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Abstract. We construct and analyze a class of extrapolated and linearized Runge–Kutta (RK) methods,
which can be of arbitrarily high order, for the time discretization of the Allen–Cahn and Cahn–Hilliard phase
field equations, based on the scalar auxiliary variable (SAV) formulation. We prove that the proposed q-
stage RK–SAV methods have qth-order convergence in time and satisfy a discrete version of the energy decay
property. Numerical examples are provided to illustrate the discrete energy decay property and accuracy of
the proposed methods.
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1. Introduction. We consider the following initial boundary value problems for the
Allen–Cahn (AC) and Cahn–Hilliard (CH) phase field equations,

(1.1)


∂tu−∆u+ f(u) = 0 in Ω × (0, T ),

∂nu = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

and

(1.2)


∂tu−∆(−∆u+ f(u)) = 0 in Ω × (0, T ),

∂nu = ∂n(−∆u+ f(u)) = 0 on ∂Ω × (0, T ),

u(·, 0) = u0 in Ω,

respectively, in a smooth or a convex polygonal/polyhedral domain Ω ⊂ Rd, 1 ⩽ d ⩽ 3, with
f being the derivative of a nonnegative potential function F , i.e., f = F ′. For instance, the
Ginzburg–Landau energy function

F (v) :=
1

4ε2
(v2 − 1)2 with a small parameter ε

leads to f(v) = (v3 − v)/ε2, which is widely used in physics and engineering.
The AC and CH equations are phase field models for phase separation in binary alloy

systems, complex fluids, and soft matter [1, 5, 12, 45]. They are, respectively, the L2 and
H−1 gradient flows of the energy functional

E[u] =

∫
Ω

(1
2
|∇u|2 + F (u)

)
dx.
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As a result, the solutions of the AC and CH equations have decaying energy. Indeed, testing
(1.1) and (1.2) by ∂tu and −∆u+ f(u), respectively, yields

E[u(·, t2)]− E[u(·, t1)] = −
∫ t2

t1

∥∂tu∥2L2(Ω)dt for the AC equation,(1.3)

E[u(·, t2)]− E[u(·, t1)] = −
∫ t2

t1

∥∂tu∥2H−1(Ω)dt for the CH equation,(1.4)

where 0 ⩽ t1 ⩽ t2 ⩽ T and ∥∂tu∥H−1(Ω) = ∥∇w∥L2(Ω) with w = −∆u+ f(u).
Correspondingly, great efforts have been devoted to the construction of efficient and

accurate numerical methods preserving the energy decay property at the discrete level.
Some popular energy-decaying nonlinearly implicit time stepping methods include convex
splitting methods [14, 15, 25, 32, 36], discrete-gradient methods [20, 30, 11, 31], averaged
collocation methods [22, 10], and Runge–Kutta methods [23]. More recently, fully implicit
energy-decaying algebraically stable Runge–Kutta methods were proposed for the invariant
energy quadratization (IEQ) and the scalar auxiliary variable (SAV) formulations; see [19];
they require solving a nonlinear system of equations at every time step. These methods
are expected to be of higher-order, like the implicit Runge–Kutta methods for the original
formulation studied in [23]. Existence, uniqueness and convergence of these methods require
further analysis.

In contrast to fully implicit methods, linearly implicit methods only require solving a
linear system of equations at each time step. Energy-decaying linearly implicit time stepping
methods include stabilization methods [47, 35, 26, 27, 37, 38, 39, 46], Lagrange multiplier
methods [2, 21], the IEQ approach [40, 41, 42, 44, 43], and the SAV approach [33, 34, 9].
By using the stabilization and Lagrange multiplier approaches, first-order time stepping
methods can be easily constructed for phase field equations, while second-order methods
have to be constructed by carefully choosing stabilization terms and Lagrange multipliers
case by case. The IEQ and SAV approaches provide equivalent reformulations of general
phase field equations. The main advantage of the reformulated equations is that the energy is
expressed in terms of Hilbert space norms of the new variables, which considerably simplifies
the construction of energy-decaying methods; in particular, the construction of energy-
decaying second-order time stepping methods for the reformulated phase field equations is
a relatively easy task. For example, applying the linearly implicit second-order backward
difference formula (BDF) method to the reformulated equations, based either on the IEQ
or on the SAV formulations, automatically yields an energy-decaying time discretization
method, with the decay property properly interpreted since now two pairs of approximations,
(um+1, um),m = n, n − 1, are compared rather than two approximations un+1 and un.
However, high-order BDF methods for the reformulated equations, again based either on
the IEQ or on the SAV formulations, do not immediately lead to energy-decaying numerical
schemes. For all these approaches, the construction of general energy-decaying linearized
time stepping methods of order higher than 2 has remained open.

We refer the reader to [3, 4, 6, 7, 8, 16, 17, 18, 28, 33, 39] for error analyses of numerical
methods for the AC and CH equations.

In this article, we propose a class of extrapolated and linearized Runge–Kutta meth-
ods based on the SAV formulation (extrapolated RK–SAV methods) for the AC and CH
phase field equations, with linearly implicit schemes for the linear part of the equations and
linearized extrapolation for the nonlinear part. We prove that the proposed extrapolated
q-stage RK–SAV methods can have qth-order convergence in time in approximating smooth
solutions of the AC and CH equations and satisfy a discrete version of the energy decay,
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i.e.,

(1.5) Eτ [un+1, rn+1] ⩽ Eτ [un, rn],

where Eτ [un, rn] is the discrete (modified) energy of the numerical solution at time t = tn;
see Section 3. Therefore, arbitrarily high order energy-decaying methods can be constructed
by choosing large q. This again demonstrates the strength and suitability of the SAV and
IEQ approaches for the construction not only of second order but even of high-order energy-
decaying linearly implicit methods.

The extrapolated RK–SAV methods proposed in this paper can be viewed as an ex-
trapolated linearization of the Runge–Kutta methods studied in [19] for the IEQ and SAV
formulations. The advantage of such extrapolation and linearization is a complete existence,
uniqueness, and convergence analysis for a linearly implicit method.

In Section 2, we recall the standard SAV reformulations of the AC and CH equations,
then present our numerical methods based on the SAV formulation. The analogous numerical
schemes based on IEQ are similar and therefore omitted in this article. In Section 3, we
prove the energy decay property of the proposed methods. Section 4 is devoted to the
error analysis for the AC equation, while in Section 5 we present results of our numerical
experiments. Concluding remarks are presented in Section 6.

2. Extrapolated RK–SAV methods. In this section, we present the extrapolated
RK–SAV methods for the AC and CH equations. The AC and CH equations are first
reformulated via the SAV, as in the literature, and then discretized in time by algebraically
stable q-stage Runge–Kutta methods, with linearized extrapolation for the nonlinear terms
in the reformulated equations.

