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Abstract. We consider the initial-value problem for the radially symmetric nonlinear
Schrödinger equation with cubic nonlinearity (NLS) in d = 2 and 3 space dimensions. To
approximate smooth solutions of this problem, we construct and analyze a numerical method
based on a standard Galerkin finite element spatial discretization with piecewise linear, con-
tinuous functions and on an implicit Crank–Nicolson type time-stepping procedure. We then
equip this scheme with an adaptive spatial and temporal mesh refinement mechanism that en-
ables the numerical technique to approximate well singular solutions of the NLS that blow up
at the origin as the temporal variable t tends from below to a finite value t⋆. For the blow-up of

the amplitude of the solution we recover numerically the well-known rate (t⋆ − t)−
1

2 for d = 3.

For d = 2 our numerical evidence supports the validity of the ‘log log’ law [ln ln 1

t⋆−t
/(t⋆−t)]1/2

for t extremely close to t⋆. The scheme also approximates well the details of the blow-up of
the phase of the solution at the origin as t → t⋆.

1. Introduction

The nonlinear Schrödinger equation with cubic nonlinearity (henceforth referred to as “NLS
equation”) is given by

(1.1a) ut = i∆u+ i|u|2u, x ∈ R
d, t ≥ 0,

wherein u is a complex-valued function of the ‘spatial’ variable x ∈ R
d, d = 1, 2, 3, and of the

‘temporal’ variable t ≥ 0. The equation occurs frequently in various areas of Mathematical
Physics, posed as an initial-value problem with given initial condition

(1.1b) u(x, 0) = u0(x), x ∈ R
d.

For example, for d = 1 it arises as an envelope equation in water wave theory, [53]. In two space
dimensions it occurs in nonlinear optics, where it describes in certain regimes the propagation
of electromagnetic beams in media whose index of refraction depends on the amplitude of
the field in a simple nonlinear way, [14], [44]. For d = 3 it is obtained as a limiting case of
Zakharov’s model of Langmuir waves, [51]. We refer the reader to the surveys [52], [36], [37],
and, especially, to the recent monograph [42] for discussions of various issues regarding the
physical background, the derivation and validity of NLS.

It is not hard to see that for d = 1 the initial-value problem (1.1a–b) is globally well-posed
for smooth enough initial data that decays sufficiently fast at infinity. It is also well known that
in this case it can be solved by the inverse scattering transform, [53]. For d = 2, 3 we have, in
appropriate function spaces, local well–posedness, cf., e.g., [21], [26], and global well–posedness
for suitably restricted initial data, [13], [49]. It is also well known that for d ≥ 2 there exist
singular solutions which blow up in L∞ in finite time, [51], [22]. The blow-up in the critical,
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two-dimensional case is usually referred to as “self-trapping” or “self-focusing”, whereas the
blow-up in the supercritical, three-dimensional case is sometimes referred to as “collapse”. In
[40], [13], [12], [20], [35], [42] the reader will find detailed surveys and expositions of existing
rigorous results on the well–posedness and on the blow–up of solutions of (1.1a–b).

In this paper we shall be interested in the numerical approximation of radially symmetric
solutions of the initial-valued problem for the NLS in d = 2 and 3 dimensions. We make
therefore the hypothesis that the function u0 in the initial condition (1.1b) and, consequently,
the solution of (1.1a) are radially symmetric, i.e., that u = u(r, t) for t ≥ 0, where r =

(x21 + · · · + x2d)
1

2 . Hence our problem becomes

ut = i(urr +
d− 1

r
ur) + i|u|2u, r > 0, t ≥ 0,(1.2a)

ur(0, t) = 0, t ≥ 0,(1.2b)

u(r, 0) = u0(r), r ≥ 0.(1.2c)

It is straightforward to check that the L2 norm and the Hamiltonian of the solution of (1.1a–b)
are conserved. In the presence of radial symmetry, i.e. for problem (1.2a–c), these invariants
are

(1.3)

∫ ∞

0
|u(r, t)|2rd−1dr = const. for t ≥ 0,

(1.4)

∫ ∞

0

(

|ur(r, t)|2 −
1

2
|u(r, t)|4

)

rd−1dr = const. for t ≥ 0.

There has appeared by now a considerable amount of work aimed at describing in detail, by
numerical and asymptotic means, the characteristics of the blow-up of solutions of (1.2 a–c) for
d = 3 and 2. We refer the reader to a series of publications, [43], [34], [30], [31], [28], [32], [29],
[41] of a group including Papanicolaou, C. Sulem, P.–L. Sulem and their co-workers. We also
refer to the work of the group of Zakharov and his co-workers, which went on for many years
and was conveniently summarized in [27]; this paper also contains references to earlier Russian
work on the subject. For more recent work in the critical case cf. [33], [16], [18]; for more
references and an authoritative overall exposition of this body of work, we refer the reader to
[42].

As a result of this research, there is a wealth of evidence on the main characteristics of the
blow-up singularity in the presence of radial symmetry for d = 3. The problem was studied in
[34] by use of a numerical technique that employs “dynamic rescaling”, a time-dependent change
of scales of the solution and the independent variables of (1.2a). The scaling factors are chosen
so that suitable functionals of the solution are preserved. It turns out that the transformed
dependent variable satisfies a p.d.e. with global smooth solution. This equation is integrated
numerically and the details of the blow-up are inferred from the long-time asymptotics of the
numerical solution and the scale factors. In this manner, it was concluded in [34] that singular
radial solutions in d = 3 dimensions evolve into a self-similar form and blow up at the origin

with an amplitude peak that grows like (t⋆−t)− 1

2 as t approaches the blow-up time t⋆ <∞. The
computations also provided additional information on the basis of which further conclusions
were drawn in [34] on the details of the self-similar structure of the solution and the singularity
of its phase as t ↑ t⋆. Some of these features of the blow-up had been predicted by Zakharov
[51]; see [27] for an account of the largely parallel and analogous work of the Russian school on
three-dimensional collapse.



NUMERICAL BLOW-UP FOR THE RADIALLY SYMMETRIC NLS EQUATION 3

In the two-dimensional case, still for radially symmetric solutions, earlier conclusions in the
literature on the blow-up rate of the amplitude, based on numerical and asymptotic computa-
tions, varied substantially. This is not surprising; d = 2 is the critical dimension case for the
cubic nonlinearity, and the blow-up slows down somewhat, making the numerical integration of
the equation harder. Thus, a (t⋆− t)−2/3 law for the blow-up of the amplitude was conjectured

in [54] and [43], while
[

ln 1
t⋆−t/(t

⋆ − t)
]

1

2

was put forward in [48] and [50]. It soon became

apparent that the amplitude behaved grosso modo like (t⋆ − t)−
1

2 but that this behavior was
perturbed by a slower varying factor. Using computational (dynamic rescaling) evidence and

asymptotic techniques LeMesurier et al., [30], suggested the form
[

F (t⋆−t)/(t⋆−t)
]
1

2 , wherein,

as s ↓ 0, F (s) tends to infinity more slowly than (ln 1
s )

γ for any γ > 0. Finally, in [28] and

[32] it was concluded that the rate is [ln ln 1
t⋆−t/(t

⋆ − t)]1/2. This rate had been predicted by

Fraiman, [19], [39], on the basis of asymptotic estimates. The Zakharov group favored rates of

the form [
(

ln 1
t⋆−t

)γ
/(t⋆ − t)]1/2 for 0.35 ≤ γ ≤ 0.65, depending on the initial conditions, [27],

but estimated that the log log rate probably obtains for t extremely close to t⋆. The latter con-
clusion is still maintained in the recent papers [33], [16], [18], where new, ‘adiabatic’ rates are
proposed; these describe accurately the blow-up in its earlier stages and agree asymptotically
with the log log law.

In a recent paper Budd et al., [11], have studied by numerical and analytical techniques
the self-similar profile of the solution of the NLS for d > 2 and identified new multi-peak
structures. To investigate the stability of these solutions they integrated numerically the NLS
using a semidiscretization on a moving radial mesh that evolves in time, getting finer near the
singularity, and takes into account scale invariance properties of the NLS.

As an alternative to change of variables and asymptotic techniques one can also approximate
singular solutions of (1.2) by direct numerical integration of the p.d.e. in the r, t, u variables.
In the past such direct numerical simulations for the NLS were used, e.g., in [48] (see also
the references in [27]), [50], [43], [45]. As the solution blows up, its accurate approximation
requires using extremely fine mesh refinement in the spatial variable around the blow-up point,
and radically decreasing the time step sizes as t approaches t⋆. Avoiding the deterioration of
the numerical results due to roundoff errors in computing the solution and various quantities of
interest derived therefrom (such as blow-up rates), becomes then an overarching consideration,
as pointed out by the authors of [27] in their critique of direct integration techniques.

