20

21

22 saumon bar

largeur

luminosité

number of errors: 0

• Function family too rich
(too flexible)

• = Capacity too high for this problem
(relative to the number of examples)

• => Over-fitting

14• Choix de fonction

• capacité optimale

2 4 6 8 10

14

15

16

17

18

19

20

21

22 saumon bar

largeur

luminosité

• Optimal capacity for this problem
(par rapport à la quantité de données)

• => Best generalization
(on future test points)

6Problème d’apprentissage

• Erreurs d’estimation et d’approximation, capacité

• la sortie de notre algorithme d’apprentissage: f̂ (Dn) = f̂n

• la meilleure fonction dans F :

f ∗F = argmin
f∈F

R(f)

• la meilleure fonction possible (la décision/l’erreur de Bayes):

= argminR(f)

• R(f̂n)−R(f ∗) = (R(f̂n)−R(f ∗F))+(R(f ∗F)−R(f ∗))

6Problème d’apprentissage

• Erreurs d’estimation et d’approximation, capacité

• la sortie de notre algorithme d’apprentissage: f̂ (Dn) = f̂n

• la meilleure fonction dans F :

= argmin
f∈F

R(f)

• la meilleure fonction possible (la décision/l’erreur de Bayes):

f ∗ = argminR(f)

• R(f̂n)−R(f ∗) = (R(f̂n)−R(f ∗F))+(R(f ∗F)−R(f ∗))

• Choosing richer F: capacity ↑
 ➪ bias ↓ but variance ↑.

• Choosing smaller F : capacity ↓
➪ variance ↓ but bias↑.

• Optimal compromise... will depend on number of examples n

• Bigger n ➪ variance ↓
So we can afford to increase capacity (to lower the bias)
 ➪ can use more expressive models

• The best regularizer is more data!

Optimal capacity
& the bias-variance dilemma

Model selection
how to

(x1, y1)
(x2, y2)

...

} Test set
Dtest

(xN , yN)

ormance de
généralisation en mesurant les erreurs sur
l’ensemble de test qu’on n’a jamais
regardé pendant l’entraînement / validation
(mesure de performance “hors échantillon”).

} Training
set
Dtrain

} Validation
set
Dvalid

D=
For each considered model (ML algo) A:
 For each considered hyper-parameter config λ:
• train model A with hyperparams λ on Dtrain

• evaluate resulting predictor on Dvalid
(with preferred evaluation metric)

Locate that yielded best
Either return
Or retrain and return

Model selection meta-algorithm:

f̂Aλ = Aλ(Dtrain)

eAλ = R̂(f̂Aλ , Dvalid)
A∗,λ∗

f∗ = fA∗
λ∗

f∗ = A∗
λ∗(Dtrain ∪Dvalid)

eAλ

Finally: compute unbiased estimate of
generalization performance of f * using Dtest

R̂(f∗, Dtest)
Dtest must never have been used during training or
model selection to select, learn, or tune anything.

Make sure examples are in random order
Split data D in 3: Dtrain Dvalid Dtest

Ex of model hyper-parameter selection

0

1,5

3,0

4,5

6,0

1 3 5 7 9 11 13 15

Training set error
Validation set error

Hyper-parameter value

Hyper-parameter value which yields smallest error on validaiton set is 5
(it was 1 for the training set)

Model/hyper-parameter selection

procedure

Model/hyperparameter selection
 using validation set

Figure by Nicolas Chapados

Methodology