2.1. SAV reformulations. The SAV approach introduces a scalar function of t,

(2.1) r(t) :=
√∫

Ω
F (u(x, t))dx+ E0, 0 ⩽ t ⩽ T,

with E0 an arbitrary positive constant, for example, E0 :=
∫
Ω
( 12 |∇u0|2 + F (u0))dx, and

reformulates the AC and CH equations into

(2.2)



∂tu−∆u+ rW (u) = 0 in Ω × (0, T ),

∂nu = 0 on ∂Ω × (0, T ),

r′ =
1

2
(W (u), ∂tu) in (0, T ),

u(·, 0) = u0 in Ω,

r(0) =
√∫

Ω
F (u0)dx+ E0,

and

(2.3)



∂tu−∆(−∆u+ rW (u)) = 0 in Ω × (0, T ),

∂nu = ∂n(−∆u+ rW (u)) = 0 on ∂Ω × (0, T ),

r′ =
1

2
(W (u), ∂tu) in (0, T ),

u(·, 0) = u0 in Ω,

r(0) =
√∫

Ω
F (u0)dx+ E0,
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respectively, where W (u) := f(u)/
√∫

Ω
F (u(x, t))dx+ E0. First- and second-order linearly

implicit schemes can be constructed by directly applying the implicit Euler and the second-
order BDF methods to problems (2.2) and (2.3). The resulting methods automatically
preserve the energy decay property; for instance, for the implicit Euler method, we have

(2.4)
∫
Ω

1

2
|∇un+1|2dx+ r2n+1 ⩽

∫
Ω

1

2
|∇un|2dx+ r2n.

However, as mentioned in the introduction, higher-order BDF methods for the SAV formu-
lation do not automatically yield energy-decaying time discretization methods. Higher order
energy-decaying linear schemes have not been constructed so far. In Sections 2.2–2.3, we
present a class of extrapolated Runge–Kutta methods, which can be arbitrarily high-order
accurate, for the SAV formulations (2.2) and (2.3) that preserve the energy decay property
at the discrete setting.

2.2. Algebraically stable Runge–Kutta methods. We consider a q-stage Runge–
Kutta method, described by the Butcher tableau

(2.5)

a11 . . . a1q c1
...

...
...

aq1 . . . aqq cq
b1 . . . bq

with c1, . . . , cq ∈ (0, 1]. The Runge–Kutta method described by (2.5) discretizes an initial
value problem for an autonomous ordinary differential equation

v′(t) = f(v(t)), t ∈ (0, T ], v(0) = v0,

in the following way. For a given approximation vn of the nodal value v(tn), one computes
vn+1 by 

vni = vn + τ

q∑
j=1

aij v̇nj , i = 1, . . . , q,

vn+1 = vn + τ

q∑
i=1

biv̇ni,

where v̇ni = f(vni), i = 1, . . . , q, vni are approximations to v(tni) for i = 1, . . . , q, with
tni = tn + ciτ being the internal Runge–Kutta nodes and τ = tn+1 − tn being the time
stepsize.

We consider algebraically stable Runge–Kutta methods satisfying the following condi-
tions:

(1) The matrix A = (aij)i,j=1,...,q is invertible,
(2) bi > 0, i = 1, . . . , q,

(3) ci ̸= cj for i ̸= j.

(2.6)

Here, algebraic stability means, besides the positivity of the weights b1, . . . , bq, that the
symmetric matrix M ∈ Rq×q with entries mij := biaij + bjaji − bibj , i, j = 1, . . . , q, is
positive semidefinite. This is our essential condition for the energy decay property.

Besides (2.6), we assume for the error analysis that the Runge–Kutta method is asso-
ciated to a collocation method, that is, it has order p ⩾ q and stage order at least q, i.e.,
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q∑
i=1

bic
ℓ−1
i =

1

`
, ` = 1, . . . , p,(B(p))

q∑
j=1

aijc
ℓ−1
j =

cℓi
`
, ` = 1, . . . , q, i = 1, . . . , q.(C(q))

Two popular families of algebraically stable Runge–Kutta methods of collocation type
satisfying (2.6), of orders p = 2q and p = 2q−1, respectively, are the Gauss methods and the
Radau IIA methods. For both families, arbitrarily high-order methods can be constructed.
The one-stage members of these families are the midpoint (or Crank–Nicolson) and implicit
Euler methods, respectively. The tableaus of the two- and three-stage members of the Gauss
and Radau IIA methods are given in [24, §IV, pp. 72, 74].

2.3. Extrapolated RK–SAV methods. Let N be a positive integer and tn :=
nτ, n = 0, . . . , N, be the uniform partition of the time interval [0, T ] with time stepsize
τ := T/N. Furthermore, let tni := tn+ ciτ, i = 1, . . . , q, n = 0, . . . , N −1, denote the internal
Runge–Kutta nodes.

For given internal stages un−1,i, i = 1, . . . , q, we denote by uτ
n−1(t) the Lagrange inter-

polation polynomial of degree at most q − 1 satisfying

uτ
n−1(tn−1,i) = un−1,i, i = 1, . . . , q,

and use the abbreviation Iτn−1uni := uτ
n−1(tni), which approximates u(tni) by the extrapo-

lation method using the values un−1,i, i = 1, . . . , q.
Similarly, we denote by Iτn−1u(t) the Lagrange interpolation polynomial in t of degree

at most q − 1 interpolating the values of the exact solution u, i.e., satisfying

Iτn−1u(tn−1,i) = u(tn−1,i), i = 1, . . . , q.

Assuming that the nodal approximations un, rn and the internal stages un−1,i, i =
1, . . . , q, are known, we consider the following method for the reformulated AC equation
(2.2): 

u̇ni = ∆uni − rniW (Iτn−1uni) in Ω, i = 1, . . . , q,

uni = un + τ

q∑
j=1

aij u̇nj , in Ω, i = 1, . . . , q,

∂nuni = 0 on ∂Ω, i = 1, . . . , q,

(2.8)


ṙni =

1

2
(W (Iτn−1uni), u̇ni), i = 1, . . . , q,

rni = rn + τ

q∑
j=1

aij ṙnj , i = 1, . . . , q.
(2.9)

Note that the quantities u̇ni and ṙni have been introduced here for notational convenience
only. In fact, substituting u̇ni from the first relation of (2.8) into the second relation of
(2.8) as well as into the first relation of (2.9), and subsequently substituting the new first
relation of (2.9) into its second relation, we obtain a coupled system for the internal stages
uni and rni, i = 1, . . . , q. Since the extrapolated quantities W (Iτn−1uni) are known, the
implementation of (2.8)–(2.9) requires only the solution of a coupled linear elliptic system
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for (uni, rni) ∈ H1(Ω) × R, i = 1, . . . , q. Once uni and rni have been determined, we
obtain the quantities u̇ni ∈ H1(Ω) and ṙni ∈ R from the second relations of (2.8) and
(2.9), respectively, using the invertibility of the matrix A = (aij). Using these values, one
computes (un+1, rn+1) ∈ H1(Ω)× R through

(2.10)


un+1 := un + τ

q∑
i=1

biu̇ni,

rn+1 := rn + τ

q∑
i=1

biṙni.

Since Iτn−1u(t) is the Lagrange interpolation polynomial of degree at most q − 1, it
follows that Iτn−1u(tni) is a qth-order approximation of u(tni) for i = 1, . . . , q. Therefore,
the method (2.8)–(2.10) has (q + 1)th-order consistency error; see Section 4.

