
Numerische Mathematik
doi: 10.1007/s00211-022-01271-6

A posteriori error estimates for Radau IIA
methods via maximal parabolic regularity

Georgios Akrivis · Charalambos G. Makridakis

Received: 12 November 2020 / Revised: 18 August 2021 / Accepted: 15 January 2022

Abstract We consider the discretization of differential equations satisfying the max-
imal parabolic Lp-regularity property in Banach spaces by Radau IIA methods. We
establish a posteriori error estimators via the maximal parabolic regularity of the
differential equation. To complete the picture, we utilize the maximal parabolic reg-
ularity of the numerical methods to prove that the estimators are of optimal order.
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1 Introduction

We consider the discretization of differential equations satisfying the maximal pa-
rabolic Lp-regularity property in Banach spaces by Radau IIA methods. We utilize
the collocation approximation in combination with the maximal regularity of the
differential equation to establish a posteriori error estimates. To complete the picture,
using the maximal regularity of the methods, recently established by Kovács, Li, and
Lubich, [11], and pointwise formulations of the numerical methods, we prove that the
a posteriori estimators are of asymptotic optimal order of convergence. We are not
aware of any previous a posteriori error analysis via maximal parabolic Lp-regularity.

G. Akrivis
Department of Computer Science and Engineering, University of Ioannina, 451 10 Ioannina,
Greece, and Institute of Applied and Computational Mathematics, FORTH, 700 13 Heraklion,
Crete, Greece.
E-mail: akrivis@ cse.uoi.gr

Ch. G. Makridakis
Modeling and Scientific Computing, Department of Mathematics & Applied Mathematics, Uni-
versity of Crete / Institute of Applied and Computational Mathematics, FORTH, 700 13 Herak-
lion, Crete, Greece, and MPS, University of Sussex, Brighton BN1 9QH, United Kingdom.
E-mail: C.G.Makridakis@ iacm.forth.gr

https://doi.org/10.1007/s00211-022-01271-6
mailto:akrivis@cse.uoi.gr
mailto:C.G.Makridakis@iacm.forth.gr


2 Georgios Akrivis, Charalambos G. Makridakis

1.1 An initial value problem

We consider an initial value problem for a linear parabolic equation,

(1.1)

{
u′(t) +Au(t) = f(t), 0 < t < T,

u(0) = 0,

in a Banach space X. Our structural assumption is that the operator A is the gen-
erator of an analytic semigroup on X having maximal Lp-regularity, i.e., the solution
u of (1.1) satisfies the stability estimate

(1.2) ‖u′‖Lp((0,T );X) + ‖Au‖Lp((0,T );X) 6 cp,X‖f‖Lp((0,T );X) ∀f ∈ Lp((0, T );X)

for some, or, as it turns out, for all p ∈ (1,∞), with a constant cp,X independent of
T, depending only on p and X. In other words, u′ and Au are well defined and have
the same regularity as their sum u′ +Au, that is, the given forcing term f.

It is known that every generator of a bounded analytic semigroup on a Hilbert
space has maximal Lp-regularity and that a Banach space with an unconditional
basis satisfying this property is a Hilbert space; see [8] and [10], respectively. We refer
to [21] for a fundamental characterization of the maximal Lp-regularity property on
X = Ls(Ω), with arbitrary 1 < s < ∞ and Ω a domain in Rd, and, more generally,
on unconditional martingale differences (UMD) spaces, and to the lecture notes
[13] for an excellent account of the theory. Coercive elliptic differential operators
on Ls(Ω), 1 < s < ∞, with general boundary conditions possess the maximal Lp-
regularity property; see [13] and references therein. Throughout the paper, X is a
UMD space.

Notice that an initial value problem with not necessarily vanishing initial value
v0 ∈ D(A) := {v ∈ X : Av ∈ X},

(1.3)

{
v′(t) +Av(t) = g(t), 0 < t < T,

v(0) = v0,

can be reduced to the form (1.1) with u := v − v0 and f := g −Av0.

1.2 The numerical methods

Let N ∈ N, k = T/N be the constant time step, tn := nk, n = 0, . . . , N, be a uniform
partition of the time interval [0, T ], and Jn := (tn, tn+1]. For q ∈ N, with 0 < c1 <

· · · < cq = 1 the Radau nodes in the interval [0, 1], let tni := tn + cik, i = 1, . . . , q, be
the intermediate nodes; we shall also use the notation tn0 := tn.

The q-stage Radau IIA method is specified by the coefficients

(1.4) aij =

∫ ci

0

`j(τ) dτ, bi =

∫ 1

0

`i(τ) dτ (= aqi), i, j = 1, . . . , q;

here, `1, . . . , `q ∈ Pq−1 are the Lagrange polynomials for the Radau nodes c1, . . . , cq,
`i(cj) = δij .

Relations (1.4) reflect the fact that the Radau IIA method is of collocation type,
i.e., its stage order is q. It is well known that the order p of the q-stage Radau
IIA method is 2q − 1, p = 2q − 1, the weights b1, . . . , bq are positive, and the q × q
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symmetric matrix M with entries mij := biaij + bjaji− bibj , i, j = 1, . . . , q, is positive
semidefinite. In particular, the Radau IIA methods are algebraically stable. These
methods are also strongly A-stable; more precisely, the stability function r,

r(z) := 1 + zb>(I − zOι)−1
1 with 1 := (1, . . . , 1)> ∈ Rq,

with the invertible coefficient matrix Oι = (aij)i,j=1,...,q ∈ Rq,q, of the q-stage Radau
IIA method vanishes at infinity, r(∞) = 1 − bTOι−1

1 = 0. The first member of this
family, for q = 1, is the implicit Euler method.

With starting value U0 = 0, we consider the discretization of the initial value
problem (1.1) by the q-stage Radau IIA method: we recursively define approxi-
mations U` ∈ D(A) to the nodal values u(t`), as well as internal approximations
U`i ∈ D(A) to the intermediate values u(t`i), by

(1.5)


Uni = Un − k

q∑
j=1

aij
(
AUnj − f(tnj)

)
, i = 1, . . . , q,

Un+1 = Un − k
q∑
i=1

bi
(
AUni − f(tni)

)
,

n = 0, . . . , N − 1. Notice that, as a consequence of the fact that aqi = bi, i = 1, . . . , q,
we have Un+1 = Unq. Here, we assumed that f(t) ∈ X for t ∈ (0, T ].

Notice also that adding v0 to both sides of (1.5) and replacing f by g −Av0, we
see that the Radau IIA approximations Vni and Vn for the initial value problem (1.3)
are Vni = Uni + v0 and Vn = Un + v0, which is the discrete analogue of v = u + v0.

Therefore, without loss of generality, we may consider the discretization of (1.1).
For s ∈ N0, we denote by P(s) the space of polynomials of degree at most s with

coefficients in D(A), i.e., the elements g of P(s) are of the form

g(t) =
s∑
j=0

tjwj , wj ∈ D(A), j = 0, . . . , s.

With this notation, let Vck(s) and Vdk (s) be the spaces of continuous and possibly
discontinuous, respectively, piecewise elements of P(s),

Vck(s) := {v ∈ C
(
[0, T ]; D(A)

)
: v|Jn ∈ P(s), n = 0, . . . , N − 1},

Vdk (s) := {v : [0, T ]→ D(A), v|Jn ∈ P(s), n = 0, . . . , N − 1}.