There is a growing amount of research reported in the literature concerning the direct nu-
merical integration of various p.d.e’s, whose solutions (or some other associated quantities of
interest) blow up at a point in finite time. We mention as examples the papers by Berger and
Kohn [7], by Dupont et al. [15], and Bertozzi et al. [8], where adaptive grid refinement algo-
rithms have been used to approximate the singularities of the solutions. In [7] a simple explicit
finite difference method is used as a base for constructing a scheme with adaptive spatial and
temporal mesh refinement mechanisms; the latter is then employed to approximate the detailed
space and time structure of even solutions of the one–dimensional semilinear heat equation close
to blow-up. The adaptive algorithm of [7] includes several quite interesting features including
the rescaling of the solution on the finest spatial mesh interval. The extent of that interval is
estimated automatically and the boundary conditions required at its endpoints are provided
by an accompanying calculation with larger time steps in the coarse mesh regions. In [15] the
authors study a Hele–Shaw system of two fluids (air–water) in the lubrication approximation.
The mathematical model is a system of three equations in one space dimension with unknowns
the pressure, the velocity and the thickness of the water layer, and is posed with data that
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allow the water thickness to go to zero at some point x⋆ at a finite time t⋆ causing e.g. the
gradient of the velocity to blow up. (In [8] related models of flows of thin viscous films are
also considered.) The numerical study of such a problem has many similarities with a blow-up
calculation: The classical solution breaks down at t⋆ and it is of interest to determine several
quantities of the flow as functions of t⋆ − t when t ↑ t⋆. The discretization is effected by an
implicit finite difference scheme endowed with an adaptive mechanism that refines the spatial
mesh around x⋆ and reduces the time step according to various criteria as t ↑ t⋆.

Of interest in these works is not only the adaptive mesh refinement technology but also
the various data fitting schemes that the authors use, with the aid of asymptotic analysis, to
determine the fine structure of solutions near the singularity. In this connection one should
also mention the data fitting ideas employed by Shelley (cf., e.g., [38] and its references) in
describing the development of singularities in the motion of vortex sheets by solving numerically
the Birkhoff integrodifferential equation on uniform meshes.

In the paper at hand we shall approximate solutions of the initial– and boundary–value
problem (1.2a–b–c) for NLS for d = 2 and 3 that blow up at the origin. We shall use as a
base scheme a fully discrete Galerkin finite element discretization with continuous piecewise
linear functions on a partition of a finite interval in the radial variable, coupled with an implicit
Crank–Nicolson type time–stepping procedure. In Section 2 we address issues of stability and
convergence of this base scheme in the case of smooth solutions, and state without proof the
relevant error estimates which are extensions to the radial case of results of [1], [23] and [2].
All our theoretical error estimates hold under the hypotheses that the solution of the p.d.e. is
smooth, the spatial partition is quasiuniform and the temporal step is constant. However this
will not deter us from proposing suitably adaptive versions of these methods and approximating
with them solutions that blow up in finite time.

The specific spatial and temporal mesh refinement technique that we use is in a very general
sense similar to the ones of [7] and [15]. It is an application to the case of NLS of the mesh
refinement strategy that three of us have used in the past, in collaboration with J. Bona, to
approximate the blow-up of solutions of the generalized Korteweg–de Vries equation, cf., e.g.,
[9], [10]. The spatial mesh refinement technique, described in detail in section 3, consists of a
mechanism of reducing automatically the mesh size in the neighborhood of the origin, as the
amplitude of the solution steepens, by means of a check on a local L∞ − L2 inverse inequality
satisfied by members of the finite element subspace. The criterion for cutting the time step
is based on controlling a suitably normalized version of the second invariant (Hamiltonian)
of the problem. We found that the adaptive mechanism worked well in three as well as two
dimensions, allowing numerical solutions to reach maximum values of the ratio |u(0, t)|/|u0(0)|
of “final” to initial amplitude at the origin of up to O(1015) for t extremely close to the blow-up
time t⋆.

In section 4 we consider the three-dimensional case and report our numerical computations
of rates of blow-up of the amplitude, of various norms of the solution, and of its phase as
t → t⋆. Paying particular attention to the numerical stability of these rate computations, we
verify, using several initial profiles, the self-similar form of the blow-up and the amplitude

blow-up law (t⋆− t)−
1

2 and reproduce accurately the value of the constant κ, cf. [34], [27], that
occurs, e.g., in the formula for the singularity of the phase of the solution, i.e. in the expression

exp
(

iκ ln 1
t⋆−t

)

as t→ t⋆.

In section 5 we turn to the two-dimensional case. We test several laws for the blow-up rate
of the amplitude against the results of our numerical simulations for t extremely close to t⋆.
Our conclusion is that the log log rate of [28], [32], [19], provides a highly accurate fit to our
data for t extremely close to t⋆. The description of the phase singularity turns out to be quite a
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challenging problem in two dimensions, cf. [28]. We confirm numerically that the approximate
value of the constant λ occurring e.g. in the expression of the phase of the singular solution at

r = 0 (which, to first-order terms, is exp
(

1
2λ ln 1

t⋆−t ln ln
1

t⋆−t

)

according to [28]) is equal to π,

something that was predicted on the basis of a “descent” argument from higher dimensions in
[28] but not actually seen in numerical simulations of the evolution equation in that work, and
was later verified by asymptotic analysis in [41].

We close with a section of conclusions, extensions and comments on related research direc-
tions. A preliminary report of some of the results of this paper appeared in [3].

2. FULLY DISCRETE GALERKIN APPROXIMATIONS OF SMOOTH

SOLUTIONS

In this section we consider the radial problem (1.2) posed on a finite interval 0 ≤ r ≤ R with
zero Dirichlet boundary condition at r = R. As we will be interested eventually in describing
the evolution of profiles that focus (collapse) fast at r = 0, the solutions on the finite spatial
internal will furnish a reasonable approximation to those of (1.2), for large R and initial data u0

that decay exponentially, say, with r. To normalize matters, we shall scale the radial variable
so that it takes values between zero and one. To that effect, after scaling r← r/R, we consider
the problem (for T > 0 large enough)

ut = iε(urr +
d− 1

r
ur) + i|u|2u, (r, t) ∈ (0, 1] × [0, T ],(2.1a)

ur(0, t) = 0, 0 ≤ t ≤ T,(2.1b)

u(1, t) = 0, 0 ≤ t ≤ T,(2.1c)

u(r, 0) = v(r), 0 ≤ r ≤ 1,(2.1d)

where d = 2 or 3, ε = 1/R2, and v(x) = u0(xR), 0 ≤ x ≤ 1. The solution of this problem
satisfies analogs of (1.3) and (1.4), i.e. preserves the invariants

(2.2)

∫ 1

0
|u(r, t)|2rd−1dr =

∫ 1

0
|v(r)|2rd−1dr,

and

(2.3)

H(u(t)) :=

∫ 1

0
(ε|ur(r, t)|2 −

1

2
|u(r, t)|4)rd−1dr

=

∫ 1

0
(ε|vr(r)|2 −

1

2
|v(r)|4)rd−1dr =: H(v),

for 0 ≤ t ≤ T . In the sequel, we shall denote Lp norms, 1 ≤ p <∞, of radial functions defined
on [0, 1] by

‖f‖Lp =

(
∫ 1

0
|f(r)|prd−1dr

)

1

p

,

and put ‖f‖ = ‖f‖L2 , ‖f‖L∞ = ess sup0≤r≤1|f(r)|. The L2 inner product
∫ 1
0 f(r)g(r)rd−1dr

will be denoted by (f, g).
We shall approximate the solution of (2.1) by a simple fully discrete Galerkin–finite element

method that uses continuous, piecewise linear polynomials in r and the implicit ‘midpoint’
time–stepping rule in t. (We could have instead lumped the elements of the mass matrix, used
a simple quadrature rule for the nonlinear term, and worked equally well with the resulting finite
difference scheme. However, we had a finite element code handy, having originally implemented
a more general program using up to cubic splines in space and various high order implicit
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Runge–Kutta schemes in time as we had previously done in the generalized KdV case. There
were indeed some NLS computations in which a higher order code had certain advantages.
However, for all numerical experiments reported in this paper the present second–order scheme
proved quite satisfactory. Another reason for introducing finite elements is to set the stage for
a new code in the 2−D, nonradial case, about which cf. Section 6.)

The stability and convergence of fully discrete finite element methods have been analyzed in
detail in [1] and [23] for the NLS in Cartesian coordinates. Although there are several instances
where the techniques of the convergence proofs in the radial case depart from their Cartesian
counterparts, the overall theory remains basically the same. Hence, in this section we shall
just establish notation and state our results without proof. Our error estimates require that
the solution of (2.1) is sufficiently smooth in [0, 1]× [0, T ], that the radial mesh is quasiuniform
and the time step is constant. However, in subsequent sections we shall use adaptive versions
of our schemes to approximate singular solutions as they blow up. This will require drastic
local refinement of the radial mesh and fast reduction of the temporal step to extremely small
values. There is as yet no satisfactory convergence theory available for such adaptive schemes.