For the CH equation, the extrapolated linearized Runge–Kutta method for (2.3) reads

(2.11)



u̇ni = ∆wni in Ω, i = 1, . . . , q,

uni = un + τ

q∑
j=1

aij u̇nj in Ω, i = 1, . . . , q,

wni = −∆uni + rniW (Iτn−1uni) in Ω, i = 1, . . . , q,

∂nuni = ∂nwni = 0 on ∂Ω, i = 1, . . . , q,

and

(2.12)


ṙni =

1

2
(W (Iτn−1uni), u̇ni), i = 1, . . . , q,

rni = rn + τ

q∑
j=1

aij ṙnj , i = 1, . . . , q,

which is an elliptic system of equations of the internal stages (uni, wni, rni), i = 1, . . . , q.
Having solved the equations for these internal stages, we obtain (u̇ni, ṙni) ∈ H1(Ω) × R,
i = 1, . . . , q, from the second relations in (2.11)–(2.12) using the invertibility of the matrix
A = (aij). Using these values, one computes (un+1, rn+1) ∈ H1(Ω)× R through

(2.13)


un+1 := un + τ

q∑
i=1

biu̇ni,

rn+1 := rn + τ

q∑
i=1

biṙni.

As for method (2.8)–(2.10), the consistency error of method (2.11)–(2.13) is of (q + 1)th-
order.

3. Energy decay property of the extrapolated RK–SAV method. In this sec-
tion, we use the algebraic stability of the Runge–Kutta methods to show that the extrap-
olated RK–SAV methods (2.8)–(2.10) and (2.11)–(2.13) satisfy discrete analogues of the
energy decay. We denote by

Eτ [un, rn] :=
1

2
∥∇un∥2 + |rn|2 − E0
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the discrete energy (also referred to as modified energy since, in general, |rn|2−E0 does not
coincide with

∫
Ω
F (un)dx) of the numerical solution at tn.

Theorem 3.1 (Discrete energy decay for the AC equation). Assume that the Runge–
Kutta method (2.5) is algebraically stable and satisfies (2.6), and assume that the values
un−1,i ∈ H1(Ω), i = 1, . . . , q, and (un, rn) ∈ H1(Ω) × R are given. Then, the extrapolated
RK–SAV method (2.8)–(2.9) has a unique solution of internal stages (uni, rni) ∈ H1(Ω)×R,
i = 1, . . . , q, and the nodal values (un+1, rn+1) ∈ H1(Ω) × R defined by (2.10) satisfy the
energy decay property

(3.1) Eτ [un+1, rn+1] ⩽ Eτ [un, rn].

Proof. We first prove (3.1) for any solution of internal stages (uni, rni) ∈ H1(Ω) × R,
i = 1, . . . , q. In this case, the nodal value (un+1, rn+1) defined by (2.10) is in H1(Ω)×R, as
explained in Section 2.3. Existence and uniqueness of solutions are proved afterward.

According to the first relation of (2.10), we have

∇un+1 = ∇un + τ

q∑
i=1

bi∇u̇ni.

Squaring the L2-norms of both sides yields

∥∇un+1∥2 =
(
∇un + τ

q∑
i=1

bi∇u̇ni,∇un + τ

q∑
j=1

bj∇u̇nj

)
= ∥∇un∥2 + 2τ

q∑
i=1

bi(∇u̇ni,∇un) + τ2
q∑

i,j=1

bibj(∇u̇ni,∇u̇nj).

Substituting un = uni − τ
∑q

j=1 aij u̇nj (the second relation in (2.8)) into the second term
on the right-hand side of the last relation, we obtain

∥∇un+1∥2 = ∥∇un∥2 + 2τ

q∑
i=1

bi
(
∇u̇ni,∇uni − τ

q∑
j=1

aij∇u̇nj

)
+ τ2

q∑
i,j=1

bibj(∇u̇ni,∇u̇nj),

whence

∥∇un+1∥2 = ∥∇un∥2 + 2τ

q∑
i=1

bi
(
∇u̇ni,∇uni)− τ2

q∑
i,j=1

mij(∇u̇ni,∇u̇nj),

with mij = biaij + bjaji− bibj , i, j = 1, . . . , q. Using here the positive semidefiniteness of the
matrix M = (mij) we infer that

(3.2) ∥∇un+1∥2 ⩽ ∥∇un∥2 + 2τ

q∑
i=1

bi
(
∇u̇ni,∇uni).

Testing the first relation of (2.8) by u̇ni yields

∥u̇ni∥2 = −(∇u̇ni,∇uni)− rni(u̇ni,W (Iτn−1uni)),

which implies (∇u̇ni,∇uni) = −∥u̇ni∥2− rni(u̇ni,W (Iτn−1uni)). Then, substituting this into
(3.2) yields

(3.3) ∥∇un+1∥2 ⩽ ∥∇un∥2 − 2τ

q∑
i=1

bi∥u̇ni∥2 − 2τ

q∑
i=1

birni
(
u̇ni,W (Iτn−1uni)

)
.
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Similarly, we can obtain

(3.4) |rn+1|2 ⩽ |rn|2 + τ

q∑
i=1

birni(W (Iτn−1uni), u̇ni).

Notice that up to this point we followed the proof for the algebraic stability of Runge–
Kutta methods; of course, since we are interested in the energy decay property, we do not
consider differences of approximations.

Now, multiplying (3.3) by 1
2 and adding the result to (3.4), the last terms on their

right-hand sides cancel and we obtain

(3.5) 1

2
∥∇un+1∥2 + |rn+1|2 ⩽ 1

2
∥∇un∥2 + |rn|2 − τ

q∑
i=1

bi∥u̇ni∥2.

Using here the nonnegativity of the weights b1, . . . , bq, we infer that the extrapolated RK–
SAV method (2.8)–(2.10) has the desired energy decay property,

(3.6) 1

2
∥∇un+1∥2 + |rn+1|2 ⩽ 1

2
∥∇un∥2 + |rn|2.

This proves (3.1).
Finally, we prove existence and uniqueness of solutions to system (2.8)–(2.9). To this

end, we let Un := (un1, . . . , unq)
T , Rn := (rn1, . . . , rnq)

T , and 1 = (1, . . . , 1)T and denote
by I the q × q identity matrix. Then, from (2.8) we obtain

(3.7) (I −∆I)Un = (I − τ−1A−1)Un + unτ
−1A−1

1−B1Rn,

with the boundary condition ∂nUn = 0 on ∂Ω, where B1 is the diagonal matrix-valued
function

B1 = diag(wn1, . . . , wnq) with given functions wni = W (Iτn−1uni).

Multiplying both sides of (3.7) by (I −∆I)−1, we further obtain

(3.8) Un = GUn −B2Rn + g

with

G = (I −∆I)−1(I − τ−1A−1), B2 = (I −∆I)−1B1, and g = (I −∆I)−1un τ
−1A−1

1.

Similarly, from (2.9) we obtain

(3.9) Rn = rn1− 1

2
τAJ∇Wn · ∇Un − 1

2
τAB3Rn,

where ∇Wn · ∇Un = (∇wn1 · ∇un1, . . . ,∇wnq · ∇unq)
T , B3 is the diagonal matrix

B3 = diag(∥wn1∥2, . . . , ∥wnq∥2),

and J : L2(Ω)q → Rq is defined by Jv =
∫
Ω
v dx for v ∈ L2(Ω)q.

Substituting (3.8) into (3.9) yields

(3.10) Rn = −1

2
τAJ∇Wn · ∇(GUn) +

1

2
τAJ∇Wn · ∇(B2Rn)−

1

2
τAB3Rn + g̃
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with g̃ = rn1− 1
2τAJ∇Wn · ∇g.