The spaces X c
k (s) and Xd

k (s) are defined analogously, with coefficients wj ∈ X.
Since its stage order is at least q, it is known that the q-stage Radau IIA method is

equivalent to the collocation method with the Radau nodes c1, . . . , cq in the following
sense: Seek a function Û ∈ Vck(q) satisfying the initial condition Û(0) = 0 as well as
the collocation conditions

(1.6) Û ′(tni) +AÛ(tni) = f(tni), i = 1, . . . , q, n = 0, . . . , N − 1.

Then, Û(tni) = Uni, i = 1, . . . , q, n = 0, . . . , N − 1; in particular, Û(tnq) = Un+1.

Thus, [3] and [4], if we let Iq−1 : C
(
[0, T ];X

)
→ Xd

k (q − 1) denote the interpolation
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operator at the collocation nodes tni, i = 1, . . . , q, n = 0, . . . , N − 1, and use the fact
that Û ′ ∈ Vdk (q − 1), we can write (1.6) in pointwise form as

(1.7) Û ′(t) + Iq−1AÛ(t) = Iq−1f(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1.

The interpolants U := Iq−1Û and Iq−1f are elements of Vdk (q − 1) and Xd
k (q −

1), respectively, and thus, in general, discontinuous at the nodes t0, . . . , tN−1. The
pointwise form (1.7) of the numerical method is crucial; it will allow us to prove
optimality of the a posteriori error estimator.

To give a Galerkin in time formulation of the method, let X ′ be the dual of X
and denote by 〈·, ·〉 the duality pairing between X and X ′. Then, the variational
formulation of the Radau IIA method (1.5), cf. the pointwise form (1.7), is: seek
Û ∈ Vck(q) such that

(1.8)

∫
Jn

(
〈Û ′, v〉 + 〈AU, v〉

)
dt =

∫
Jn

〈Iq−1f, v〉dt ∀v ∈ PX′(q − 1),

n = 0, . . . , N − 1, with U = Iq−1Û ; the elements g of the test space PX′(q − 1)
are polynomials of degree at most q − 1 in time with coefficients in X ′, g(t) =
w0 + tw1 + · · ·+ tq−1wq−1, wj ∈ X ′. The formulation (1.8) is one of the alternative
ways to connect Radau IIA methods and discontinuous or perturbed continuous
Galerkin in time discetizations; see [19] and [4].

1.3 Main results

We denote by R ∈ Lp((0, T );X) the residual of the approximate solution Û of the
q-stage Radau IIA method,

(1.9) R(t) := Û ′(t) +AÛ(t)− f(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1,

i.e., the amount by which Û misses being exact solution of the differential equation
in (1.1). Then, due to the fact that the evolution operator is applicable to Û , the
error e := u− Û satisfies the error equation

(1.10) e′(t) +Ae(t) = −R(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1.

Now, the maximal Lp-regularity of the operator A and the triangle inequality, re-
spectively, applied to the error equation (1.10) yield the upper and lower a posteriori
error bounds

(1.11) |R‖Lp((0,t);X) 6 ‖e
′‖Lp((0,t);X) + ‖Ae‖Lp((0,t);X) 6 cp,X‖R‖Lp((0,t);X),

for all 0 < t 6 T, for any p ∈ (1,∞), with a constant cp,X depending only on p and
X; see (1.2). Notice that the residual R is a computable quantity, depending only
on the numerical solution Û and the given forcing term f.

Our main task in the following is to establish that (1.11) is sharp is the sense
that ‖R‖Lp((0,t);X) has the same asymptotic order of convergence as the optimal
convergence rate of the error in the discrete maximal regularity framework, [11,
12]. To achieve this goal, we study in detail the behavior of ‖R‖Lp((0,t);X) using

the following ingredients: (i) an explicit representation of R in terms of Û , U, and
the interpolation error involving the right-hand side f , (ii) a detailed consistency
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analysis involving the exact solution u, (iii) the discrete maximal parabolic regularity
property of the Radau IIA methods, recently established in [11]. Our main result
is stated in Theorem 3.1. Furthermore, we extend the a posteriori analysis to the
case of nonautonomous equations assuming that the operator A = A(t) satisfies a
Lipschitz condition with respect to t; see (4.3).

One of the reasons why maximal parabolic regularity is an interesting framework
for stability, is that it allows, in combination with the variation of constants formula
and fixed point arguments, efficient treatment of a large class of nonlinear evolution
equations, [17,13]. Our present work is a first necessary step towards treating time
discretizations of nonlinear parabolic equations in the maximal Lp-regularity frame-
work, where a posteriori error control is particularly relevant. We refer to [6] for a
posteriori error analysis for low order time discretizations for nonlinear equations
via C1,α maximal parabolic regularity.

The main results of [11] as well as of this article are transferred to discontinuous
Galerkin (dG) time-discrete methods via a suitable interpretation of dG methods as
modified Radau IIA schemes in [1].

Although we consider time-discrete schemes only, the extension of our approach
to both space and time discretizations of parabolic equations is important; see Re-
mark 3.3. Notice that partial results can be obtained by applying the time-discrete
analysis of the present work to space discrete evolution equations of the form (1.1)
with space discrete operators Ah resulting from conforming finite element discretiza-
tions of coercive, selfadjoint, second-order elliptic operators A. Such space discrete
operators, on quasi-uniform triangulations of a bounded domain Ω, are known to
inherit the maximal Lp-regularity property of A on Ls(Ω), 1 < s < ∞; see [14,15]
and references therein.

An outline of the paper is as follows. For the reader’s convenience we present
the analysis for the first member of the Radau IIA family, namely the implicit Euler
method, separately in Section 2, and treat high-order Radau IIA methods in Section
3. We extend both the maximal regularity property and the a posteriori error analysis
to nonautonomous equations in Section 4.

2 The implicit Euler method

This section is devoted to both the a priori and a posteriori error analysis of the
implicit Euler method for the initial value problem (1.1). We present a complete
analysis; in particular, we show that the a posteriori estimator is of optimal order.
The a priori error analysis is based on the discrete maximal parabolic regularity
property of the implicit Euler method; cf. (2.6). In contrast, the a posteriori error
analysis is based on the continuous maximal parabolic regularity property (1.2).
We combine both maximal regularity properties to show that the a posteriori error
estimator is of optimal order.

Let k = T/N be a constant time step and tn := nk, n = 0, 1, . . . , N, be the nodes
of a uniform partition of the time interval [0, T ]. We consider the discretization of
the initial value problem (1.1) by the implicit Euler method, i.e., we define approx-
imations U` ∈ D(A) to the nodal values u` := u(t`) of the solution u as follows

(2.1) ∂Un+1 +AUn+1 = f(tn+1), n = 0, . . . , N − 1,
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with ∂vn+1 the backward difference quotient, ∂vn+1 := (vn+1 − vn)/k, and starting
value U0 = 0.