Let 0 = r0 < r1 < · · · < rN = 1 be a quasiuniform partition of [0, 1] with h = maxi(ri−ri−1).
Let Sh be the space of complex-valued continuous functions on [0, 1] that vanish at r = 1 and
are linear polynomials on each interval (ri−1, ri). The standard Galerkin semidiscretization of
(2.1) on Sh is defined in the customary way as a map uh : [0, T ]→ Sh satisfying the equations

(uht, χ) + iε(uhr, χr) = i(|uh|2uh, χ) ∀χ ∈ Sh, 0 ≤ t ≤ T,(2.4a)

uh(0) = vh,(2.4b)

where vh is the L2 projection of v onto Sh. The condition ur(0, t) = 0 is not imposed on the
subspace and disappears from the variational formulation. It is not hard to see that the solution
uh(t) of the system of ordinary differential equations represented by (2.4) exists at least locally
and satisfies the conservation laws (2.2) and (2.3) with v replaced by vh.

We shall discretize (2.4) in the temporal variable by the midpoint rule as follows. Let k be
the (constant for the time being) time step and let tn = nk, n = 0, 1, . . . , J , where Jk = T . We
seek Un ∈ Sh, approximating uh(t

n), and satisfying for n = 0, 1, . . . , J − 1 and all χ ∈ Sh the
equation

(2.5) (Un+1 − Un, χ) + ikε

(

(Un+1 + Un

2

)

r
, χr

)

= ik

(

∣

∣

∣

∣

Un+1 + Un

2

∣

∣

∣

∣

2
Un+1 + Un

2
, χ

)

,

where U0 = vh. In (2.5) we solve for V n = 1
2 (U

n+1 + Un) that satisfies

(2.5′) (V n, χ) +
ikε

2
(V n

r , χr) =
ik

2

(

|V n|2V n, χ
)

+ (Un, χ), ∀χ ∈ Sh,

and then compute Un+1 = 2V n−Un. On each interval Gauss numerical quadrature of sufficient
high accuracy is used so that radial polynomials of degree d + 3 are integrated exactly. The
existence of solutions of the nonlinear system represented by (2.5) or (2.5′) can by readily es-
tablished as in [1]. Moreover, it may be shown that this Crank–Nicolson type scheme conserves
the first invariant, i.e. that there holds

(2.6) ‖Un+1‖ = ‖Un‖, n = 0, 1, . . . , J − 1,

but not the second.
To derive an estimate for the error u(tn) − Un in L2, we assume that the solution of (2.1)

is sufficiently smooth on [0, 1] × [0, T ]. Then, arguing along the lines of [1] we may prove that
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there exists a unique solution {Un}Jn=0 of the fully discrete scheme (2.5) satisfying

(2.7) max
0≤n≤J

‖u(tn)− Un‖ ≤ c(k2 + h2),

provided k is sufficiently small and that k = o(hd/4) as h → 0. In (2.7) c is a constant in-
dependent of the discretization parameters. The proof makes use of the inverse inequality
‖χ‖L∞ ≤ ch−d/2‖χ‖, which is valid for χ ∈ Sh in view of our quasiuniformity assumption on
the spatial mesh. See, however, [46] for an error estimate for the semidiscrete approximation,
in which quisiuniformity is replaced by a weaker condition.

In order to solve, at each time step, the dimSh × dimSh nonlinear system of equations
represented by (2.5′) one may use Newton’s method or modified versions thereof, cf. [1], [2].
Here we adopt a much simpler iterative scheme, an explicit–implicit method in which the linear,
resp. nonlinear, terms in (2.5′) are evaluated at the iteration levels ℓ + 1, resp. ℓ. Given Un

and a starting value V n
0 we solve for V n

ℓ , satisfying for all χ ∈ Sh and ℓ = 0, 1, . . . , ℓn − 1 the
equations

(2.8) (V n
ℓ+1, χ) +

ikε

2

(

V n
ℓ+1,r, χr

)

=
ik

2

(

|V n
ℓ |2V n

ℓ , χ
)

+ (Un, χ).

For n ≥ 1 we take V n
0 = 3

2U
n− 1

2U
n−1 as starting value and perform two iterations (i.e. ℓn = 2).

At n = 0, to compensate for the less accurate starting value V 0
0 = U0 = vh we need ℓ0 = 3.

Following the analysis of [2] we may show that the resulting linearized fully discrete scheme
is stable and produces approximations to u(tn) that are denoted again by Un, are defined by
Un := 2V n−1

2 − Un−1 for n ≥ 1, and satisfy the error estimate (2.7) provided again that k is

sufficiently small and k = o(hd/4) as h→ 0.
Therefore, if we equip Sh with its usual hat function basis, we see that by solving two

tridiagonal complex linear systems at each time step, we may approximate to second order
accuracy the solution of (2.1). In the code we solve the systems by the appropriate Linpack
routine. The overall scheme is practically unconditionally stable as the mild mesh condition
k = o(hd/4) is probably due just to technical requirements of the convergence proof. Of course,
the linearized fully discrete scheme is no longer conservative since the nonlinear system is not
solved exactly. However, we found that the L2 norm of Un was conserved to a satisfactory
degree of accuracy even in the blow-up examples; cf. Sections 4 and 5.

3. ADAPTIVE MESH REFINEMENT FOR THE APPROXIMATION OF

BLOW-UP

In this section we shall describe the adaptive mechanism that we used to follow the develop-
ment of point blow-up singularities of solutions of (2.1). We consider the simple base scheme
(2.5). Anticipating that the solution blows up at r = 0 as t approaches a finite value t⋆, we
implemented (2.5) in an adaptive code using a spatial and temporal mesh that can change with
n. As the blow-up time is approached and the solution grows in amplitude near the origin,
the adaptive mechanism refines drastically the spatial mesh in a neighborhood of r = 0 and
cuts the time step by enforcing two refinement criteria that appeared to be successful for the
problem at hand and will be described presently.

If the spatial mesh must be refined, then the number of nodes ri is increased as follows: Let
N and M < 2N be given integers (M even) and h = 1/N be the initial spatial meshlength. At
the first spatial refinement we partition [0, 1] as I0∪I1, where I0 = [0,Mh/2) and I1 = [0, 1]\I0 ,
i.e. so that I0 consists of M subintervals of length h/2 and I1 of N−M/2 subintervals of length
h. Suppose now that the spatial grid has already been refined NSPLIT ≥ 1 times. Then, [0, 1]
is partitioned in NSPLIT + 2 adjacent successive intervals I0, I1, . . . , INSPLIT+1 such that the
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left-hand boundary of I0 is 0, the right-hand boundary of INSPLIT+1 is 1, and, on each Ij the
mesh is uniform, so that:
I0 consists of M subintervals of constant meshlength h/2NSPLIT+1.
I1 consists of M

2 subintervals of constant meshlength h/2NSPLIT.

I2 consists of M
2 subintervals of constant meshlength h/2NSPLIT−1.

...

INSPLIT consists of M
2 subintervals of constant meshlength h/2.

INSPLIT+1 consists of N − M
2 subintervals of constant meshlength h.

As an example, starting with N = 1600 subintervals, i.e. an initial meshlength h = 1/1600 =
0.625 × 10−3, supposing that the finest mesh region has M = 200 subintervals and assuming
that the spatial grid has been refined NSPLIT = 34 times, we end up with a grid consisting of
N + M

2 (NSPLIT+1) = 5100 subintervals. The coarsest mesh region I35 has 1500 subintervals of

width h = 0.625 × 10−3, whilst the finest mesh region I0 consists of 200 subintervals of width
h/235 ∼= 0.182×10−15 . Each time the grid is refined I0 is cut in half into two new intervals that
are labeled I0 and I1, and all other regions are redefined so that I1 becomes I2, I2 becomes I3,
etc.. Un is embedded in the new mesh by linear interpolation.

The signal to perform this spatial grid refinement (i.e. to increase NSPLIT by 1) at a certain
time step n is given whenever

(3.1)
‖Un‖L∞(I0)h

1/2
min

(

∫

I0
|Un|2dr

)
1

2

> TOLh.

Here TOLh is an empirically determined tolerance, usually taken to be equal to 0.12 for d = 2
and from 0.12 to 0.14 for d = 3, and hmin is the gridsize on I0, which is the interval of finest
mesh. The criterion (3.1) is motivated by a local L∞ − L2 inverse property that elements of
the finite element subspace satisfy on I0. The inverse property shows that the growth of the
L∞ norm is limited by the size of hmin and the L2 norm of the solution on I0 which, close to
blow-up, is not changing rapidly. Hence, refining the mesh in the vicinity of r = 0 to satisfy
(3.1), allows the amplitude of the solution to grow there. The number of subintervals M in I0
should be chosen so as to allow a sufficiently large neighborhood of the peak to be captured
in the finest mesh region. On the other hand, the computational cost of the scheme increases
with M. In the case of NLS we found that M = 200 was a reasonable compromise. (The choice
of TOLh depends on M ; the values that we used were found experimentally and correspond to
M = 200.)