Equations (3.8) and (3.10) can be written abstractly as

(3.11)
(
Un

Rn

)
= G̃

(
Un

Rn

)
+

(
g
g̃

)
with G̃ : (L2(Ω))q × Rq → (H1(Ω))q × Rq ↪→↪→ (L2(Ω))q × Rq being a compact operator
on (L2(Ω))q × Rq. Therefore, by the Fredholm theory of compact operators, (3.11) has a
unique solution if and only if the corresponding homogeneous equation

(3.12)
(
Un

Rn

)
= G̃

(
Un

Rn

)
has only the trivial solution. Now, from (3.5) we obtain

(3.13) τ

q∑
i=1

bi∥u̇ni∥2 ⩽ 1

2
∥∇un∥2 + |rn|2.

Since bi > 0 for i = 1, . . . , q, cf. condition (2.6), estimate (3.13) implies that the homogeneous
elliptic system corresponding to (2.8)–(2.9) has indeed only the trivial solution. In fact, for
un = 0 and rn = 0, (3.13) yields u̇ni = 0, i = 1, . . . , q, and we infer from (2.8)–(2.9) that
also uni = 0, rni = 0, i = 1, . . . , q.

This proves that the elliptic system (2.8)–(2.9) has a unique solution (uni, rni) ∈ H1(Ω)×
R, i = 1, . . . , q.

Remark 3.1 (On the discrete energy decay property). It is evident from the proof
of Theorem 3.1 that the discrete energy decay property (3.1) remains valid if we replace
Iτn−1uni by arbitrary quantities ũni. In particular, the base (nonlinear) version of the Runge–
Kutta method, with ũni = uni (with unknown internal stages uni) as well as its fixed-point
linearization, with given ũni = u

(ℓ−1)
ni and unknown uni = u

(ℓ)
ni , are also energy-decaying

methods.
Theorem 3.2 (Discrete energy decay for the CH equation). Let the Runge–Kutta

method (2.5) be algebraically stable and satisfy (2.6), and assume that the values un−1,i ∈
H1(Ω), i = 1, . . . , q, and (un, rn) ∈ H1(Ω)×R are given. Then, the linearized Runge–Kutta
method (2.11)–(2.12) has a unique solution of internal stages (uni, wni, rni) ∈ H1(Ω) ×
H1(Ω)×R for i = 1, . . . , q, and the nodal values (un+1, rn+1) ∈ H1(Ω)×R defined by (2.13)
satisfy the following energy decay property:

(3.14) Eτ [un+1, rn+1] ⩽ Eτ [un, rn].

Proof. We prove (3.14) for any solution of internal stages (uni, wni, rni) ∈ H1(Ω) ×
H1(Ω) × R, i = 1, . . . , q. In this case, the nodal value (un+1, rn+1) defined by (2.13) is in
H1(Ω) × R. Existence and uniqueness of a solution can be proved along the lines of the
proof of Theorem 3.1 and are therefore omitted.

As in the proof of Theorem 3.1, both (3.2) and (3.4) hold for the numerical solution of
the CH equation, i.e.,

(3.15) ∥∇un+1∥2 ⩽ ∥∇un∥2 + 2τ

q∑
i=1

bi(∇u̇ni,∇uni),

(3.16) |rn+1|2 ⩽ |rn|2 + τ

q∑
i=1

birni(W (Iτn−1uni), u̇ni).
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Testing the third relation of (2.11) by u̇ni gives

(∇u̇ni,∇uni) = (u̇ni, wni − rniW (Iτn−1uni)).

Then, substituting this into (3.15) yields

(3.17) ∥∇un+1∥2 ⩽ ∥∇un∥2 + 2τ

q∑
i=1

bi
(
u̇ni, wni − rniW (Iτn−1uni)).

Multiplying (3.17) by 1
2 and adding the result to (3.16), we have

(3.18) 1

2
∥∇un+1∥2 + |rn+1|2 ⩽ 1

2
∥∇un∥2 + |rn|2 + τ

q∑
i=1

bi
(
u̇ni, wni).

Substituting u̇ni = ∆wni (cf. the first relation of (2.11)) into the last estimate and using
integration by parts, we obtain

(3.19) 1

2
∥∇un+1∥2 + |rn+1|2 ⩽ 1

2
∥∇un∥2 + |rn|2 − τ

q∑
i=1

bi∥∇wni∥2.

This proves the energy decay property (3.14) (since bi > 0 for i = 1, . . . , q).
4. Error analysis for the extrapolated RK–SAV method. In this section, we

establish error estimates for the extrapolated RK–SAV method for the AC equation. The
analysis for the CH equation is similar and is therefore omitted.

We assume that the values u(t0i), i = 1, . . . , q, u(t1) and r(t1) are given or sufficiently
accurate approximations thereof have been computed by other methods, and we examine
the error of the numerical solutions given by the extrapolated RK–SAV method (2.8)–(2.10)
for n = 1, . . . , N − 1.

4.1. Consistency. We prove consistency of the extrapolated RK–SAV methods for the
AC equation, assuming existence of a smooth solution. The consistency errors εni, εn+1, dni,
and dn+1 of the method are determined by

u̇⋆
ni = ∆u⋆

ni − r⋆niW (Iτn−1u
⋆
ni) in Ω, i = 1, . . . , q,

u⋆
ni = u⋆

n + τ

q∑
j=1

aij u̇
⋆
nj + εni, in Ω, i = 1, . . . , q,

∂nu
⋆
ni = 0 on ∂Ω, i = 1, . . . , q,

(4.1)


ṙ⋆ni =

1

2
(W (Iτn−1u

⋆
ni), u̇

⋆
ni), i = 1, . . . , q,

r⋆ni = r⋆n + τ

q∑
j=1

aij ṙ
⋆
nj + dni, i = 1, . . . , q,

(4.2)

and

(4.3)


u⋆
n+1 = u⋆

n + τ

q∑
i=1

biu̇
⋆
ni + εn+1,

r⋆n+1 = r⋆n + τ

q∑
i=1

biṙ
⋆
ni + dn+1,
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with the notation

u⋆
n := u(tn), r⋆n := r(tn), u⋆

ni := u(tni) = u(tn + ciτ), r⋆ni := r(tni) = r(tn + ciτ),

and W (v) := f(v)/
√∫

Ω
F (v)dx+ E0.

Lemma 4.1 (Consistency estimate). If the solutions u and r of (2.2) are sufficiently
smooth, then the following consistency estimate holds:

(4.4) ∥εn+1∥H1(Ω) + |dn+1|+ τ

q∑
i=1

(
∥εni∥H1(Ω) + |dni|

)
⩽ cτ q+1.

Proof. We add and subtract r⋆njW (u⋆
nj) in the summation in the second relation of (4.1)

and use the first differential equation in (2.2) to obtain

(4.5) u⋆
ni − u⋆

n − τ

q∑
j=1

aijut(tnj) = τ

q∑
j=1

aijr
⋆
nj

[
W (u⋆

nj)−W (Iτn−1u
⋆
nj)

]
+ εni.

Let us denote by ε̃ni, i = 1, . . . , q, the quantity on the left-hand side of (4.5). Taylor
expansion about tn yields

ε̃ni =

q∑
ℓ=1

τ ℓ

(`− 1)!

(cℓi
`
−

q∑
j=1

aijc
ℓ−1
j

)
u(ℓ)(tn) +

1

q!