2.1 Residual and a posteriori error estimates

It is well known that the implicit Euler scheme can be viewed as collocation method
with node c1 = 1. Then, the approximate solution Û : [0, T ]→ D(A) is the piecewise
linear interpolant of the nodal approximations U`,

(2.2) Û(t) := Un+1 + (t− tn+1)∂Un+1, t ∈ Jn, n = 0, . . . , N − 1,

with Jn := (tn, tn+1]. The residual R of Û is the amount by which the collocation
approximate solution Û misses satisfying the parabolic equation in (1.1),

(2.3) R(t) := Û ′(t) +AÛ(t)− f(t), t ∈ Jn, n = 0, . . . , N − 1.

Notice that the residual R is a computable a posteriori quantity.
We consider the error e := u− Û . Subtracting (2.3) from the differential equation

in (1.1), we obtain the error equation,

(2.4) e′(t) +Ae(t) = −R(t), t ∈ (0, T ].

Since e(0) vanishes, the maximal Lp-regularity (1.2) for the error equation (2.4)
yields the desired a posteriori error estimate

(2.5) ‖R‖Lp((0,T );X) 6 ‖e
′‖Lp((0,T );X) + ‖Ae‖Lp((0,T );X) 6 cp,X‖R‖Lp((0,T );X).

2.2 Discrete maximal parabolic regularity and a priori error estimates

Fundamental results concerning the discrete maximal parabolic regularity for A-
stable Runge–Kutta methods with invertible coefficient matrices and, under natural
additional conditions, for backward difference formula (BDF) methods were recently
established in [11]; we refer to [11] also for an overview of previous work on this topic.

In particular, the implicit Euler method preserves the maximal parabolic regu-
larity,

(2.6) ‖(∂Un)Mn=1‖`p(X) + ‖(AUn)Mn=1‖`p(X) 6 Cp,X‖(f(tn))Mn=1‖`p(X),

M = 1, . . . , N, with a method-dependent constant Cp,X , independent of M,T, and
the time step k. Here, for a sequence (vn)n=0,...,N ⊂ X and M 6 N, we used the
notation

‖(vn)Mn=1‖`p(X) :=
(
k

M∑
n=1

‖vn‖pX
)1/p

.

Notice that ‖(vn)Mn=1‖`p(X) is the Lp((0, tM );X) norm of the piecewise constant
function v taking the values v(t) = vn+1, tn < t < tn+1. For the discrete maximal
parabolic regularity (2.6) of the implicit Euler method, see [5, Remark 5.2] and [11,
Theorem 3.1].

The a priori error estimate is an easy consequence of the stability estimate (2.6);
for the reader’s convenience, we recall the details; we shall use the result to show that
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the a posteriori error estimator in (2.5) is of optimal order. For consistency with the
notation for high order methods, we let the consistency error E` ∈ X, ` = 1, . . . , N,
of the implicit Euler method for the solution u of (1.1) be given by

(2.7) En+1 := k
[
∂un+1 +Aun+1 − f(tn+1)

]
, n = 0, . . . , N − 1;

notice that the consistency error is the amount by which u misses satisfying the
implicit Euler method. Using the differential equation in (1.1), we can write En+1

in the form

En+1 = k
[
∂un+1 − u′(tn+1)

]
,

and, under obvious regularity assumptions, easily infer by the Taylor theorem that

En+1 = −
∫ tn+1

tn

(t− tn)u′′(t) dt.

Then, Hölder’s inequality yields the desired consistency estimate

(2.8) ‖En+1‖X 6
k1+

1
s

(s+ 1)1/s

(∫ tn+1

tn

‖u′′(t)‖pX dt
)1/p

,

with s the dual exponent of p, that is, 1
p + 1

s = 1. Therefore,

‖(En)Mn=1‖p`p(X)
= k

M∑
n=1

‖En‖pX 6 k
(

k1+
1
s

(s+ 1)1/s

)p M−1∑
n=0

∫ tn+1

tn

‖u′′(t)‖pX dt

=
(

k2

(s+ 1)1/s

)p ∫ tM

0

‖u′′(t)‖pX dt,

whence

(2.9) ‖(En)Mn=1‖`p(X) 6
k2

(s+ 1)1/s
‖u′′‖Lp((0,tM );X), M = 1, . . . , N.

Let e` := u` − U`, ` = 0, 1, . . . , N. Subtracting the implicit Euler method (2.1)
from the consistency relation (2.7), we obtain the error equation

(2.10) ∂en+1 +Aen+1 =
1

k
En+1, n = 0, . . . , N − 1.

Combining the discrete maximal parabolic regularity stability estimate (2.6) for the
error equation (2.10) with the consistency estimate (2.9), we obtain the desired a
priori error estimate,

(2.11) ‖(∂en)Mn=1‖`p(X) + ‖(Aen)Mn=1‖`p(X) 6 Cp,X
k

(s+ 1)1/s
‖u′′‖Lp((0,tM );X),

M = 1, . . . , N, with the constant Cp,X of (2.6).
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Remark 2.1 (`∞(X) estimate) In view of e0 = 0, we have em = k
∑m
n=1 ∂en, and thus

‖em‖X 6 k

m∑
n=1

‖∂en‖X =
m∑
n=1

k1/s
(
k1/p‖∂en‖X

)
.

Therefore, the discrete Hölder inequality yields

(2.12) ‖em‖X 6 (tm)1/s‖(∂en)mn=1‖`p(X).

From (2.12) and (2.11) we obtain the `∞(X) estimate

(2.13) ‖em‖X 6 Cp,X(tm)1/s
k

(s+ 1)1/s
‖u′′‖Lp((0,tm);X), m = 1, . . . , N,

with a mildly growing factor (tm)1/s.

2.3 Optimality of the a posteriori error estimate (2.5)

Using (2.2), for t ∈ Jn, we have

Û ′(t) +AÛ(t) = ∂Un+1 +AUn+1 + (t− tn+1)A∂Un+1,

and, in view of (2.1), infer that the residual can also be written in the form

(2.14) R(t) = (t− tn+1)A∂Un+1 + [f(tn+1)− f(t)], t ∈ Jn, n = 0, . . . , N − 1.

Therefore,

(2.15) R(t) = (t− tn+1)A∂un+1 − (t− tn+1)A∂en+1 + [f(tn+1)− f(t)], t ∈ Jn,

n = 0, . . . , N − 1.
Let us denote by R1(t), R2(t) and R3(t) the first, second and third terms on the

right-hand side of (2.15), respectively. We shall estimate each one of these terms
separately. First, for R1, we have

R1(t) = (t− tn+1)A∂un+1 =
t− tn+1

k

∫ tn+1

tn

Au′(τ) dτ, t ∈ Jn.

Therefore,

‖R1(t)‖X 6
∫ tn+1

tn

‖Au′(τ)‖X dτ, t ∈ Jn,

whence∫ tn+1

tn

‖R1(t)‖pX dt 6 k
(∫ tn+1

tn

‖Au′(τ)‖X dτ
)p

6 kkp/s
∫ tn+1

tn

‖Au′(τ)‖pX dτ,

i.e., ∫ tn+1

tn

‖R1(t)‖pX dt 6 kp
∫ tn+1

tn

‖Au′(τ)‖pX dτ.

This yields the desired estimate for R1,

(2.16) ‖R1‖Lp((0,T );X) 6 k‖Au′‖Lp((0,T );X).
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Similarly, for R3, we have

R3(t) =

∫ tn+1

t

f ′(τ) dτ, t ∈ Jn,

and thus

‖R3(t)‖X 6
∫ tn+1

tn

‖f ′(τ)‖X dτ, t ∈ Jn.