The time step reduction is motivated by a need to control, to a certain degree, changes
in a scaled version of the second invariant of the problem from one time step to the next.
Specifically, the time step size k is halved and the time step computation is repeated whenever

(3.2)
|H(Un+1)−H(Un)|
1 +

∫ 1
0 |U

n+1
r |2rd−1dr

> TOLk/2.

In (3.2) H(·) is the Hamiltonian, defined by (2.3), and TOLk is an empirically chosen parameter
with values that ranged from 10−5 to 10−8. These values for TOLk and TOLh proved successful
in causing the adaptive mechanism to reduce the time step size and refine the spatial grid at
suitable rates, allowing accurate simulation of the development of the blow-up. However, since
the Hamiltonian is the difference of two quantities that both blow up, its computation becomes
less and less accurate as we approach blow-up. The criterion (3.2) attempts to preserve the
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Hamiltonian locally, i.e. from one time step to the next, but is rather ineffective in maintaining
its value globally.

With any specific choice of (fixed) adaptive refinement parameters there always exists a
temporal instance by which the refinements have produced grids that do not permit further
growth of the amplitude of the numerical solution near the origin. This happens, most probably,
when the Hamiltonian is being computed too inaccurately. The code then proceeds to cut the
time step several times instead of refining in space. (The latter would have probably allowed
the code to compute H(·) more accurately and thus make progress; instead, the time steps
get cut too drastically and the peak does not increase.) A computation is stopped therefore,
when a combination of these two phenomena (amplitude not strictly increasing, excessive time
step cutting between spatial refinements) is observed. The numerical ‘blow-up time’ t⋆ is then
defined as the instance of the last spatial grid refinement. (For another way of estimating t⋆,
cf. Section 6.)

In the two sections that follow we report on the numerical results that we obtained ap-
proximating the rates of growth of the amplitude at the origin and of various norms of the
solution and its radial derivative, as well as rates of blow-up of the phase of the solution as
t→ t⋆. Having in mind that exceedingly large quantities will develop and their rapid evolution
will have to be followed over extremely small temporal increments, we have coded our method
carefully so as to minimize the effect of roundoff errors and maintain stability in the floating
point arithmetic. Evidence of that is the stability of most of the blow-up rate information to
be presented in the sequel. As a rule, approximate values of the various rates appear quite
early in the computations. But one needs to integrate extremely close to the true blow-up time
in order to attain the extra few digits, which is only possible when the computations are close
to the asymptotic regime.

An example of a typical post-processing operation that is repeatedly performed is computing
quantities of the form F (t⋆ − t) for t extremely close but less than the numerical blow-up time
t⋆. F is evaluated at t⋆−ti, i = 1, 2, . . ., where ti is the time when the ith spatial grid refinement

takes place. Since t⋆ − ti can become e.g. of O(10−20), it is computed as
∑Ni

j=1 kjnj where
kj is the size of a temporal step, nj is the number of temporal steps of size kj , and Ni is the
number of temporal steps of different size taken between ti and t⋆; the sum is computed from
smallest to largest terms. Details on computing particular blow-up rates will be given at the
appropriate places in the next two sections.

Most computations to be reported in the sequel were performed with a double precision
Fortran 77 code on a SparcClassic Sun workstation. They were not especially time consuming:
A run in 2 dimensions that started with 1600 spatial mesh intervals, and reached an amplitude
of .985 × 1016 after the spatial mesh was refined 50 times, took 9850 total cpu seconds.

4. BLOW-UP: THE THREE-DIMENSIONAL CASE

As was stated in the Introduction, there is a wealth of evidence on the dynamics of blow-
up (collapse) of radially symmetric solutions of the NLS in three dimensions; the reader is
referred to the papers [34] and [27] for detailed expositions and further references. In [34]
it was concluded that solutions emanating from several types of initial profiles evolve into a
self-similar form which blows up as t ↑ t⋆ according to the law

(4.1) u(r, t) ∼ 1

(t⋆ − t)
1

2

Q
(

√
κr

(t⋆ − t)
1

2

)

eiκ(ln
1

t⋆−t
),

that had been predicted earlier by Zakharov. The blow-up time t⋆ depends on the initial
condition, while the complex-valued function Q(ξ), ξ ∈ (0,∞), and the real number κ solve an
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‘eigenvalue’ problem for a nonlinear ordinary differential equation. Q and κ are independent of
the initial profile that produced (4.1), and the value of κ is approximately equal to 0.545. The
results of [27] are in good agreement with those of [34]. It seems, therefore, that approximating
accurately the main features of (4.1) is a good benchmark for a direct integration code such as
the one described in this paper. As a test of the code we approximated the blow-up of solutions
emanating from several Gaussian and ‘ring’ type initial profiles.

A typical such example, labeled G3, corresponds to an initial value u0(r) = 6
√
2e−r2 on

[0,∞), restricted to the interval [0, R] with R = 5, and scaled to [0, 1] as

(4.2) v(r) = 6
√
2e−25r2 , 0 ≤ r ≤ 1,

in the notation of (2.1). Hence ε = 1/25, and the Hamiltonian (2.3) is equal to about −0.87783.
(This example has been considered in [34] and elsewhere. The actual value of the initial
amplitude that we used was 8.485281374.) We approximated the solution using initially the
spatial meshlength h = 10−3 (i.e. N = 103) and a time step k = 10−4. The number of intervals
in the finest mesh region in this and all other experiments to be reported in the sequel was 200.
The parameters in the mesh refinement criteria were TOLh = 0.14 and TOLk = 5× 10−8. By
the final, ‘blow-up’ time t⋆ ≈ 0.03429946, the amplitude at r = 0 had risen to approximately
.661×1012 (thus exceeding its initial value by a factor of .779×1011), and the code had refined
NSPLIT = 35 times the spatial mesh; the final time step used was about .847 × 10−25. In this
computation the L2 norm of the discrete solution (equal to about .3003974) was conserved to
7 digits up to the time of the first spatial mesh refinement. Subsequently, it approached fast a
constant value to machine accuracy: For example, between the times of the 22nd and the last
(35th) spatial mesh refinement it was constant to 15 digits.

The evolution of the magnitude of the solution is shown in Figures 1 and 2. The early stages
of the development, showing the fast collapse at r = 0, appear in the four snapshots of Fig. 1,
the first of which is the initial profile. The remaining three show the modulus of the solution
as a function of r at t = ti, i = 1, 2, 3, where ti denotes the temporal instance of the ith spatial
refinement. Figure 2 shows, superimposed in one graph, four later stages of the evolution of the
dynamically scaled modulus |u|(t⋆ − t)1/2 of the solution vs. r/(t⋆ − t)1/2 at t = ti, i = 4, 9, 14
and 19. The last three profiles practically coincide, within graph thickness; the observed fast
convergence confirms the validity of the self-similar form (4.1) of the blow-up for |u|.

We report now on the various blow-up rates that were computed from the output of the run
G3. The amplitude magnification factors achieved in this and other similar examples are very
large, and this gives us confidence that the rate computations are accurate. One group of data
concerns observed blow-up rates as t→ t⋆, for several spatial norms of the solution or (2.1) and
its first radial derivative. Let A(t) be the value at time t of such a norm of u(·, t) or ur(·, t).
With output generated by the code we calculated A(t) for t very close to t⋆ and estimated the
numbers ρ such that

(4.3) A(t) ∼ (t⋆ − t)−ρ as t ↑ t⋆.
Specifically, we evaluate A(t) at the instances t = ti, i = 1, 2, 3, . . . , of the ith spatial refinement.
Then, approximations ρi to the blow-up rate ρ of A(t) are computed by the formula

(4.4) ρi = − ln
A(ti)

A(ti+1)
/ ln

t⋆ − ti
t⋆ − ti+1

,

where the quantities t⋆ − ti are evaluated in the manner explained in Section 3. In Table 1 we
show the computed blow-up rates of the L4 and L∞ norm (i.e. of the amplitude), as well as of
the L2 and L∞ norm of ur in the columns labeled L2

D and L∞
D . (The L∞ and L∞

D are discrete
maximum norms calculated over all quadrature points.)
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Figure 1. Blow-up of the modulus of the solution of example G3. Early stages.
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Figure 2. Blow-up of the modulus of the solution of example G3. Later stages.

The blow-up rates stabilize early in the computation and are quite robust. The law (t⋆−t)− 1

2

for the amplitude is clearly verified. The L4 norm of u and the L2 and L∞ norms of ur are
seen to blow up at the rates ρ = 1/8, 1/4 and 1, respectively, which are of course consistent
with the rates that may be computed using formula (4.1).

In the last column of Table 1, labeled κ, we list approximations, obtained from the data

at t = ti, of the constant κ appearing, e.g., in the exponential term eiκ ln 1

t⋆−t of (4.1). We
assumed that the phase of the solution at r = 0 is of the form κ ln 1

t⋆−t and computed values of

κ at t = ti by forming the quotient σi = U(0, ti+1)/U(0, ti), where U(r, t) is the fully discrete
approximation produced by the code, then computing ϕi = arctan(Im(σi)/Re(σi)) (or as ϕi+π
if ϕi is negative), and finally letting

(4.5) κi = ϕi/ ln
t⋆ − ti
t⋆ − ti+1

.