∫ tni

tn

(tni − s)qu(q+1)(s)ds

− τ

(q − 1)!

q∑
j=1

aij

∫ tnj

tn

(tnj − s)q−1u(q+1)(s)ds,

with u(ℓ) = ∂ℓ
tu. In view of the stage order conditions (C(q)), leading terms of order up to

q vanish, and ε̃ni can be represented in the form

(4.6) ε̃ni = τ q
∫ tn+1

tn

κi

(s− tn
τ

)
u(q+1)(s)ds, i = 1, . . . , q,

with the bounded Peano kernels

(4.7) κi(t) :=
1

q!

(
(ci − t)+

)q − 1

(q − 1)!

q∑
j=1

aij
(
(cj − t)+

)q−1
, 0 ⩽ t ⩽ 1,

i = 1, . . . , q, where we used the standard notation s+ = s for s ⩾ 0 and s+ = 0 for s < 0.
We obtain the desired intermediate estimates for ε̃ni,

(4.8) ∥ε̃ni∥H1(Ω) ⩽ Cτ q+1, i = 1, . . . , q.

Next, we note that the error u⋆
nj − Iτn−1u

⋆
nj due to q-point extrapolation is O(τ q) in

H1(Ω), i.e.,

(4.9) ∥u⋆
nj − Iτn−1u

⋆
nj∥H1(Ω) ⩽ Cτ q, j = 1, . . . , q,

which also implies that

(4.10) ∥W (u⋆
nj)−W (Iτn−1u

⋆
nj)∥H1(Ω) ⩽ Cτ q, j = 1, . . . , q.
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Combining (4.5) with (4.8) and (4.10), we obtain the desired final estimates for εni,

(4.11) ∥εni∥H1(Ω) ⩽ Cτ q, i = 1, . . . , q.

Analogously, we add and subtract r⋆niW (u⋆
ni) in the summation in the first relation of

(4.3) and use the first differential equation in (2.2) to obtain

(4.12) u⋆
n+1 − u⋆

n − τ

q∑
i=1

bi∂tu(tni) = τ

q∑
i=1

bir
⋆
ni

[
W (u⋆

ni)−W (Iτn−1u
⋆
ni)

]
+ εn+1.

Let us denote by ε̃n+1 the quantity on the left-hand side of (4.12). Taylor expansion about
tn yields

ε̃n+1 =

p∑
ℓ=1

τ ℓ

(`− 1)!

(1
`
−

q∑
i=1

bic
ℓ−1
i

)
u(ℓ)(tn) +

1

p!

∫ tn+1

tn

(tn+1 − s)pu(p+1)(s)ds

− τ

(p− 1)!

q∑
i=1

bi

∫ tni

tn

(tni − s)p−1u(p+1)(s)ds.

Again, leading terms of order up to p vanish, this time in view of the order conditions (B(p)),
and ε̃n+1 can be represented in the form

(4.13) ε̃n+1 = τp
∫ tn+1

tn

κ

(
s− tn

τ

)
u(p+1)(s)ds

with the bounded Peano kernel

(4.14) κ(t) :=
1

p!
(1− t)p − 1

(p− 1)!

q∑
i=1

bi
(
(ci − t)+

)p−1
, 0 ⩽ t ⩽ 1.

Relation (4.13) yields the desired intermediate estimate for ε̃n+1,

(4.15) ∥ε̃n+1∥H1(Ω) ⩽ Cτp+1.

Combining (4.12) with (4.10) and (4.15), we obtain the desired final estimate for εn+1,

(4.16) ∥εn+1∥H1(Ω) ⩽ cτ q+1.

The consistency errors dni and dn+1 can be estimated similarly and the proofs are
omitted.

4.2. Error estimates. We have the following error estimates.
Theorem 4.2 (Error estimates). We assume that q ⩾ 2 and that the following condi-

tions hold:
1. The solution of (2.2) is sufficiently smooth.
2. The starting approximations (u0i, r0i) are sufficiently accurate such that

∥u(t1)− u1∥2 + |r(t1)− r1|2 + τ

q∑
i=1

(
∥u(t0i)− u0i∥2 + |r(t0i)− r0i|2

)
⩽ C0τ

2q,

∥u(t0i)− u0i∥L∞(Ω) ⩽ 1,

for some constant C0 (independent of τ).



ENERGY-DECAYING RK–SAV METHODS 13

Then, the discrete solution given by (2.8)–(2.10) satisfies the following error estimate:

max
1⩽n⩽N−1

(
∥u(tn+1)− un+1∥2 + |r(tn+1)− rn+1|2 + τ

q∑
i=1

(
∥u(tni)− uni∥2 + |r(tni)− rni|2

))
⩽ Cτ2q.

Proof. We subtract (2.8)–(2.10) from (4.1)–(4.3) and, with the notation

en := u⋆
n − un, eni := u⋆

ni − uni, ėni := u̇⋆
ni − u̇ni,

ηn := r⋆n − rn, ηni := r⋆ni − rni, η̇ni := ṙ⋆ni − ṙni,

we obtain the error equations

(4.17)


ėni = ∆eni − ηniW (Iτn−1uni)− r⋆ni(W (Iτn−1u

⋆
ni)−W (Iτn−1uni)), i = 1, . . . , q,

eni = en + τ

q∑
j=1

aij ėnj + εni, i = 1, . . . , q,

∂neni = 0 on ∂Ω, i = 1, . . . , q,

(4.18)


η̇⋆ni =

1

2
(W (Iτn−1u

⋆
ni)−W (Iτn−1uni), u̇

⋆
ni) +

1

2
(W (Iτn−1uni), ėni), i = 1, . . . , q,

η⋆ni = η⋆n + τ

q∑
j=1

aij η̇
⋆
nj + dni, i = 1, . . . , q,

and

(4.19)


en+1 = en + τ

q∑
i=1

biėni + εn+1,

ηn+1 = ηn + τ

q∑
i=1

biη̇ni + dn+1.

Let 1 ⩽ m ⩽ N . In the following, we assume that for n ⩽ m the error functions satisfy

(4.20) ∥en−1,i∥L∞(Ω) ⩽ 1, i = 1, . . . , q,

and prove that this inequality holds also for n = m+ 1. Then, by mathematical induction,
this inequality holds for all 1 ⩽ m ⩽ N .

For n ⩽ m, taking the square of the L2-norm of both sides of the first relation of (4.19),
we have

(4.21) ∥en+1∥2 = ∥en + τ

q∑
i=1

biėni∥2 + 2
(
εn+1, en + τ

q∑
i=1

biėni
)
+ ∥εn+1∥2.

We next estimate the first two terms on the right-hand side of (4.21). For the first term, we
have

∥en + τ

q∑
i=1

biėni∥2 = ∥en∥2 + 2τ

q∑
i=1

bi(ėni, en) + τ2
q∑

i,j=1

bibj(ėni, ėnj),
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and, replacing en in the second term by eni − τ
∑q

j=1 aij ėnj − εni, see the second relation
of the error equation (4.17), we obtain

∥en + τ

q∑
i=1

biėni∥2 = ∥en∥2 + 2τ

q∑
i=1

bi(ėni, eni − εni)− τ2
q∑

i,j=1

mij(ėni, ėnj).

Using here the positive semi-definiteness of the matrix M, we infer that

(4.22) ∥en + τ

q∑
i=1

biėni∥2 ⩽ ∥en∥2 + 2τ

q∑
i=1

bi(ėni, eni − εni).

