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Abstract. We consider the third–order, wide–angle, parabolic approximation of

underwater acoustics in a medium with depth– and range–dependent speed of sound

in the presence of dissipation and horizontal interfaces. We first discuss the theory of

existence and uniqueness of solutions to the problem and derive an energy estimate.

We then discretize the problem in the depth variable using two types of Galerkin/

finite element formulations that take into account the interface conditions, and in

the range variable by the Crank–Nicolson and also a fourth–order accurate, implicit

Runge–Kutta method. The resulting high–order numerical schemes are stable and

convergent and are also shown to compare favorably with classical, implicit finite

difference schemes in terms of computational effectiveness when applied to standard

benchmark problems.

1. Introduction

In this paper we consider a model initial– and boundary–value problem for the

third–order, wide–angle parabolic approximation of underwater acoustics, [1], [2], [3],

in a layered medium with speed of sound and dissipation properties depending on the

range (r) and depth (z) variables. We are given constants 0 < z∗ < zb < zmax that

define a medium with three horizontal layers in z, namely water of constant density

ρ1 occupying the strip I1 = (0, z∗), r ≥ 0, one layer of sediment of constant density ρ2

in I2 = (z∗, zb), and an artificial bottom layer of density ρ2 in I3 = (zb, zmax); we let

I = (0, zmax). Given R > 0 we seek a complex–valued function u = u(z, r) defined for

(z, r) ∈ Ī × [0, R] and satisfying

(1.1)
[
1 + σ(β(z, r) + iν(z, r))

]
ur + ασuzzr = iαuzz + i

[
β(z, r) + iν(z, r)

]
u,

for z ∈ I1 ∪ I2 ∪ I3 and 0 ≤ r ≤ R, such that

u(z∗−, r) = u(z∗+, r), 0 ≤ r ≤ R,(1.2)

uz(z∗−, r) = ρuz(z∗+, r), 0 ≤ r ≤ R,(1.3)

u(·, r) is C1 across z = zb, 0 ≤ r ≤ R,(1.4)

u(0, r) = u(zmax, r) = 0, 0 ≤ r ≤ R,(1.5)

u(z, 0) = u0(z), z ∈ I.(1.6)

In (1.1) α and σ are real constants, β is a real–valued function, smooth on [0, z∗]

and on [z∗, zmax] for 0 ≤ r ≤ R, with a possible jump discontinuity at {z∗} × [0, R],
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and ν is a nonnegative function, smooth on Īi × [0, R], 1 ≤ i ≤ 3, with possible jump

discontinuities at {z∗}× [0, R] and {zb}× [0, R]; in (1.3) ρ = ρ1/ρ2. In the applications

that we have in mind, u is the acoustic field generated by a harmonic point source

in the water radiating at frequency f Hz; u0(z), z ∈ I, is a given complex–valued

function modelling the initial field. We let c0 denote a reference sound speed and put

k0 = 2πf/c0.

The coefficients in (1.1) are defined in terms of a rational approximation to
√

1 + x

near x = 0 with linear numerator and denominator of the form
√

1 + x ∼=
1 + px

1 + qx
, p, q real, p 6= q.

For example, the choice p = 3/4, q = 1/4 (Claerbout, [4]) corresponds to the (1,1)

Padé approximation of
√

1 + x, whereas setting p = 1/2, q = 0 yields the linear

Taylor polynomial of
√

1 + x around x = 0 and gives the usual (Tappert, [5]) parabolic

approximation. In (1.1) α and σ are then given by the formulas α = p−q
k0
, σ = q

(p−q)k0 .

We set β = k0(p − q)(η2(z, r) − 1), η = c0/c(z, r), c(z, r) being the sound speed of

the medium. Finally ν ≥ 0 is an empirically determined dissipative term of the form

ν = k0(p−q)θ(z, r), where in θ one usually incorporates dissipative mechanisms such as

volume absorption in the artificial layer and attenuation (loss) coefficients in the various

layers. We shall refer the reader to [1], [2] and [3] for discussions of the justification

of (1.1) as a wide–angle modification of the usual parabolic equation. (The latter

corresponds to the value σ = 0; we shall assume in the sequel that σ 6= 0.)

In section 2 below we briefly discuss issues of existence and uniqueness of solutions

of the initial– and boundary–value interface problem (1.1)–(1.6) and derive an a priori

L2 bound of its solution by the energy method. In section 3 we consider Galerkin/finite

element discretizations of (1.1)–(1.6) that use two different finite element formulations

in the depth variable and are coupled with the Crank–Nicolson scheme, and also with a

fourth–order, implicit Runge–Kutta method, for the purposes of range–stepping. (For

work on finite difference approximations to (1.1)–(1.6) we refer the reader e.g. to

[1]–[3], [6]–[8].) Finally, in section 4, we present the results of the application of these

finite element methods, in comparison with classical, implicit finite–difference schemes,

to some standard benchmark problems.