The entries κi of the last column of Table 1 show that the phase constant has stabilized and
that its value agrees well with 0.545, the number obtained in [34] and [27].

In Table 1 the rates are shown at the times ti, i = 10, 11, . . . , 27. (The actual values of ti are
not listed, being very close to t⋆.) For values of ti, i ≥ 28, and up to t⋆ (recall that t⋆ = t35 in
this example), the peak of the amplitude of the solution continues to grow, but the numerical
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i L4 L∞ L2
D L∞

D κ
10 .12385 .50041 .24827 1.00052 .54528
11 .12438 .49972 .24904 .99966 .54532
12 .12467 .50010 .24948 1.00049 .54525
13 .12482 .50035 .24972 .99983 .54473
14 .12490 .49990 .24984 1.00072 .54518
15 .12495 .49996 .24992 .99956 .54518
16 .12497 .49976 .24996 .99959 .54516
17 .12499 .50007 .24998 1.00024 .54510
18 .12499 .50036 .24999 .99981 .54478
19 .12500 .49964 .24999 1.00079 .54535
20 .12500 .50019 .25000 .99962 .54496
21 .12500 .49986 .25000 .99927 .54495
22 .12500 .50032 .25000 1.00083 .54515
23 .12500 .49985 .25000 1.00009 .54502
24 .12500 .50021 .25000 .99954 .54519
25 .12500 .49965 .25000 1.00067 .54509
26 .12500 .50009 .24999 .99960 .54506
27 .12500 .49994 .24999 .99937 .54485

Table 1. Blow-up rates, G3

G3 h = 0.5 · 10−3 k = 0.5 · 10−5(1) k = 0.5 · 10−5(2) k = 0.5 · 10−5(3)

|u|max 0.66 × 1012 0.66 × 1012 0.41 × 1011 0.33× 1012 0.13 × 1013

t⋆ .03429946 .03430110 .03429835 .03429835 .03429835

TOLh = 0.13 TOLh = 0.15 TOLk = 4.5× 10−8 TOLk = 5.5 × 10−8

|u|max 0.56 × 1012 0.76 × 1012 0.33 × 1012 0.13 × 1013

t⋆ .03429947 .03429879 .03429882 .03429942

Table 2. Dependence of |u|max and t⋆ on computational parameters. (Data
for G3: h = 10−3, k = 10−4,TOLh = 0.14,TOLk = 5× 10−8)

blow-up rates deteriorate as their computation from formulas like (4.4) and (4.5) loses accuracy
due to the extreme proximity of these ti to t⋆.

To give the reader an idea of the degree of dependence of some numerical blow-up quantities
on the initially set computational parameters of the run, we list in Table 2 the values of |u|max,
the maximum amplitude achieved, and t⋆ for the run G3 and eight other runs obtained from
G3 by varying each time the indicated parameter. (The three runs with the same initial time
step k = 0.5 × 10−5, correspond, respectively, to allowing a maximum number of 3000, 3200
and 3400 time steps; the standard G3 had 3000 time steps. When halving the initial k it is
advisable to allow perhaps a 10% or so extra steps to ensure that the run will get far enough
in the blow-up regime.) In all these runs the evolution and the values of the computed rates
of blow-up were very similar to those of G3 shown in Table 1.

In addition to examples with Gaussian initial data we also ran exponentially decaying ‘ring’-
type initial profiles of the form v(r) = ae−br(1+c1r+c2r

2), 0 ≤ r ≤ 1, having a single maximum
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at some 0 < r < 1. These ‘rings’ collapsed relatively fast at zero; the observed values of norm
blow-up rates and κ were practically the same (albeit slightly more stabilized) with the G3
values of Table 1.

5. BLOW-UP: THE CRITICAL CASE

In this section we report the results of numerical experiments that we performed with our
adaptive code in the critical, two-dimensional case. We computed blow-up rates for the ampli-
tude of the solution of (1.2) at r = 0, as well as for several of its norms and norms of its radial
derivative. We also computed a certain constant occurring in the expression of the phase of
the solution at r = 0.

There exists by now strong evidence from numerical computations and asymptotic calcu-
lations (see the discussion and the references quoted in the Introduction) suggesting that the

amplitude A(t) of the solution at r = 0 behaves basically like (t⋆ − t)−
1

2 as t ↑ t⋆ but is per-
turbed (slowed down) by a factor that tends slowly to infinity as t ↑ t⋆. One may write then
that

(5.1) A(t) ∼
(

F (t⋆ − t)

t⋆ − t

)
1

2

as t ↑ t⋆,

where the function F (s), defined for s > 0, tends to infinity as s ↓ 0 slower than any power
of s. Several choices of F have been made in the literature, e.g., F (s) = ln 1

s , [48], [50],

F (s) =
(

ln 1
s

)γ
, 0.35 ≤ γ ≤ 0.65, [27], F (s) = ln ln 1

s , [28], [32], [19].
We shall compare these amplitude blow-up laws against numerical results obtained from our

adaptive code. As in Section 4 we experimented with radially exponentially decreasing (Gauss-
ian, ring) initial profiles. Our first family of examples are Gaussians of various amplitudes. We
took, in the notation of (2.1) with d = 2,

(5.2) v(r) = A0e
−25r2 , 0 ≤ r ≤ 1,

using the scaling factor ε = 1/25 and several values of A0. We denote these examples as (G2,
A0) in the sequel.

In the case A0 = 6
√
2 (actually A0 = 8.485281374), the Hamiltonian (2.3) being equal to

about −11.520, we started with initial mesh sizes h = 1/1600, k = 0.8×10−4. With refinement
criteria parameters TOLh = 0.12 and TOLk = 3×10−8, the code was able to perform 34 spatial
grid refinements; at the final (‘blow-up’) time t⋆ ≈ 0.040289800 it had achieved an amplitude at
r = 0 equal to about .258× 1012, the last time step being equal to about 0.108× 10−23. In this
computation the L2 norm of the discrete solution (equal to about 0.848528) was conserved to
6 digits up to the time of the seventh spatial mesh refinement. Subsequently, it was conserved
to 5 digits. Output from this run as well as from other similar runs with different A0 served
to approximate numerically various blow-up quantities. First, we describe our results on the
blow-up rates of the amplitude A(t) of the solution at r = 0. We computed approximations to
the power ρ > 0 (ρ should be close to 1/2 by (5.1)) assuming that the numerically computed
amplitude at r = 0 behaves like

(5.3) A(t) ∼ [F (t⋆ − t)/(t⋆ − t)]ρ as t ↑ t⋆,
where F (s), s > 0, is one of the six laws

F (s) =
(

ln
1

s

)γ
, γ = 1, 0.6, 0.5, 0.4, 0,(5.3a)

F (s) = ln ln
1

s
.(5.3b)
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As in the experiments of the previous section, for i = 1, 2, 3, . . ., we computed Ai = A(ti),
the value of A at the time ti of the ith spatial refinement. We then calculated approximations
ρi of ρ by the formula

(5.4) ρi = ln

(

Ai

Ai+1

)

/ ln

(

Fi/(t
⋆ − ti)

Fi+1/(t⋆ − ti+1)

)

,

where Fi = F (t⋆ − ti). Table 3 shows ρi for 14 ≤ i ≤ 28 (the quality of the computed ρi’s
degenerated for i > 28 due to the extreme proximity of those ti to t⋆). The results for the
choices (5.3a,b) for F (s) appear in the columns labeled γ = 1, 0.6, . . . , 0, log log, respectively.

The last four rows of each column of the table show some statistics of the rates of that
column, computed using the values of the data at ti in the window k = 19 to ℓ = 28 closer to
the asymptotic regime. (We use the notation .698(−3) = .698 × 10−3 etc.). In addition to the
mean and standard deviation of the data for the window [19, 28] we show the ‘ℓ1 discrepancy’
defined for the window [k, ℓ] as

ε1 :=
1

ℓ− k + 1

ℓ
∑

i=k

|1
2
− ρi|,

i.e. as the scaled ℓ1 norm of the vector 1
2 − ρi, k ≤ i ≤ ℓ, and the ‘ℓ2 discrepancy’

ε2 :=
[ 1

ℓ− k + 1

ℓ
∑

i=k

(1

2
− ρi

)2]1/2
,

i.e. the corresponding scaled ℓ2 norm of the same vector.
As expected, all laws (5.3a,b) when substituted in (5.3), yield rates close to 0.5. The rates

of the column corresponding to the log log rate (5.3b) clearly stabilize closer to 0.5 than any
other law. The laws (5.3a) corresponding to the powers γ = 0.6, 0.5 and 0.4 give very robust
rates which however cluster with small deviation around mean values that differ from 0.5 by a
larger amount as compared to those of the log log case.