We also need to estimate the interpolation error W (Iτn−1u
⋆
ni) − W (Iτn−1uni). With

`1, . . . , `q ∈ Pq−1 the Lagrange polynomials for the nodes tn−1,1, . . . , tn−1,q, i.e., such that

`i(tn−1,k) = δik, i, k = 1, . . . , q,

we have the following Lagrange representation of the interpolant

(Iτn−1ϕ)(t) =

q∑
i=1

ϕ(tn−1,i)`i(t),

and easily infer that

max
1⩽i⩽q

∥Iτn−1e
⋆
ni∥ ⩽ C max

1⩽i⩽q
∥e⋆n−1,i∥.

Since W is locally Lipschitz continuous, by the induction assumption (4.20) the following
estimate holds for n ⩽ m:

(4.23) max
1⩽i⩽q

∥W (Iτn−1u
⋆
ni)−W (Iτn−1uni)∥ ⩽ C max

1⩽i⩽q
∥Iτn−1eni∥ ⩽ C max

1⩽i⩽q
∥en−1,i∥.

The L∞-boundedness of Iτn−1uni, as implied by the induction assumption (4.20), and the
inequality (4.23) imply

(4.24) ∥ηniW (Iτn−1uni) + r⋆ni[W (Iτn−1u
⋆
ni)−W (Iτn−1uni)]∥ ⩽ C|ηni|+ C max

1⩽i⩽q
∥en−1,i∥.

Furthermore, for the second term on the right-hand side of (4.22), we have, in view of
the first relation of (4.17),

(ėni, eni − εni)

= (∆eni − ηniW (Iτn−1u
⋆
ni)− rni(W (Iτn−1u

⋆
ni)−W (Iτn−1uni)), eni − εni)

= −∥∇eni∥2 + (∇eni,∇εni)− (ηniW (Iτn−1uni) + r⋆ni(W (Iτn−1u
⋆
ni)−W (Iτn−1uni)), eni − εni)

and thus easily, using (4.24),

2(ėni, eni − εni) ⩽ −∥∇eni∥2 + ∥∇εni∥2 + C|ηni|2 + C max
1⩽j⩽q

∥en−1,j∥2 + ∥eni∥2 + ∥εni∥2.

Therefore, (4.22) yields

(4.25)
∥en + τ

q∑
i=1

biėni∥2 ⩽ ∥en∥2 − τ

q∑
i=1

bi∥∇eni∥2 + τ

q∑
i=1

bi∥εni∥2H1(Ω)

+ τ

q∑
i=1

bi(∥eni∥2 + C|ηni|2) + Cτ max
1⩽j⩽q

∥en−1,j∥2.
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In view of the first relation of the error equation (4.17), we have the estimate

(4.26) ∥ėni∥⋆ ⩽ C

(
∥∇eni∥+

q∑
j=1

∥en−1,j∥
)
, i = 1, . . . , q,

with ∥ · ∥⋆ the norm of H̃−1(Ω), the dual space of H1(Ω). Then, we can estimate the second
term on the right-hand side of (4.21) as follows:

(4.27)

(
εn+1, en + τ

q∑
i=1

biėni
)
⩽ τ∥εn+1/τ∥ ∥en∥+ Cτ∥εn+1∥H1(Ω)

q∑
i=1

bi∥∇eni∥

+ Cτ∥εn+1∥H1(Ω)

q∑
j=1

∥en−1,j∥.

Combining (4.21) with (4.25) and (4.27), we obtain

∥en+1∥2 +
τ

2

q∑
i=1

bi∥∇eni∥2 ⩽ (1 + Cτ)∥en∥2 + τ

q∑
i=1

bi∥εni∥2H1(Ω)

+ Cτ

q∑
i=1

(∥eni∥2 + |ηni|2 + ∥en−1,i∥2)

+ Cτ
(
∥εn+1∥2H1(Ω) + ∥εn+1/τ∥2

)
+ ∥εn+1∥2,

and thus, in view of the consistency estimate (4.4),

(4.28)
∥en+1∥2 +

τ

2

q∑
i=1

bi∥∇eni∥2

⩽ ∥en∥2 + Cτ

q∑
i=1

(∥eni∥2 + |ηni|2 + ∥en−1,i∥2) + Cτ2q+1.

Similarly, from (4.18) we can derive

(4.29) |ηn+1|2 ⩽ |ηn|2 + Cτ

q∑
i=1

(∥eni∥2 + |ηni|2 + ∥en−1,i∥2) + Cτ2q+1.

Summing (4.28) and (4.29), we have

(4.30)
∥en+1∥2 + |ηn+1|2 +

τ

2

q∑
i=1

bi∥∇eni∥2

⩽ ∥en∥2 + |ηn|2 + Cτ

q∑
i=1

(∥eni∥2 + |ηni|2 + ∥en−1,i∥2) + Cτ2q+1.

Now, we estimate the term Cτ
∑q

i=1(∥eni∥2 + |ηni|2) on the right-hand side. To this
end, we test the second relation of (4.17) by eni. This yields

q∑
i=1

∥eni∥2 ⩽ C∥en∥2 + Cτ

q∑
i,j=1

aij(ėnj , eni) + C

q∑
i=1

∥εni∥2.



16 GEORGIOS AKRIVIS, BUYANG LI, AND DONGFANG LI

Then, using the first relation of (4.17), we have
q∑

i,j=1

aij(ėnj , eni) = −
q∑

i,j=1

aij(∇enj ,∇eni)

−
q∑

i,j=1

aij(ηnjW (Iτn−1unj) + r⋆nj(W (Iτn−1u
⋆
nj)−W (Iτn−1unj)), eni)

⩽ C

q∑
i=1

(∥∇eni∥2 + ∥eni∥2 + |ηni|2 + ∥en−1,i∥2) + C∥en−1∥2.

Combining the last two estimates, we obtain
q∑

i=1

∥eni∥2 ⩽ C∥en∥2+Cτ

q∑
i=1

(∥∇eni∥2+∥eni∥2+|ηni|2+∥en−1,i∥2)+Cτ∥en−1∥2+C

q∑
i=1

∥εni∥2.

Similarly, from (4.18) we can derive
q∑

i=1

|ηni|2 ⩽ C|ηn|2+Cτ

q∑
i=1

(∥∇eni∥2+∥eni∥2+|ηni|2+∥en−1,i∥2)+Cτ∥en−1∥2+C

q∑
i=1

∥dni∥2.