Proceeding as in the case of R1, we arrive at the desired estimate for R3,

(2.17) ‖R3‖Lp((0,T );X) 6 k‖f ′‖Lp((0,T );X).

Next, we shall use the a priori error estimate (2.11) to bound R2. We have

R2(t) = −(t− tn+1)A∂en+1 = − t− tn+1

k
(Aen+1 −Aen), t ∈ Jn,

and thus

‖R2(t)‖X 6 ‖Aen+1‖X + ‖Aen‖X , t ∈ Jn.

Therefore, ∫ tn+1

tn

‖R2(t)‖pX dt 6 k
(
‖Aen+1‖X + ‖Aen‖X

)p
,

whence

‖R2‖Lp((0,T );X) 6
(
k

N−1∑
n=0

(
‖Aen+1‖X + ‖Aen‖X

)p)1/p
.

Using here the Minkowski inequality for the `p norm on RN , we infer that

‖R2‖Lp((0,T );X) 6 2
(
k

N∑
n=1

‖Aen‖pX
)1/p

= 2‖(Aen)Nn=1‖`p(X).

In view of the a priori error estimate (2.11), this yields the desired estimate for R2,

(2.18) ‖R2‖Lp((0,T );X) 6 2cp,X
k

(s+ 1)1/s
‖u′′‖Lp((0,T );X).

From (2.16), (2.17) and (2.18) we infer that the a posteriori error estimator
‖R‖Lp((0,T );X) in (2.5) is of optimal order O(k) in any fixed interval [0, T ], provided
that f ′, Au′, u′′ ∈ Lp((0, T ); X); of course, if two of these functions are elements of
Lp((0, T );X), then the third belongs to the same space as a linear combination of
the other two. Notice also that if f(0) vanishes, then u′(0) vanishes as well, and in
view of u′′+Au′ = f ′, we actually only need to assume that f ′ ∈ Lp((0, T );X); then,
u′′, Au′ ∈ Lp((0, T );X) by maximal parabolic Lp-regularity.

Let us emphasize that the residual estimates (2.16)–(2.18) and (2.5) yield op-
timal order a priori error estimates for the implicit Euler method in the continu-
ous Lp((0, T );X)-norm; this complements the corresponding a priori error estimate
(2.11) in the discrete `p(X)-norm.
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3 High-order Radau IIA methods

In this section we present our main results. We establish a posteriori as well as a
priori error estimates for Radau IIA methods. Furthermore, we show that the a
posteriori error estimator is of optimal order.

As already mentioned, the maximal Lp-regularity of the operator A applied to
the error equation (1.10) yields the a posteriori error estimate (1.11). Our goal here
is to show that the estimator on the right-hand side of (1.11) is of optimal order.

We first derive an explicit representation of the residual R and subsequently show
that the a posteriori estimator is of optimal order via a priori error analysis.

We refer also to [20,19,2,3,4,16] and [6] for a posteriori error analyses for parabolic
equations in Hilbert and Banach spaces, respectively.

3.1 Explicit representation of the residual

The residual R of the collocation approximate solution Û of the q-stage Radau IIA
method, given in (1.9), is, obviously, a computable quantity. Let us give here an
explicit representation of it; compare to [3, Theorem 2.2].

Notice that, in view of the pointwise form (1.7) of the numerical method, the
residual can also be written in the form

(3.1) R(t) = A
[
Û(t)− Iq−1Û(t)

]
−
[
f(t)− Iq−1f(t)

]
, t ∈ (tn, tn+1],

n = 0, . . . , N − 1.
The residual R of (3.1) seems suitable for a posteriori error estimates in this case;

this is due to the fact that the corresponding a priori error estimates, see (3.18) and
(3.19) in the sequel, are of order O(kq). This is in contrast to [3] and [4], where it
was advantageous to introduce a suitable higher-order reconstruction, an element of
Vck(q + 1), of the collocation approximation Û ∈ Vck(q).

Any form of the polynomial interpolation remainder not relying on the mean
value theorem, since our functions are vector-valued, can be used for the represen-
tation of the interpolation errors Û(t) − Iq−1Û(t) and f(t) − Iq−1f(t); for instance,
the Kowalewski remainder representation [7, Ex. 1, pp. 71–72] leads to

(3.2)


Û(t)− Iq−1Û(t) = kqΦq

( t− tn
k

)
Û (q),

f(t)− Iq−1f(t) =
1

(q − 1)!

q∑
i=1

`ni(t)

∫ t

tni

(tni − τ)q−1f (q)(τ) dτ,

for t ∈ Jn, with

Φq(τ) :=
1

q!

q∏
i=1

(τ − ci), τ ∈ [0, 1], `ni(τ) =

q∏
j=1
j 6=i

τ − tnj
tni − tnj

, τ ∈ Jn.

Using (3.2), we can rewrite (3.1) in the form

(3.3) R(t) = kqΦq
( t− tn

k

)
AÛ (q) − 1

(q − 1)!

q∑
i=1

`ni(t)

∫ t

tni

(tni − τ)q−1f (q)(τ) dτ,
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t ∈ Jn, n = 0, . . . , N − 1.

Notice that, in the case of the implicit Euler method q = 1, the corresponding
derivative of Û is Û ′ and since we have estimates for Aen, we can show that the
residual R is indeed of (optimal) first order in k.

3.2 Optimality of the estimator via a priori error analysis

We first recall in Lemma 3.1 the discrete maximal parabolic regularity property of the
q-stage Radau IIA method and then prove consistency estimates. Combining these
results we derive a priori error estimates, which will be instrumental to establish
sharp asymptotic upper bounds for the estimator in (1.11).

3.2.1 Discrete maximal parabolic regularity

We first recall the maximal parabolic regularity property for Radau IIA methods.

Lemma 3.1 ([11, Corollary 5.2, Theorem 5.1]; maximal regularity of Radau

IIA methods) The Radau IIA approximations U0, . . . , UN are well defined by (1.5) and

satisfy the maximal parabolic regularity stability estimates

(3.4) ‖(∂Un)Nn=1‖`p(X) + ‖(AUn)Nn=1‖`p(X) 6 Cp,X

q∑
i=1

‖(f(tni))
N−1
n=0 ‖`p(X)

and

(3.5)

q∑
i=1

‖(AUni)N−1
n=0 ‖`p(X) 6 Cp,X

q∑
i=1

‖(f(tni))
N−1
n=0 ‖`p(X)

with a constant Cp,X independent of N and T , depending on the method, i.e., on q.

The following maximal regularity property of the collocation approximation Û is
an easy consequence of Lemma 3.1.

Corollary 3.1 (Maximal regularity of the collocation approximation) The col-

location approximation Û satisfies the maximal regularity estimates

(?)

q∑
i=1

‖(Û ′(tni))N−1
n=0 ‖`p(X) 6 Cp,X,q

q∑
i=1

‖(f(tni))
N−1
n=0 ‖`p(X)

and

(??)