This picture is reinforced by examining data from other runs corresponding to Gaussian
initial profiles of different amplitudes. For example, consider the output from a run labeled
(G2, 8) that corresponds to a profile of the form (5.2) with A0 = 8 (Hamiltonian = −8.96).
With initial mesh sizes h = 1/2400, k = 0.75× 10−4 and TOLh = 0.12, TOLk = 3.4× 10−8 the
code was able to perform 45 refinements of the spatial grid at which point it reached the final
(‘blow-up’) time t⋆ ≈ .043706879, achieving a maximum amplitude of about .793 × 1015; the
last time step was approximately of size .303 × 10−31. With data from this run we generated
Table 4, analogous to Table 3. We show the values for 18 ≤ i ≤ 32; their quality degenerated
after i = 32.

Since the final amplitude reached in this run was higher, we expect rates from data closer
to the asymptotic regime. The rates of columns γ = 0 and γ = 1 improve slightly, while
those of the columns corresponding to γ = 0.6, 0.5, 0.4 remain basically the same with their
counterparts of Table 3. The log log rates stabilize further, and their mean in the window
[23,32] is closer to the expected value 0.5. Again, the values of the ℓ1 and ℓ2 discrepancies from
1/2 are much smaller in the log log case. However, closer inspection of Tables 3 and 4 invites
further comment.

The laws F (s) =
(

ln 1
s

)γ
were proposed in [27] as a result of numerical computations with

a ‘dynamic rescaling’ type technique. The interval [0.35, 0.65] of recommended values of γ was
suggested there by curve-fitting with data from those computations. In our case, the data in
Tables 3 and 4 suggest that as γ decreases from γ = 1 to γ = 0, the corresponding rates increase
monotonically (as they should) from about .491 to about .503. The log log growth, theoretically
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i γ = 1 γ = 0.6 γ = 0.5 γ = 0.4 γ = 0 log log
14 .48828 .49634 .49839 .50047 .50894 .50222
15 .48804 .49566 .49761 .49957 .50756 .50133
16 .48860 .49585 .49770 .49956 .50714 .50133
17 .48888 .49579 .49754 .49931 .50651 .50108
18 .48919 .49578 .49746 .49914 .50600 .50090
19 .48947 .49577 .49737 .49898 .50553 .50072
20 .48976 .49580 .49733 .49888 .50514 .50060
21 .49004 .49583 .49730 .49878 .50479 .50049
22 .49030 .49587 .49729 .49871 .50448 .50039
23 .49057 .49594 .49730 .49867 .50422 .50033
24 .49081 .49599 .49730 .49862 .50396 .50026
25 .49103 .49603 .49729 .49856 .50372 .50018
26 .49126 .49609 .49731 .49854 .50351 .50013
27 .49138 .49605 .49723 .49842 .50323 .49999
28 .49145 .49598 .49712 .49827 .50292 .49982

Mean
[19–28] .49061 .49593 .49729 .49864 .50415 .50029
Std. dev.
[19–28] .698(−3) .110(−3) .672(−4) .211(−3) .844(−3) .276(−3)
ℓ1 discr.
[19–28] .939(−2) .407(−2) .271(−2) .136(−2) .415(−2) .329(−3)
ℓ2 discr.
[19–28] .942(−2) .407(−2) .272(−2) .137(−2) .423(−2) .392(−3)

Table 3. Blow-up rates of the amplitude A(t) at r = 0 of (G2, 6
√
2) corre-

sponding to laws (5.3a,b).

slower than any power of log, is very close to 0.5. A natural question is then whether there
exist values of γ ∈ (0, 0.4) for which laws of the form

(

ln 1
s

)γ
can fit data from a particular

experiment as well as the log log law or even better.
There are many criteria of course on the basis of which data may be fitted to a particular

law. We found the following procedure reasonable: Let Fi = F (t⋆ − ti) =
(

ln 1
t⋆−ti

)γ
, and let

ρi(γ), 0 ≤ γ ≤ 1, be the corresponding rate given by (5.4). Then, a straightforward calculation
yields the formula

(5.5)
1

ρi(γ)
=

γ

ρi(1)
+

1− γ

ρi(0)
,

expressing the rate ρi(γ) at t = ti obtained from the ‘γ−law’
(

ln 1
s

)γ
, in terms of the rates

ρi(1) and ρi(0), corresponding to the laws F (s) = ln 1
s and F (s) = 1, respectively. One may

then compute with a standard root finder, given a set of rates {ρi(1), ρi(0)}, k ≤ i ≤ ℓ, a value
γ = γ⋆ that minimizes over γ ∈ [0, 1] the scaled ℓ2 norm

ε2(γ) =
[ 1

ℓ− k + 1

ℓ
∑

i=k

(1

2
− ρi(γ)

)2]1/2

of the vector 1
2 − ρi(γ), k ≤ i ≤ ℓ, and compare ε2(γ

⋆) with ε2(log log), the latter being the
analogous quantity computed using the log log rates ρi, i.e. the entries of the last columns of



NUMERICAL BLOW-UP FOR THE RADIALLY SYMMETRIC NLS EQUATION 17

i γ = 1 γ = 0.6 γ = 0.5 γ = 0.4 γ = 0 log log
18 .48929 .49571 .49734 .49898 .50566 .50073
19 .48958 .49572 .49728 .49885 .50524 .50059
20 .48986 .49576 .49726 .49876 .50487 .50047
21 .49017 .49583 .49727 .49871 .50458 .50041
22 .49041 .49586 .49724 .49863 .50427 .50031
23 .49068 .49593 .49726 .49860 .50403 .50025
24 .49093 .49600 .49728 .49857 .50380 .50020
25 .49116 .49606 .49730 .49855 .50360 .50015
26 .49140 .49614 .49734 .49854 .50342 .50012
27 .49162 .49621 .49737 .49854 .50326 .50010
28 .49182 .49627 .49739 .49852 .50309 .50006
29 .49201 .49633 .49742 .49851 .50294 .50003
30 .49221 .49640 .49746 .49853 .50282 .50001
31 .49238 .49645 .49748 .49852 .50269 .49998
32 .49254 .49650 .49750 .49851 .50256 .49995

Mean
[23–32] .49168 .49623 .49738 .49854 .50322 .50009
Std. dev.
[23–32] .630(−3) .196(−3) .848(−4) .297(−4) .488(−3) .971(−4)
ℓ1 discr.
[23–32] .832(−2) .377(−2) .262(−2) .146(−2) .322(−2) .991(−4)
ℓ2 discr.
[23–32] .834(−2) .377(−2) .262(−2) .146(−2) .325(−2) .126(−3)

Table 4. Blow-up rates of the amplitude A(t) at r = 0 of (G2, 8) corresponding
to laws (5.3a,b).

k γ⋆ ε2(γ
⋆) ε2(log log)

14 .341 .725(−3) .892(−3)
15 .330 .573(−3) .708(−3)
16 .323 .525(−3) .636(−3)
17 .316 .453(−3) .540(−3)
18 .309 .395(−3) .461(−3)
19 .303 .344(−3) .392(−3)
20 .298 .303(−3) .336(−3)
21 .293 .269(−3) .286(−3)
22 .288 .240(−3) .243(−3)
23 .283 .218(−3) .208(−3)
24 .278 .194(−3) .173(−3)

Table 5. γ⋆, ε2(γ
⋆) and ε2(log log) for window [k, 28]. Data of Table 3 ((G2, 6

√
2)).

Tables 3 and 4. For example, using the data of Table 3 we tabulate in Table 5, for the windows
[k, ℓ] with ℓ = 28 and k = 14, . . . , 24, the corresponding values of γ⋆, ε2(γ

⋆) and ε2(log log).
The values of γ⋆ decrease monotonically from .341 to .278 as the size of the window [k, 28]

decreases, i.e. as we get closer to the ‘asymptotic’ regime. So do the values of ε2(γ
⋆) and
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k γ⋆ ε2(γ
⋆) ε2(log log)

18 .297 .340(−3) .318(−3)
19 .291 .293(−3) .265(−3)
20 .287 .253(−3) .223(−3)
21 .283 .220(−3) .187(−3)
22 .279 .186(−3) .152(−3)
23 .276 .161(−3) .126(−3)
24 .273 .138(−3) .103(−3)
25 .270 .118(−3) .827(−4)
26 .267 .101(−3) .669(−4)
27 .264 .846(−4) .521(−4)
28 .262 .671(−4) .376(−4)

Table 6. γ⋆, ε2(γ
⋆) and ε2(log log) for window [k, 32]. Data of Table 4 ((G2, 8)).

ε2(log log). The values of ε2(γ
⋆) are smaller than the corresponding values of ε2(log log) until

we get close enough to the asymptotic regime where the log log entries become smaller. When
we use data from Table 4, i.e. from the run of the example (G2, 8) which achieved a higher
final amplitude, performed more spatial refinements, and is therefore expected to have produced
data much closer to the asymptotic regime, we obtain Table 6, analogous to Table 5. Now all
the ε2(log log) entries are smaller than those of ε2(γ

⋆) for the corresponding window. Note also
that eventually the γ⋆’s of Table 6 are smaller than those of Table 5.