Sum up these two estimates and note that, for sufficiently small τ , the term Cτ
∑q

i=1(∥eni∥2+
|ηni|2) on the right-hand side can be absorbed by the left-hand side. Then, we obtain

(4.31)

q∑
i=1

(∥eni∥2 + |ηni|2) ⩽ C(∥en∥2 + |ηn|2) + Cτ

q∑
i=1

bi∥∇eni∥2

+ Cτ

q∑
i=1

∥en−1,i∥2 + C

q∑
i=1

(∥εni∥2 + ∥dni∥2),

where we used the positivity of the weights b1, . . . , bq. Substituting this inequality into (4.30)
yields

(4.32)

∥en+1∥2 + |ηn+1|2 +
τ

2

q∑
i=1

bi∥∇eni∥2

⩽ (1 + C1τ)(∥en∥2 + |ηn|2) + C1τ
2

q∑
i=1

bi∥∇eni∥2

+ C1τ

q∑
i=1

∥en−1,i∥2 + C1τ

q∑
i=1

∥εni∥2 + C1τ
2q+1,

with some constant C1. Multiplying (4.31) by 2C1τ and adding to (4.32), we get(
∥en+1∥2 + |ηn+1|2 + 2C1τ

q∑
i=1

(∥eni∥2 + |ηni|2)
)
+

τ

2

q∑
i=1

bi∥∇eni∥2

⩽ (1 + C2τ)(∥en∥2 + |ηn|2) + C2τ
2

q∑
i=1

bi∥∇eni∥2

+ (C1 + C2τ)τ

q∑
i=1

∥en−1,i∥2 + C2τ
2q+1,
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with some constant C2. For sufficiently small τ , the term C2τ
2
∑q

i=1 bi∥∇eni∥2 can be
absorbed by the left-hand side, and C1 + C2τ ⩽ 2C1. Therefore, the inequality above
reduces to(

∥en+1∥2 + |ηn+1|2 + 2C1τ

q∑
i=1

(∥eni∥2 + |ηni|2)
)
+

τ

4

q∑
i=1

bi∥∇eni∥2

⩽ (1 + (2C1 + C2)τ)
[
∥en∥2 + |ηn|2 + 2C1τ

q∑
i=1

(∥en−1,i∥2 + |ηn−1,i|2)
]
+ C2τ

2q+1.

By using Gronwall’s inequality, we obtain

(4.33)
max

1⩽n⩽m

(
∥en+1∥2 + |ηn+1|2 + 2C1τ

q∑
i=1

(∥eni∥2 + |ηni|2)
)
+

τ

4

q∑
i=1

bi∥∇eni∥2

⩽ C
[
∥e1∥2 + |η1|2 + 2C1τ

q∑
i=1

(∥e0i∥2 + |η0i|2)
]
+ Cτ2q.

This estimate implies

∥em+1∥+ ∥em∥ ⩽ Cτ q and ∥emi∥+ |ηmi| ⩽ Cτ q−
1
2 .

From the second relation of (4.17) we obtain

(4.34) ∥ėmi∥ ⩽ Cτ−1

q∑
j=1

(∥emj − em∥+ ∥εmj∥) ⩽ Cτ q−
3
2 .

Then, from the first relation of (4.17) we further derive

(4.35) ∥∆emi∥ ⩽ C(∥ėmi∥+ ∥ηmi∥+ ∥em−1,i∥) ⩽ Cτ q−
3
2 ,

and, therefore,

(4.36) ∥emi∥H2(Ω) ⩽ C(∥emi∥+ ∥∆emi∥) ⩽ Cτ q−
3
2 .

If q ⩾ 2, then for d ∈ {1, 2, 3} the following Sobolev embedding inequality holds:

∥emi∥L∞(Ω) ⩽ C∥emi∥H2(Ω) ⩽ 1

for sufficiently small τ (the smallness is independent of m). This completes the mathematical
induction on (4.20). Therefore, the inequality (4.20) together with the error estimate (4.33)
hold for all 1 ⩽ m ⩽ N .

5. Numerical examples. In this section, we present three numerical examples to
illustrate the convergence and energy decay property of the extrapolated RK–SAV method.

Example 5.1. We consider the following one-dimensional (1D) AC equation

(5.1) ∂tu− ∂xxu+
1

ε2
(u3 − u) = 0, (x, t) ∈ (0, π)× (0, 1),

with the initial condition

u0(x) = sin3 x.
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The equation is discretized in time by the proposed extrapolated Gauss and Radau IIA
RK–SAV methods and in space by the piecewise linear finite element method with mesh
size h = π/256. First, we set ε = 1 and test the accuracy of the proposed method by
choosing a reference solution with a very small time step, namely τ = 1/2560.

The L2-norms of the errors of numerical solutions at time T = 1 are presented in Table
5.1. The numerical results in Table 5.1 indicate that the extrapolated q-stage Gauss and
Radau IIA methods actually have (q + 1)th-order convergence, higher than the qth-order
convergence proved in Theorem 4.2. Theoretical proof of the (q + 1)th-order convergence
remains open for the proposed method. However, instead of using q-point extrapolation,
if we use (q + 1)-point extrapolation in our numerical method, then we can actually prove
(q + 1)th-order convergence; see Section 6.

Second, we illustrate the energy decay property of the proposed extrapolated RK–SAV
method by presenting in Figures 5.1–5.2 the discrete energies of the numerical solutions given
by the extrapolated 4-stage Radau IIA RK–SAV method with τ = 1/256 and h = π/256,
for ε2 = 0.25 and ε2 = 0.1, respectively. The numerical results show that the discrete energy
decays, consistent with our theoretical result in Theorem 3.1.

Table 5.1
Numerical results for the 1D AC equation (Example 5.1)

Gauss Radau IIA
q N Error Order Error Order

160 2.32E-7 – 8.04E-8 –
200 1.23E-7 2.86 4.16E-8 2.97

2 240 7.25E-8 2.88 2.42E-8 2.97
280 4.64E-8 2.90 1.53E-8 2.97
320 3.14E-8 2.92 1.03E-8 2.98

160 5.45E-10 – 3.59E-10 –
200 2.27E-10 3.92 1.50E-10 3.91

3 240 1.11E-10 3.93 7.33E-11 3.92
280 6.03E-11 3.94 3.99E-11 3.94
320 3.56E-11 3.95 2.36E-11 3.94

160 1.09E-11 – 7.64E-12 –
200 3.69E-12 4.87 2.58E-12 4.86

4 240 1.51E-12 4.89 1.06E-12 4.89
280 7.09E-13 4.91 4.97E-13 4.91
320 3.68E-13 4.92 2.57E-13 4.93

Example 5.2. We consider the following 2D AC equation

(5.2) ∂tu−∆u+
1

ε2
(u3 − u) = g(x, y, t), x, y, t ∈ (0, 1).

First, we test the accuracy of the numerical methods by choosing the initial condition
and the source term g such that the exact solution is

u(x, y, t) = exp(−t)x2(1− x)2y2(1− y)2.

The L2-norms of the errors of the extrapolated q-stage, q = 2, 3, 4, Gauss and Radau IIA RK–
SAV methods at T = 1 are presented in Table 5.2. The corresponding spatial discretization
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Fig. 5.1. Discrete energy for the 1D AC equa-
tion with ε2 = 0.25 (Example 5.1).
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Fig. 5.2. Discrete energy for the 1D AC
equation with ε2 = 0.1 (Example 5.1).
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Fig. 5.3. Discrete energy for the 2D AC equa-
tion with ε2 = 0.25 (Example 5.2).
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Fig. 5.4. Discrete energy for the 2D AC equa-
tion with ε2 = 0.1 (Example 5.2).

is done by using piecewise quadratic finite elements in FreeFEM++ with h = τ , h = τ4/3,
and h = τ5/3, respectively. Again, the numerical results indicate that the extrapolated
q-stage Gauss and Radau IIA RK–SAV methods are (q + 1)th-order convergent.

Second, we set g = 0 in equation (5.2) and consider the initial value u0(x, y) = x2(1 −
x)2y2(1 − y)2. We present the discrete energies for the numerical solutions given by the
extrapolated two-stage Gauss RK–SAV method in Figures 5.3 and 5.4 for ε2 = 0.25 and
ε2 = 0.1, respectively, using τ = 1/40 and h = 1/40. The numerical results show that the
discrete energy decays, consistent with our theoretical result in Theorem 3.1.