‖Û ′‖Lp((0,T );X) + ‖AÛ‖Lp((0,T );X) + ‖AU‖Lp((0,T );X)

6 Cp,X,q

q∑
i=1

‖(f(tni))
N−1
n=0 ‖`p(X)

with a constant Cp,X,q independent of N and T .
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Proof First, according to the collocation equations (1.6), there holds

q∑
i=1

‖(Û ′(tni))N−1
n=0 ‖`p(X) =

q∑
i=1

‖
(
−AUni + f(tni)

)N−1

n=0
‖`p(X),

and the triangle inequality and (3.5) yield (?).
Furthermore, the Lagrange form of Û ′,

Û ′(t) =

q∑
i=1

`niÛ
′(tni), tn < t < tn+1,

with `ni the Lagrange polynomials `i shifted to the interval Jn, yields∫
Jn

‖Û ′‖pX dt =

∫
Jn

‖
q∑
i=1

`ni(t)Û
′(tni)‖pX dt

6
( q∑
i=1

k‖`ni‖L∞(Jn)‖Û
′(tni)‖X

)p
=
( q∑
i=1

k‖`i‖L∞(0,1)‖Û
′(tni)‖X

)p
6
( q∑
i=1

‖`i‖sL∞(0,1)

)p/s( q∑
i=1

k‖Û ′(tni)‖pX
)
,

with s the dual exponent of p. This in combination with (?) leads to the asserted
estimate for Û ′ in (??).

Taking (3.5) into account, AU can be estimated analogously. Finally, using the
Lagrange polynomials for the points c0 = 0, c1, . . . , cq, (3.5), and the fact that
Û(tn0) = Û(tn) = Un−1,q, we can also estimate AÛ in the desired way. ut

3.2.2 Consistency

We prove consistency of the Radau IIA methods for the initial value problem (1.1),
assuming existence of a smooth solution. We recall that the stage order of the q-stage
Radau IIA method is q, i.e.,

q∑
i=1

bic
`−1
i =

1

`
, ` = 1, . . . , q,(B(q))

q∑
j=1

aijc
`−1
j =

c`i
`
, ` = 1, . . . , q, i = 1, . . . , q.(C(q))

The consistency errors Eni and En+1 of the method are determined by

(3.6)


u(tni) = u(tn)− k

q∑
j=1

aij
(
Au(tnj)− f(tnj)

)
+ Eni, i = 1, . . . , q,

u(tn+1) = u(tn)− k
q∑
i=1

bi
(
Au(tni)− f(tni)

)
+ En+1.

Notice that En+1 = Enq, n = 0, . . . , N − 1.
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Lemma 3.2 (Consistency estimate) If the solution u of (1.1) is sufficiently smooth,

namely u ∈W q+1,p((0, T );X), then the following consistency estimate holds

(3.7) ‖Eni‖X 6 Ckq
∫ tn+1

tn

‖u(q+1)(τ)‖X dτ, i = 1, . . . , q, n = 0, . . . , N − 1,

with a method-dependent constant C.

Proof In view of the differential equation in (1.1), (3.6) yields

(3.8) u(tni) = u(tn) + k

q∑
j=1

aiju
′(tnj) + Eni, i = 1, . . . , q.

Notice that Eni is the quadrature error over the interval [tn, tni] of the quadrature
formula with weights aijk and nodes tnj = tn + cjk, j = 1, . . . , q, for the function u′.

Taylor expansion about tn yields

Eni =

q∑
`=1

k`

(`− 1)!

(
c`i
`
−

q∑
j=1

aijc
`−1
j

)
u(`)(tn) +

1

q!

∫ tni

tn

(tni − τ)qu(q+1)(τ) dτ

− k

(q − 1)!

q∑
j=1

aij

∫ tnj

tn

(tnj − τ)q−1u(q+1)(τ) dτ.

In view of the stage order conditions (C(q)), leading terms of order up to q vanish,
and Eni can be represented in the form

(3.9) Eni = kq
∫ tn+1

tn

κi
(τ − tn

k

)
u(q+1)(τ) dτ, i = 1, . . . , q,

with the bounded Peano kernels

(3.10) κi(t) :=
1

q!

(
(ci − t)+

)q − 1

(q − 1)!

q∑
j=1

aij
(
(cj − t)+

)q−1
, 0 6 t 6 1,

i = 1, . . . , q, where we used the standard notation τ+ = τ for τ > 0 and τ+ = 0 for
τ < 0. We thus obtain the asserted consistency estimate (3.7). ut

3.2.3 A priori error estimates in the discrete `p(X)-norm

Let en := u(tn)− Un, n = 0, . . . , N, and eni := u(tni)− Uni, n = 0, . . . , N − 1, denote
the nodal and the intermediate errors, respectively, of the q-stage Radau IIA method
(1.5). Of course, en+1 = enq, n = 0, . . . , N − 1.

First, we rewrite (3.8) in a suitable for our purposes form, which will allow us to
directly apply the discrete maximal parabolic regularity stability estimate of Lemma
3.1 to our error equations; see also [12, §4.1]. With Ẽni, i = 1, . . . , q, defined by

(3.11) k

q∑
j=1

aijẼnj = Eni, i = 1, . . . , q,
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it is easily seen that (3.8) reads

(3.12) u(tni) = u(tn)− k
q∑
j=1

aij
[
Au(tnj)− f(tnj)− Ẽnj

]
, i = 1, . . . , q.

Subtracting the first relation of (1.5) from (3.12), we obtain the error equations

(3.13) eni = en − k
q∑
j=1

aij
(
Aenj − Ẽnj

)
, i = 1, . . . , q,

n = 0, . . . , N − 1. Now, the discrete maximal parabolic regularity stability estimates
of Lemma 3.1 applied to (3.13) yield

(3.14) ‖(∂en)Nn=1‖`p(X) + ‖(Aen)Nn=1‖`p(X) 6 Cp,X

q∑
i=1

‖(Ẽni)N−1
n=0 ‖`p(X)

and

(3.15)

q∑
i=1

‖(Aeni)N−1
n=0 ‖`p(X) 6 Cp,X

q∑
i=1

‖(Ẽni)N−1
n=0 ‖`p(X)

with a constant Cp,X (depending also on the specific method) independent of N and

the time step k; compare (3.13) to [11, (5.1)]. The notation ∂vn and ‖(vn)Mn=1‖`p(X)

was introduced immediately after (2.1) and in section 2.2, respectively; the notation
‖(vn)Mn=0‖`p(X) is completely analogous.

The estimate

(3.16) ‖Ẽni‖X 6 Ckq−1

∫ tn+1

tn

‖u(q+1)(τ)‖X dτ, i = 1, . . . , q,

n = 0, . . . , N−1, is an immediate consequence of (3.11) and the consistency estimate
(3.7). Now, Hölder’s inequality for integrals yields

(3.17)
N−1∑
n=0

(∫ tn+1

tn

‖u(q+1)(τ)‖X dτ
)p

6 kp/s‖u(q+1)‖pLp((0,T );X)

with s the dual exponent of p. Inserting (3.16) into (3.14) and (3.15), and using
(3.17), we obtain the a priori error estimates

(3.18) ‖(∂en)Nn=1‖`p(X) + ‖(Aen)Nn=1‖`p(X) 6 C̃p,X,qk
q‖u(q+1)‖Lp((0,T );X)

and

(3.19) ‖(Aeni)N−1
n=0 ‖`p(X) 6 C̃p,X,qk

q‖u(q+1)‖Lp((0,T );X), i = 1, . . . , q,

respectively, with a constant C̃p,X,q, independent of T,N, the time step k, and the
solution u.