The results from other data fitting exercises that we also used to construct ‘good’ values of γ
were qualitatively the same. The following picture emerges: For a given numerical experiment,
there exists a range of values of γ giving laws of the type

(

ln 1
s

)γ
that fit the amplitude blow-up

data quite well. However, as we get closer to the asymptotic regime our numerical experiments
indicate that the log log law has the advantage.

As in the three-dimensional case, the code also generates approximations to the blow-up
rates of several other norms of the solution and its radial derivative. As an example, in Table
7 we show the temporal blow-up rates of the L3 and L4 spatial norms of the solution of
(2.1) with initial data (G2, 8) as well as those of the L2 and L∞ norms of its first radial
derivative; the latter appear in the columns labeled L2

D and L∞
D . All rates were computed with

a log log correction factor: The rates shown are approximations at t = ti of positive constants
ρ, computed from values of M(t) of the corresponding norm produced by the code assuming

that M(t) ∼
[

(ln ln 1
t⋆−t)/(t

⋆ − t)
]ρ

.

We may conclude with confidence from the results of Table 7 (and similarly robust evidence
from other Gaussian and ring initial profile runs) that the blow-up rates are 1/6 for the L3

and 1/4 for the L4 norm of the solution, and 1/2 for the L2 and 1 for the L∞ norm of the
radial derivative. These rates are consistent with those expected from the following asymptotic
expression for u, put forth by Landman et al. in [28], and valid for small r as t approaches t⋆

(5.6) u(r, t) ∼= 1

L(t)
R

(

r

L(t)

)

exp

[

iτ(t)− ir2

8(t⋆ − t)

]

,

where L(t) ∼ [ln ln 1
t⋆−t/(t

⋆ − t)]−
1

2 . For characterizations of the function R(ξ), ξ ≥ 0, cf. [28],

[27].

The evolution of the magnitude of the solution of (G2, 6
√
2) as it blows up is shown in

Figure 3. Superimposed in one graph we see four instances (at ti, i = 4, 9, 14, and 19) of the
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t)
/ln

(-
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t)
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t=t9

t=t14

t=t19

Figure 3. Blow-up of the modulus of the solution of example (G2, 6
√
2).

i L3 L4 L2
D L∞

D

18 .16668 .25023 .50045 1.00123
19 .16666 .25017 .50035 1.00150
20 .16664 .25013 .50026 1.00113
21 .16663 .25010 .50019 1.00048
22 .16662 .25007 .50014 1.00119
23 .16661 .25004 .50009 1.00039
24 .16661 .25002 .50005 1.00032
25 .16660 .25001 .50002 1.00081
26 .16660 .24999 .49999 1.00036
27 .16660 .24998 .49997 1.00025
28 .16659 .24997 .49995 1.00017
29 .16659 .24996 .49993 .99990
30 .16659 .24995 .49991 .99981
31 .16659 .24995 .49989 1.00024
32 .16658 .24993 .49986 .99975

Table 7. Blow-up rates of various norms, (G2, 8).
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dynamically scaled modulus |u|/A(t) of the solution vs. rA(t) where, motivated by (5.6), we

have set A(t) =
[

(ln ln 1
t⋆−t)/(t

⋆ − t)
]1/2

. Despite the compensating log log factor, it is evident

that the evolution is now slower than in the three-dimensional case shown in Figure 2. This
figure (and similar ones obtained from other initial profiles but not shown here) supports the
validity of the weakly perturbed self-similar form (5.6) for the blow-up of |u|.

In the formula (5.6) the phase τ of the solution at r = 0 blows up as t→ t⋆. It was argued in
[28] by means of asymptotic techniques that the first-order term in the asymptotic expression
of τ(t) for t near t⋆ is given by

(5.7) τ(t) ∼= 1

2λ
ln

1

t⋆ − t
ln ln

1

t⋆ − t
,

where λ is a constant whose value was predicted to be λ = π in [28] by means of a limiting
argument of descent from the supercritical cases d > 2 that uses asymptotic techniques and the
numerical solution of a singularly perturbed nonlinear eigenvalue problem. Later, the precise
matched asymptotic analysis of [41] gave that λ = π exactly.

In the dynamic rescaling framework of [28] (and also of other cited papers of the same group),
(5.7) is the first-order term in the asymptotic expansion as t ↑ t⋆ of τ(t) which is viewed as a
transformed new temporal variable that tends to ∞ as t ↑ t⋆. The exact formula for τ(t) is

(5.8) τ(t) =

∫ t

0

ds

L2(s)
, 0 ≤ t < t⋆.

It should be noted that the amplitude of the solution u(r, t) at r = 0 is proportional to 1/L(t).
In turn, L is related to a quantity called a(τ) and given by

(5.9) a(τ) = − 1

L

dL

dτ
,

when L is considered as a function of τ. In [28] it is argued that a(τ) solves an ordinary
differential equation and satisfies, to first-order terms in τ,

(5.10) a(τ) ∼= λ

ln τ
as τ →∞.

Using (5.10) in (5.9) an asymptotic expression may be found for L(τ), valid for large τ . Sub-
stitution in (5.8) then gives to first-order terms (5.7).

To verify computationally (by dynamic rescaling, a byproduct of which are approximations
of the values of a(τ) for increasing τ) the predicted value λ = π, it was deemed necessary in
[28] to compute a(τ) to the next-order term. This expression found was

(5.11) a(τ) ∼= λ

ln τ + 3 ln ln τ
.

Plotting a(τ) vs. 1/(ln τ + 3 ln ln τ) Landman et al. found that the dependence was indeed
linear but that the slope was not equal to λ = π, presumably because τ was not large enough
and the asymptotic regime in which (5.11) is valid had not been reached yet. (See also the
relevant comments in [33].)

When we tested the form (5.7) versus phase output from our adaptive direct integration code
for values of t close to t⋆, we found that the ratio τ(t)/ ln 1

t⋆−t ln ln
1

t⋆−t did not quite stabilize and

took values that were near 0.36, still far from the predicted value 1
2π
∼= .159. At the suggestion

of Prof. C. Sulem we tried to compare the computed values of τ(t) with an expression that
includes the next term in the asymptotic expansion of τ(t) as t ↑ t⋆, corresponding to the
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level of (5.11). A long computation gave us the next term in the expansion; the corresponding
two-term expression for τ(t) is

(5.12) τ(t) ∼= 1

2λ
ln

1

t⋆ − t

[

ln ln
1

t⋆ − t
+ 4 ln ln ln

1

t⋆ − t

]

.

This formula was used in our calculations with the objective of recovering the constant
1
2λ =: κ. Defining, as in the three-dimensional case, ϕi = arctan(Im(σi)/Re(σi)), with
σi = U(0, ti+1)/U(0, ti), we computed approximations of κ at ti by

(5.13) κi = ϕi/ ln µi,

where µi := (t⋆ − ti)
αi/(t⋆ − ti)

αi+1 , αi := ln ln 1
t⋆−ti

+ 4 ln ln ln 1
t⋆−ti

.

In Table 8 we show the results of three computations of the constant κ (at times ti of

the ith spatial refinement of each run as usual) from three runs, with initial data (G2, 6
√
2),

(G2, 8) and (G2, 4), respectively. The parameters of the first two runs have been already
specified. The third, corresponding to initial data of the form (5.2) with A0 = 4 (Hamiltonian
= −0.32), started with h = 1/1600, k = 10−4, and after performing 50 spatial refinements using
TOLh = 0.12, TOLk = 3.2×10−8 stopped at t⋆ ≈ .145445128 achieving a maximum amplitude
at r = 0 of .985 × 1016 with a final temporal step size of .631 × 10−33. In all three examples
the phase constant was between .15 and .16, and increased slowly with i until accuracy was
lost when the values of ti became extremely close to t⋆. The numbers κi+1 − κi decreased
monotonically from 10.6 × 10−4 to 1.6 × 10−4 for the example (G2, 6

√
2), from 6.9 × 10−4 to

0.9×10−4 for (G2, 8), and, more slowly, from 4.5×10−4 to 2.4×10−4 for (G2, 4). We conclude
that these computations verify quite accurately the predicted rate 1

2λ = 0.159 of [28] and [41].
This level of accuracy is rather surprising prima facie, given that in the range of our com-

putations the term 4 ln ln ln 1
t⋆−t in (5.12) is actually larger than ln ln 1

t⋆−t and that one cannot

claim that the remainder after two terms of the asymptotic expansion is small. (For example,
the smallest values t⋆ − ti achieved by the code were t34 − t33 ≈ 0.38 × 10−21 in the case
(G2, 6

√
2), t45− t44 ≈ 0.33× 10−28 in the case (G2, 8), and t50− t49 ≈ 0.35× 10−31 in the case

(G2, 4); note on the other hand that ln ln 1030 ≈ 4.24 and 4 ln ln ln 1030 ≈ 5.77.) The matter
can be clarified if one examines the next few terms in the asymptotic expansion of τ as t ↑ t⋆.
Tedious computations yield

(5.14)

τ(t) ∼= 1

2λ
ln

1

t⋆ − t

[

ln ln
1

t⋆ − t
+ 4 ln ln ln

1

t⋆ − t
− (1 + ln 2 + 3 lnλ)

+ 16
ln ln ln 1

t⋆−t

ln ln 1
t⋆−t

+O(
1

ln ln 1
t⋆−t

)
]

.