Example 5.3. We consider the following 2D CH equation

(5.3) ∂tu− α∆(−∆u+
1

ε2
f(u)) = 0, x, y, t ∈ (0, 1).

We test the accuracy of the numerical methods by choosing f(u) = u, α = (4π2+ 2π2

ε2 )−1,
and ε2 = 0.01, which correspond to the exact solution

u(x, y, t) = exp(−t) cos(πx) cos(πy).

The L2-norms of the errors of the extrapolated q-stage, q = 2, 3, 4, Gauss and Radau IIA
RK–SAV methods at T = 1 are presented in Table 5.3. The spatial discretization is done
by using piecewise quadratic finite elements in FreeFEM++ with h = τ , h = τ4/3, and
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Table 5.2
Numerical results for the 2D AC equation (Example 5.2)

Gauss Radau IIA
q N Error Order Error Order

10 1.08E-6 – 9.64E-7 –
20 1.28E-7 3.07 1.22E-7 2.98

2 30 3.73E-8 3.03 3.65E-8 2.99
40 1.57E-8 3.02 1.54E-8 2.99
80 7.99E-9 3.01 7.91E-9 2.99

12 5.23E-8 – 5.05E-8 –
16 1.58E-8 4.15 1.55E-8 4.10

3 20 6.40E-9 4.06 6.29E-9 4.04
24 3.06E-9 4.05 3.01E-9 4.02
28 1.63E-9 4.08 1.62E-9 4.05

8 3.09E-8 – 3.01E-8 –
10 1.03E-8 4.92 1.02E-8 4.87

4 12 4.20E-9 4.92 4.15E-9 4.93
14 1.88E-9 5.21 1.86E-9 5.19
16 9.67E-10 4.97 9.61E-10 4.96

Table 5.3
Numerical results for the 2D CH equation (Example 5.3)

Gauss Radau IIA
q N Error Order Error Order

10 1.05E-4 – 9.32E-5 –
20 1.21E-5 3.12 1.13E-5 3.04

2 30 3.48E-6 3.07 3.34E-6 3.01
40 1.45E-6 3.04 1.41E-6 3.01
80 7.37E-7 3.03 7.19E-7 3.00
12 4.81E-6 – 4.56E-6 –
16 1.45E-6 4.17 1.40E-6 4.10

3 20 5.84E-7 4.08 5.69E-7 4.03
24 2.78E-7 4.06 2.73E-7 4.03
28 1.48E-7 4.08 1.46E-7 4.06
8 2.86E-6 – 2.74E-6 –
10 9.51E-7 4.95 9.22E-7 4.88

4 12 3.85E-7 4.96 3.76E-7 4.91
14 1.72E-7 5.22 1.69E-7 5.20
16 8.83E-8 4.99 8.71E-8 4.96

h = τ5/3, respectively. Again, the numerical results indicate that the extrapolated q-stage
Gauss and Radau IIA RK–SAV methods are (q + 1)th-order convergent.

For f(u) = u3 − u, α = 1, and ε2 = 0.001, we solve (5.3) by the extrapolated two-stage
Gauss RK–SAV finite element method (with τ = 10−6 and h = 1/40), with a random initial
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Fig. 5.5. Numerical simulation of the CH equation with ε2 = 0.001 (Example 5.3).

value

u(x, y, 0) = Rand(x, y)− 0.5,

where Rand(x, y) stands for a uniform random variable in [0, 1]× [0, 1]; therefore, the initial
value takes on both positive and negative values. The discrete energy of the numerical
solution is presented in Figure ??, and the evolution of the two phases is shown in Figure
5.5. The numerical results show that the discrete energy decays, which agrees with our
theoretical analysis.

6. Conclusion. We proposed a class of extrapolated RK–SAV methods for the time
discretization of the AC and CH equations. This class of methods requires only the solution
of a system of linear equations at each time level and preserves a discrete version of the energy
decay property. By using q-point extrapolation in the nonlinear term, we proved that the
extrapolated q-stage RK–SAV methods have qth-order convergence in time in approximating
smooth solutions of the AC equation. Since we used the SAV formulation, the energy
stability of the proposed numerical methods is proved only for the modified energy Eτ [u, r]
instead of the original energy E[u]. The construction of linearly implicit high-order methods
preserving the energy decay for the original energy E[u] remains still open.

In Theorem 4.2, we used a q-point extrapolation and proved qth-order convergence of
the methods. A (q + 1)-point extrapolation, with an internal node of the Runge–Kutta
method as an additional interpolation point, at which we have control of the L∞-norm by
(4.36), would lead to order q+1 in Theorem 4.2. In particular, (q+1)th-order convergence
can be established for q-stage Gauss and Radau IIA methods, provided we use (q+1)-point
extrapolation.
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We chose to present the details for the more general result of the q-point extrapolation
in Theorem 4.2 for two reasons. First, for general Runge–Kutta methods, there are only
q internal nodes in the time interval [tn−1, tn] (except for the Radau IIA method, which
has q + 1 internal nodes, including both endpoints). But this is not an essential difficulty
for practical computation, as it can be compensated by an internal node from the previous
subinterval [tn−2, tn−1], such as tn−2,q. Second, q-point extrapolation also yields very good
numerical results, i.e., (q+1)th-order convergence, in our numerical experiments. We believe
that q-point extrapolation is practically a good and efficient choice for general Runge–Kutta
methods, including Gauss methods.

In the convergence analysis, we proved the L∞ bound by mathematical induction, i.e.,
assuming the a-priori L∞ bound (4.20) at the previous time step, we derived the L2 error
estimate at the current time step with a bound (4.34) for its discrete temporal derivative.
This in turn yields an H2 error estimate with a reduced accuracy order. Subsequently, an
application of Sobolev embedding implies the L∞ bound of the numerical error function at
the current time step. A similar technique was applied in [13, 33] to analyze incompressible
Navier–Stokes equations and gradient flows.

An extension of our error analysis to fully discrete finite element methods requires a
modification to yield the L∞ bound of numerical solutions. For example, suppose that
finite elements of polynomial degree r ⩾ 1 are used, with mesh size h. We denote e

(h)
ni =

Rhu
⋆
ni − u

(h)
ni , with Rh being the Ritz projection onto the finite element space. On the one

hand, similarly as (4.34)–(4.35), one can derive an estimate

(6.1) ∥∆he
(h)
mi ∥ ⩽ Cτ−1(τ q−

1
2 + hr+1),

where ∆h denotes the discrete Laplacian operator. On the other hand, one can use the
inverse inequality of the finite element space, i.e.,

(6.2) ∥∆he
(h)
mi ∥ ⩽ Ch−2(τ q−

1
2 + hr+1).

Combining these two estimates, one can obtain

∥∆he
(h)
mi ∥ ⩽ Cmin(τ−1, h−2)(τ q−

1
2 + hr+1) ⩽ C(τ q−

3
2 + hr−1).

This can be further used to derive an L∞ estimate of e(h)mi .
The extension of the convergence analysis to the CH equation can be done similarly

for semidiscretization in time but needs to be modified for the standard C0 finite element
method for spatial discretization. The error estimation for the CH equation also requires
L∞ bounds of the numerical solutions. This can be done as for the AC equation combining
two different types of estimates of the form (6.1) and (6.2).
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