Compare the a priori error estimates (3.18) and (3.19) with [12, (2.9a), (2.9b)],
where a much more involved initial value problem is discretized.
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3.2.4 Optimality of the a posteriori error estimate (1.11)

Assuming that the forcing term f and the solution u are sufficiently smooth, namely
f ∈W q,p((0, T );X) and u ∈W q+1,p((0, T );X), and using the explicit representation
(3.3) of the residual R, we shall show here that the a posteriori error estimator for
the q-stage Radau IIA method on the right-hand side of (1.11) is also of order q, in
analogy to the a priori error estimates (3.18) and (3.19). We mention that, as in the
case of the implicit Euler method, this analysis leads to optimal order a priori error
estimates for the collocation approximation Û in the continuous Lp((0, T );X)-norm,
thus complementing the corresponding estimates (3.18) and (3.19) in the discrete
`p(X)-norm.

Let us first consider the second term,

Rf (t) := − 1

(q − 1)!

q∑
i=1

`ni(t)

∫ t

tni

(tni − τ)q−1f (q)(τ) dτ, t ∈ (tn, tn+1),

on the right-hand side of (3.3) of the residual R(t). Obviously,

‖Rf (t)‖X 6 C̃qk
q−1

∫ tn+1

tn

‖f (q)(τ)‖X dτ, t ∈ (tn, tn+1).

Therefore, using the analogue of (3.17) for f (q), we easily see that

(3.20) ‖Rf‖Lp((0,T );X) 6 C̃qk
q‖f (q)‖Lp((0,T );X).

It thus remains to estimate the first term on the right-hand side of (3.3), that
is, to show that ‖AÛ (q)‖X is bounded, uniformly in the time step k.

Recall that c0 = 0, tn0 = tn, and let Iq be the interpolation operator by elements
of X c

k (q) at the nodes tni, i = 0, 1, . . . , q. Furthermore, let ̂̀ni ∈ Pq, i = 0, 1, . . . , q, be
the Lagrange polynomials for the nodes tni, i = 0, 1, . . . , q. Then, since the approxi-
mate solution Û is an element of Vck(q), it can be written in the form

Û(t) =

q∑
i=0

̂̀
ni(t)Û(tni), t ∈ [tn, tn+1].

Therefore, with en0 = en, we have

Û(t) = −
q∑
i=0

̂̀
ni(t)eni +

q∑
i=0

̂̀
ni(t)u(tni), t ∈ [tn, tn+1],

whence

(3.21) Û (q)(t) = −
q∑
i=0

̂̀ (q)
ni eni +

q∑
i=0

̂̀ (q)
ni u(tni), t ∈ (tn, tn+1).

We have ̂̀
ni(t) =

q∏
j=0
j 6=i

t− tnj
tni − tnj

, t ∈ [tn, tn+1],



16 Georgios Akrivis, Charalambos G. Makridakis

and thus the (constant) derivative ̂̀ (q)
ni of order q of ̂̀ni is

̂̀ (q)
ni (t) = q!

q∏
j=0
j 6=i

1

tni − tnj
= q!k−q

q∏
j=0
j 6=i

1

ci − cj
.

Let

Cq := max
06i6q

q∏
j=0
j 6=i

1

|ci − cj |
.

Then, obviously,

(3.22) |̂̀ (q)
ni (t)| 6 Cqq!k

−q, i = 0, 1, . . . , q, t ∈ (tn, tn+1).

We now use (3.21) and split the first term, R
Û
, say, on the right-hand side of

(3.3) of the residual R in the form R
Û

(t) = R1(t) +R2(t) with

(3.23)


R1(t) := kqΦq

( t− tn
k

) q∑
i=0

̂̀ (q)
ni Au(tni),

R2(t) := −kqΦq
( t− tn

k

) q∑
i=0

̂̀ (q)
ni Aeni.

Obviously, Φq is bounded, |Φq(s)| 6 c/q!, uniformly in the time step k.

We shall first estimate R1. With r ∈ P(q − 1) the Taylor polynomial of u about
tn = tn0, we have Iqr = r and r(q) = 0, whence

q∑
i=0

̂̀ (q)
ni u(tni) =

q∑
i=0

̂̀ (q)
ni

[
u(tni)− r(tni)

]
=

1

(q − 1)!

q∑
i=0

̂̀ (q)
ni

∫ tni

tn

(tni − τ)q−1u(q)(τ) dτ.

This relation, in combination with (3.22) and the analogue of (3.17) for Au(q), leads
to the desired estimate

‖R1‖Lp((0,T );X) 6 ĉqk
q‖Au(q)‖Lp((0,T );X)

for R1, whence to

(3.24) ‖R1‖Lp((0,T );X) 6 ĉqk
q(‖u(q+1)‖Lp((0,T );X) + ‖f (q)‖Lp((0,T );X)

)
.

Next, we estimate R2(t). Utilizing (3.22), we obtain from (3.23)∫ tn+1

tn

‖R2(t)‖pX dt 6 (cCq)
pk
( q∑
i=0

‖Aeni‖X
)p
,

whence

‖R1‖Lp((0,T );X) 6 cCq

(
k

N∑
n=1

( q∑
i=0

‖Aeni‖X
)p)1/p

.
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Using here the triangle inequality for the `p norm on RN for q + 1 vectors, we infer
that

‖R2‖Lp((0,T );X) 6 cCq

q∑
i=0

(
k

N∑
n=1

‖Aeni‖pX
)1/p

= cCq

q∑
i=0

‖(Aeni)Nn=1‖`p(X).

In view of the a priori error estimates (3.18) and (3.19), this yields the desired
optimal order estimate for R2,

(3.25) ‖R2‖Lp((0,T );X) 6 C̃p,X,qk
q‖u(q+1)‖Lp((0,T );X).

The optimality of the a posteriori error estimate (1.11) is now an obvious conse-
quence of (3.3), (3.20), (3.24) and (3.25). Summarizing, we have proved the following:

Theorem 3.1 (A posteriori error estimate) Consider the Radau IIA approximations

defined in (1.5). Let Û ∈ Vck(q) be the continuous piecewise polynomial function such that

Û(tni) = Uni, i = 1, . . . , q, n = 0, . . . , N − 1, where, in particular, Û(tn+1) = Û(tnq) =
Un+1 = Û(t+n+1). With u being the solution of (1.1), the following maximal regularity a

posteriori error estimate holds

(3.26) ‖(u− Û)′‖Lp((0,t);X) + ‖A(u− Û)‖Lp((0,t);X) 6 cp,X‖R‖Lp((0,t);X),

for 0 < t 6 T, where the a posteriori estimator is given by

(3.27) R(t) = Û ′(t) +AÛ(t)− f(t) = (I − Iq−1)(AÛ(t)− f(t)), t ∈ (tn, tn+1].

Furthermore, the estimator is of optimal asymptotic order of accuracy in the sense that, if

the forcing term f and the solution u are sufficiently smooth, namely f ∈W q,p((0, T );X)
and u ∈W q+1,p((0, T );X), there exists a constant C̃p,X,q such that

(3.28) ‖R‖Lp((0,T );X) 6 C̃p,X,qk
q(‖u(q+1)‖Lp((0,T );X) + ‖f (q)‖Lp((0,T );X)

)
.