For λ = π, 1 + ln 2 + 3 ln λ ≈ 5.13. The fourth term in the brackets tends to zero very slowly
as t ↑ t⋆ and, for example, is equal to about 5.45 if t⋆− t = 10−30. Hence, the third and fourth
terms, being of opposite sign, counteract each other with the result that for λ = π and, e.g.,
t⋆ − t = 10−30 the values of τ(t) obtained by the two-term formula (5.12) and the four-term
(5.14) differ by less than 3%. So, there is hidden accuracy in (5.12), which could explain the
accuracy of the computed value of λ. We think that retrieving the predicted value of λ yields
more computational evidence in favor of the validity of the log log law.

Finally, we mention that, as in the three–dimensional case, we also computed with several
ring type initial profiles. All blow-up rates that we found agreed to about three digits with
their Gaussian counterparts of Tables 3, 4, 7 and 8.



22 G. D. AKRIVIS, V. A. DOUGALIS, O. A. KARAKASHIAN, AND W. R. MCKINNEY

(G2, 6
√
2) (G2, 8) (G2, 4)

i κi i κi i κi
16 .14701 20 .15146 20 .15574
17 .14807 21 .15215 21 .15619
18 .14903 22 .15279 22 .15662
19 .14990 23 .15338 23 .15702
20 .15070 24 .15394 24 .15740
21 .15144 25 .15445 25 .15776
22 .15212 26 .15494 26 .15810
23 .15275 27 .15540 27 .15842
24 .15333 28 .15584 28 .15874
25 .15388 29 .15624 29 .15904
26 .15438 30 .15664 30 .15932
27 .15483 31 .15700 31 .15960
28 .15522 32 .15735 32 .15986
29 .15538 33 .15766 33 .16012

34 .15794 34 .16037
35 .15815 35 .16061
36 .15824 36 .16085

Table 8. Constant κ = 1/2λ in phase formula (5.12) from runs (G2, 6
√
2),

(G2, 8), (G2, 4).

6. CONCLUSIONS AND EXTENSIONS

In this paper we presented a direct, fully discrete, adaptive Galerkin finite element method
for approximating, in two and three space dimensions, singular solutions of the radial NLS that
blow up at the origin as the temporal variable t approaches some finite t⋆. The spatial and
temporal mesh refinement adaptive techniques used allowed the numerical solutions to reach
very large amplitude magnifications at the origin, for t extremely close to the blow-up time t⋆.
On the other hand, the several computed blow-up rates were quite robust, lending support to
the conclusion that the method describes accurately the characteristics of the singular solution
as it blows up. Specifically, in the three-dimensional case, the numerical results clearly indicate
that the solution that blows up is of self-similar form and that its amplitude at the origin

blows up at the well-known rate (t⋆− t)−
1

2 , while in the critical, two-dimensional case they are

consistent with the amplitude blow-up law
[

ln ln 1
t⋆−t/(t

⋆ − t)
]
1

2 of [28], [32], [19]. In addition,
the blow-up of the phase of the singular solution is accurately described in two and three
dimensions.

The blow-up rates shown in the previous sections were computed with the numerical ‘blow-
up’ time defined as timax

, the instance of the last spatial grid refinement. We briefly indicate
here another way of estimating t⋆ (more precisely, t⋆− ti), that uses only information generated
by the computer code and may sometimes improve the quality of blow-up rates. We observed
that for i large enough the quantities ωi = (ti+1 − ti)/(ti − ti−1) were approximately equal to
1/4 in the case of NLS. This is consistent with the self-similar form in 3−D and the almost
self-similar form of the blow-up profile in 2−D, and the fact that, as blow-up is approached,
most of the solution is concentrated in the finest grid region I0, which is halved at each ti. If
the differences ti+1− ti decreased exactly geometrically, i.e. with constant ratio ω < 1, instead
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i log log
25 .50019
26 .50015
27 .50006
28 .50009
29 .50007
30 .50004
31 .50003
32 .50001

Table 9. Blow-up rates of the amplitude A(t) at r = 0 of (G2, 6
√
2) corre-

sponding to the log log law (5.36) and computed using (6.1).

of approximating t⋆ − ti by
∑imax

j=i+1(tj − tj−1), one could have computed t⋆ − ti exactly as

t⋆ − ti = (ti+1 − ti) + (ti+2 − ti+1) + · · · = (ti+1 − ti)(1 + ω + ω2 + · · · ) = ti+1 − ti
1− ω

.

However, for several reasons, e.g., the fact that the blow-up is weakly perturbed from self-
similarity in 2−D, various errors of the fully discrete approximation, and some uncertainty in
defining ti as the cutting instance from inequalities like (3.1), the ratios ωi are not exactly
equal to 1/4 but usually oscillate with the tendency to approach 1/4 from above as i increases.
In view of this we used the formulas

(6.1) t⋆ − ti = (ti+1 − ti) + (ti+2 − ti+1) + · · ·+ (tm+1 − tm) +
tm+2 − tm+1

1− ω̄m

to estimate t⋆− ti for i ≤ m ≤ imax− 2, where we took ω̄m to be an average value of several ωj

for j near m. For example, in the test case (G2, 6
√
2), where imax = 34, using (6.1) with m = 32

and ω̄32 = (ω32 + ω33)/2 = 0.25145 . . . we computed the blow-up rates for the amplitude at
r = 0. (To compute the rate ρ32, t

⋆ − t33 is needed; it is estimated as (t34 − t33)/(1 − ω̄32).)
The rates corresponding to the log log law (last column of Table 3) remained the same to five
digits up to i = 24; for 25 ≤ i ≤ 32 they are listed in Table 9. It is evident that in this
example the new estimates of t⋆ − ti permit computing good rates very close to the blow-up
time. The phase constants κi also improve in comparison with the data of Table 8; for example
κ32 = .15689 with the new estimates of t⋆ − ti. It is interesting to note that the amplitude
rates of the γ−laws (5.3a) do not change much under the new procedure when compared with
the values of Table 3. For example, the new rates for i = 32 are .49249, .49652, .49753, .49855,
.50268, for γ = 1, 0.6, 0.5, 0.4, 0, respectively.

One cannot however be categorical about the effectiveness of the ‘geometric tail’ correction
(6.1). For example, in the test case (G2, 8), where the ωi diverged from 1/4 for very large i
and no trustworthy ω̄m could be generated for large m, the new procedure did not improve the
log log rates shown in Table 4 (observe that they already are very close to 1/2) and did not
generate better rates for i > 32.

A natural question in blow-up problems is whether the development of singularities can be
prevented by the addition of some suitable dissipative term in the equation. In the note [4] we
tested with a similar numerical method the ‘stability’ of the blow-up and the blow-up rates of
the singular radial solutions of the NLS in two and three dimensions, when the linear, zeroth-
order damping term −δu, where δ is a small positive number, is added to the right-hand side
of (1.2a). Our conclusion was that damping of small size does not prevent the formation of
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singularities, even in the critical case, and that, predictably, the blow-up rates are close to
their counterparts of the undamped equation. These computational results complement the
theory of [47], which is valid in the three-dimensional case, and were subsequently verified in
the systematic numerical and analytical treatment of the problem by Fibich, [17].

Another problem of major interest is to describe how non-radial solutions of the NLS blow
up, say in two space dimensions. In [29] the cited dynamic rescaling techniques of the previous
papers of that group were extended to the general case of the non-radially symmetric equation.
It was demonstrated numerically in [29] that initial data with a single peak evolves into locally
radially symmetric solutions that proceed to blow up, presumably at the critical radial case
rates. In this direction, an adaptive finite element code capable of simulating 2−D non-radially
symmetric solutions has been recently developed, [25]. In particular, the code is capable of
following multi-peak blow-up. This new code follows spatial and temporal mesh refinement
strategies similar to those used in the present work. A more radical departure consists in the use
of nonconforming elements in space following a formulation pioneered in [5] and subsequently
extended in [6] and [24]. Experiments conducted so far show that several peaks may blow up
simultaneously and confirm the results of [29] in that the peaks evolve into locally radially
symmetric solutions.

The computational results reported in this paper and its companions, taken together with
similar blow-up computations for the generalized Korteweg–de Vries equation (cf., e.g., [10]),
indicate that suitably adaptive finite element techniques can describe accurately the develop-
ment of point blow-up singularities of solutions of nonlinear dispersive wave equations. A very
interesting but hard problem lies ahead: to understand how such adaptive mesh refinement
mechanisms really work, and prove rigorously that they permit discrete solutions to blow up,
provided the solution of the p.d.e. does.
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30, Instituto de Matématica, UFRJ, Rio de Janeiro 1994.
13. T. Cazenave and A. Haraux, Introduction aux problèmes d’évolution semi-linéaires, Mathématiques et Ap-
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