Remark 3.1 (Order of convergence) In the case of a triple of Hilbert spaces V ⊂ H ⊂
V ?, the standard order of convergence for the nodal errors en = u(tn) − Un as well
as for the errors eni = u(tni) − Uni at the intermediate nodes of the q-stage Radau
IIA method, q > 2, is q + 1, i.e., the minimum of the stage order plus 1 and of the
order p = 2q − 1 of the method; the errors are measured in the discrete maximum
norm in time and in the Hilbert space norm in space, i.e., in the discrete L∞(H)
norm. The a posteriori bounds in the L∞(H)- and L2(V )-norms, established via the
energy technique, are also of order q+ 1, provided the exact solution u is sufficiently
smooth; cf. [3], [4], [19].

However, the order q of the a posteriori estimator in (3.26), as well as of the a
priori error estimates (3.18) and (3.19), is optimal. This is due to the fact that our
estimates are in stronger norms in time. More precisely, the error is measured in the
W 1,p(X) (semi)norm in the first term on the left-hand side of (3.26), rather than
in the standard L∞(H)-norm in the case of Hilbert spaces. Since the collocation
approximation Û is a piecewise polynomial of degree at most q in time, its derivative
Û ′ is a piecewise polynomial of degree at most q − 1 in time; therefore, the highest
possible attainable order of convergence of the derivative e′ = u′−Û ′ of the error is q,
even if Û ′ were the best approximation to u′ from the space of piecewise polynomials
of degree at most q − 1.
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Remark 3.2 (Regularity requirements) To establish optimal order O(kq) a priori error
estimates in the discrete `p(X)-norm, we assumed that u ∈ W q+1,p((0, T );X). To
show that the a posteriori error estimator is of optimal order O(kq), and thus to
obtain optimal order a priori error estimates in the continuous Lp((0, T );X)-norm, we
furthermore assumed that f ∈W q,p((0, T );X) or equivalently Au ∈W q,p((0, T );X).
The additional regularity requirement f ∈ W q,p((0, T );X) for the optimality of the
a posteriori error estimator is due to the explicit appearance of the interpolation
error f − Iq−1f of the forcing term in the residual R; see (3.27). In contrast, the
consistency errors Eni can be expressed in terms of the solution u only; see (3.9).

Remark 3.3 (A posteriori estimates for fully discrete methods) In actual computations
for parabolic equations, time stepping methods, such as the Radau IIA methods, are
combined with space discretization, for instance by the finite element method. The
finite element solutions uh are, in general, not in the domain D(A) of the continuous
operator. Among other technical challenges, this fact is quite important since our
approach is based on the maximal regularity properties of A. Hence, the derivation
of a posteriori error estimates for fully discrete methods is not straightforward. One
possibility to bypass this issue and to extend the present analysis is to use the elliptic

reconstruction U ∈ D(A) of the finite element solutions uh. By construction, uh is
then the finite element approximation of the corresponding elliptic problem with
solution U ; see [18]. Roughly speaking, the errors u − U and U − uh are estimated
separately. The spatial error U − uh is controlled by elliptic estimators, while u− U
satisfies an error equation of a form similar to (1.10), where maximal regularity a
posteriori estimates are applicable. The derivation of a posteriori error estimates for
fully discrete methods will be addressed in a forthcoming work.

4 Extension to nonautonomous equations

In this section, we extend the maximal parabolic regularity stability estimates for
Radau IIA methods to nonautonomous parabolic equations by a perturbation argu-
ment; for similar ideas and results, we refer to [12, §3.6]. Furthermore, we establish
optimal order a posteriori error estimates.

We consider an initial value problem for a nonautonomous linear parabolic equa-
tion,

(4.1)

{
u′(t) +A(t)u(t) = f(t), 0 < t < T,

u(0) = 0,

in a Banach space X.
Our structural assumptions on A(t) are that all operators A(t), t ∈ [0, T ], share

the same domain D(A), A(t) is the generator of an analytic semigroup on X having
maximal Lp-regularity, for every t ∈ [0, T ], A(t) induce equivalent norms on D(A),

(4.2) ‖A(t)v‖X 6 c‖A(t̃)v‖X ∀t, t̃ ∈ [0, T ] ∀v ∈ D(A),

and A(t) : D(A)→ X satisfies a Lipschitz condition with respect to t, i.e.,

(4.3) ‖
(
A(t)−A(t̃)

)
v‖X 6 L|t− t̃| ‖A(τ)v‖X ∀t, t̃ ∈ [0, T ] ∀v ∈ D(A),

for all τ ∈ [0, T ].
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4.1 Maximal parabolic regularity

With our notation, and starting value U0 = 0, the q-stage Radau IIA method for
the initial value problem (4.1) yields approximations U` ∈ D(A) to the nodal values
u(t`), as well as internal approximations U`i ∈ D(A) to the intermediate values u(t`i),
by

(4.4)


Uni = Un − k

q∑
j=1

aij
(
A(tnj)Unj − f(tnj)

)
, i = 1, . . . , q,

Un+1 = Un − k
q∑
i=1

bi
(
A(tni)Uni − f(tni)

)
,

n = 0, . . . , N − 1. Notice that Un+1 = Unq.

Proposition 4.1 (Maximal parabolic regularity for nonautonomous equations)

Assume that the operator A(t) is the generator of an analytic semigroup on X having

maximal Lp-regularity, for every t ∈ [0, T ], and satisfies the structural conditions (4.2)
and (4.3). Then, the Radau II approximations Un, Uni for the initial value problem (4.1),

given in (4.4), satisfy the maximal parabolic regularity stability estimates

(4.5)

q∑
i=1

‖(A(tm)Uni)
m−1
n=0 ‖`p(X) 6 Cp,X,T

q∑
i=1

‖(f(tni))
m−1
n=0 ‖`p(X)

and

(4.6) ‖(∂Un)mn=1‖`p(X) + ‖(A(tm)Un)mn=1‖`p(X) 6 Cp,X,T

q∑
i=1

‖(f(tni))
m−1
n=0 ‖`p(X),

m = 1, . . . , N, with a constant Cp,X,T independent of m and k.

Proof We fix an m, and, for n = 0, . . . ,m− 1, rewrite (4.4) in the form

(4.7)


Uni = Un − k

q∑
j=1

aij
(
A(tm)Unj − gnj − f(tnj)

)
, i = 1, . . . , q,

Un+1 = Un − k
q∑
i=1

bi
(
A(tm)Uni − gni − f(tni)

)
,

with

(4.8) gni :=
(
A(tm)−A(tni)

)
Uni, i = 1, . . . , q.

Since the time t is frozen at tm in the operator A(tm) in (4.7), we can apply
the known maximal parabolic regularity estimates (3.4) and (3.5) for Radau IIA
methods for autonomous equations, and obtain

(4.9)

‖(∂Un)mn=1‖`p(X) + ‖(A(tm)Un)mn=1‖`p(X) 6 Cp,X

q∑
i=1

‖(gni)m−1
n=0 ‖`p(X)

+ Cp,X

q∑
i=1

‖(f(tni))
m−1
n=0 ‖`p(X)
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and

(4.10)

q∑
i=1

‖(A(tm)Uni)
m−1
n=0 ‖`p(X) 6 Cp,X

q∑
i=1

‖(gni)m−1
n=0 ‖`p(X)

+ Cp,X

q∑
i=1

‖(f(tni))
m−1
n=0 ‖`p(X)

with a constant Cp,X independent of m and T ; notice that to choose Cp,X indepen-
dently of m we resort to the equivalence of the norms in (4.2).

To obtain the asserted result, it remains to estimate the first term on the right-
hand sides of (4.9) and (4.10) in a suitable way. Let

Zm :=

q∑
i=1

‖(gni)m−1
n=0 ‖

p
`p(X)

= k

m−1∑
`=0

q∑
i=1

‖
(
A(tm)−A(t`i)

)
U`i‖

p
X

and

E` := k

`−1∑
j=0

q∑
i=1

‖A(tm)Uji‖pX , ` = 1, . . . ,m, E0 := 0.

Now, according to estimate (4.10), we have

(4.11) Em 6 C

q∑
i=1

‖(f(tni))
m−1
n=0 ‖

p
`p(X)

+ CZm.

Furthermore, in view of the Lipschitz condition (4.3),

Zm 6 kL

m−1∑
`=0

(tm − t`)p
q∑
i=1

‖A(tm)U`i‖
p
X = L

m∑
`=1

(tm − t`)p(E` − E`−1),

whence, by summation by parts, we have

(4.12) Zm 6 L

m∑
`=1

a`E`,

with a` := (tm − t`−1)p − (tm − t`)p, and (4.11) yields

(4.13) Em 6 C

q∑
i=1

‖(f(tni))
m−1
n=0 ‖

p
`p(X)

+ C

m∑
`=1

a`E`.

Since the sum
∑m
`=1 a` is uniformly bounded,

m∑
`=1

a` =
(
tm − t0)p 6 T p,

a discrete Gronwall-type argument applied to (4.13) leads to

(4.14) Em 6 C

q∑
i=1

‖(f(tni))
m−1
n=0 ‖

p
`p(X)

.

Combining (4.10) with (4.12) and (4.14), we obtain the asserted maximal parabolic
regularity stability estimate (4.5) with a constant Cp,X,T independent of m and k.

Analogously, from (4.9), we obtain (4.6). ut
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Remark 4.1 (Bounded variation condition) The Lipschitz condition (4.3) in Proposi-
tion 4.1 can be relaxed to a bounded variation condition, namely,

(4.15) ‖
(
A(t)−A(t̃)

)
v‖X 6 [σ(t)− σ(t̃)]‖A(τ)v‖X , 0 6 t̃ 6 t 6 T, ∀v ∈ D(A),

for all τ ∈ [0, T ], with an increasing function σ : [0, T ]→ R; cf., e.g., [9].
Indeed, in this case, we have

Zm 6 k

m−1∑
`=0

[σ(tm)− σ(t`)]
p

q∑
i=1

‖A(tm)U`i‖
p
X =

m∑
`=1

[σ(tm)− σ(t`−1)]p(E` − E`−1),

whence, by summation by parts,

(4.16) Zm 6
m∑
`=1

a`E`,

with a` := [σ(tm)− σ(t`−1)]p − [σ(tm)− σ(t`)]
p > 0, and (4.11) yields

(4.17) Em 6 C

q∑
i=1

‖(f(tni))
m−1
n=0 ‖

p
`p(X)

+ C

m∑
`=1

a`E`.

Since the sum
∑m
`=1 a` is uniformly bounded by a constant independent of m and

the time step k,

m∑
`=1

a` =
[
σ(tm)− σ(t0)

]p
6
[
σ(T )− σ(0)

]p
,

a discrete Gronwall-type argument applied to (4.17) leads to

(4.18) Em 6 C

q∑
i=1

‖(f(tni))
m−1
n=0 ‖

p
`p(X)

and the proof can be completed as in the case of the Lipschitz condition.

4.2 A posteriori error estimates

Let R be the residual of the collocation approximate solution Û ,

(4.19) R(t) := Û ′(t) +A(t)Û(t)− f(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1,

cf. (1.9), i.e., the amount by which Û misses being an exact solution of the differential
equation in (4.1). Then, the error e := u− Û satisfies the error equation

(4.20) e′(t) +A(t)e(t) = −R(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1.

Let us now fix a τ ∈ (0, T ). To apply the maximal Lp-regularity of the operator A(τ),
for a frozen τ, we rewrite (4.20) in the form

(4.21) e′(t) +A(τ)e(t) = [A(τ)−A(t)]e(t)−R(t), t ∈ (0, τ ].
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Then, the maximal Lp-regularity of A(τ), applied to (4.21) yields the preliminary
estimate

(4.22)
‖e′‖Lp((0,τ);X) + ‖A(τ)e‖Lp((0,τ);X) 6 cp,X‖[A(τ)−A(·)]e‖Lp((0,τ);X)

+ cp,X‖R‖Lp((0,τ);X)

for all 0 < τ 6 T, for any p ∈ (1,∞), with a constant cp,X independent of τ, depending
only on p and X.

With

η(t) := ‖A(τ)e‖pLp((0,t);X)
=

∫ t

0

‖A(τ)e(s)‖pX ds, 0 6 t 6 τ,

estimate (4.22) yields

(4.23) η(τ) 6 C‖[A(τ)−A(·)]e‖pLp((0,τ);X)
+ C‖R‖pLp((0,τ);X)

, 0 6 τ 6 T.

Now, in view of the Lipschitz condition (4.3),

‖[A(τ)−A(·)]e‖pLp((0,τ);X)
=

∫ τ

0

‖[A(τ)−A(t)]e(t)‖pX dt

6 Lp
∫ τ

0

(τ − t)p‖A(τ)e(t)‖pX dt,

i.e.,

‖[A(τ)−A(·)]e‖pLp((0,τ);X)
6 Lp

∫ τ

0

(τ − t)pη′(t) dt,

and integration by parts yields

(4.24) ‖[A(τ)−A(·)]e‖pLp((0,τ);X)
6 Lpp

∫ τ

0

(τ − t)p−1η(t) dt.

From (4.23) and (4.24), we obtain

η(τ) 6 C

∫ τ

0

(τ − t)p−1η(t) dt+ C‖R‖pLp((0,τ);X)
, 0 6 τ 6 T,

whence, via a Gronwall inequality,

(4.25) η(τ) 6 C′‖R‖pLp((0,τ);X)
, 0 6 τ 6 T,

with a constant C′ depending also on L and T.

Now, (4.24) and (4.25) yield

‖[A(τ)−A(·)]e‖Lp((0,τ);X) 6 c‖R‖Lp((0,τ);X)

and, in combination with (4.22), the desired a posteriori error estimate

(4.26) ‖e′‖Lp((0,τ);X) + ‖A(τ)e‖Lp((0,τ);X) 6 c‖R‖Lp((0,τ);X), 0 < τ 6 T,

for any p ∈ (1,∞), with a constant c depending on p,X,L, and T . Notice that,
in view of the equivalence of the norms ‖A(t) · ‖X , the constant c can be chosen
independently of τ.

As in the case of autonomous equations, we can see that the a posteriori error
estimator on the right-hand side of (4.26) is of optimal order.
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