2. Mathematical Preliminaries

The wide–angle p.d.e. (1.1) may be written in the form (1−γM)ur = Lu, where γ =

−ασ, andM =M(r) and L = L(r) are second–order linear differential operators in z

with complex–valued variable coefficients; they are given byMv = vzz +α−1[β(z, r) +

iν(z, r)]v and Lv = iαvzz+i[β(z, r)+iν(z, r)]v ≡ iαMv. As such it is then a (complex)

Sobolev–type p.d.e.. The existence, uniqueness and regularity of solutions of initial– and

boundary–value problems for such equations (indeed in multidimensional domains and

with more general operators and boundary conditions, but in the presence of smooth

coefficients), have been investigated by Lagnese, [9]. It is shown in [9] that if for each

r ∈ [0, R], 1/γ is not an eigenvalue of the differential operatorM(r), then, existence and
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uniqueness of solutions follow, under standard hypotheses such as sufficient smoothness

of u0 etc.. In the case of range–independentM and L, if 1/γ is an eigenvalue ofM, it

is further shown in [9] that existence of solutions is guaranteed only for special u0 that

satisfy conditions involving the spectrum of M. Although the analysis of [9] properly

holds only for smooth β and ν, it is reasonable to expect that an analogous theory is

valid for problems like (1.1)–(1.6), i.e. in the case of discontinuous coefficients, provided

the solution and the initial data satisfy interface transmission conditions.

For our specific M and L let us first consider the conservative case, i.e. when

ν = 0 on I. For special cases, e.g. when β is piecewise constant on I, it is possible

to find explicitly the eigenvalues of the operator M under the interface and boundary

conditions (1.2)–(1.5). In general, for variable β = β(z, r) one may derive sufficient

conditions that guarantee the invertibility of the operator 1 + ασM. Given r ∈ [0, R],

suppose that (1 + ασM)ϕ = 0, on I1 ∪ I2 ∪ I3, for some piecewise smooth function

ϕ = ϕ(z), z ∈ Ī, satisfying (1.2)–(1.5). Letting

(u, v)ρ =

∫ z∗

0

uv̄dz + ρ

∫ zmax

z∗

uv̄dz

be the (natural to our problem) weighted inner product on L2(I) inducing the norm

‖ · ‖ρ := (·, ·)1/2
ρ , we see that the equation

(2.1) ([1 + ασM(r)]ϕ, ϕ)ρ = 0

implies, for 0 ≤ r ≤ R, that

(2.2) ‖ϕ‖2
ρ + σ (β(r)ϕ, ϕ)ρ − ασ‖ϕ

′‖2
ρ = 0,

where we sometimes write β(r) = β(·, r) etc., suppressing the z–dependence. Using

now the Poincaré inequality∫ zmax

0

|ϕ|2dz ≤
(zmax

π

)2
∫ zmax

0

|ϕ′|2dz,

valid for ϕ in the Sobolev space H1
0 (I) (which is the case, in view of our hypotheses on

ϕ), and assuming ασ > 0 (a similar analysis holds for ασ < 0), and that ρ = ρ1/ρ2 ≤ 1

(the physically interesting case), we see that (2.2) yields([
1 + σβ(·, r)− ασρ

(
π

zmax

)2 ]
ϕ, ϕ

)
ρ

≥ 0.

Hence, if we suppose that

(2.3) 1 + σβ(z, r) < ασρ

(
π

zmax

)2

, ∀(z, r) ∈ Ī × [0, R],

there follows that ϕ = 0 on Ī, i.e. that −1/ασ is not an eigenvalue of M(r). It is

worthwhile to note that, if p = 3/4 and q = 1/4, (2.3) will hold if the data are such

that

(2.4)
fzmax

c0

<
1

2

√
ρ

3 + η2
max

, ηmax = max
Ī×[0,R]

c0

c(z, r)
.
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Suppose now that ν 6= 0. Then (2.1) implies that (2.2) becomes

‖ϕ‖2
ρ + σ(β(r)ϕ, ϕ)ρ − ασ‖ϕ′‖2

ρ + iσ(ν(r)ϕ, ϕ)ρ = 0.

Taking imaginary parts in the above equation yields

(2.5) (ν(·, r)ϕ, ϕ)ρ = 0,

from which, if ν > 0 on Ī × [0, R], we see that ϕ = 0 on Ī. Even if for each r the

dissipation coefficient ν(z, r) is positive only on a nonempty subinterval (γ, δ) of I (for

example, if ν > 0 on I2 or on I3), we may again argue that ϕ = 0 on Ī: For in that

case, (2.5) implies that ϕ ≡ 0 on (γ, δ), whence ϕ(γ) = ϕ′(γ+) = ϕ(δ) = ϕ′(δ−) = 0.

Since (1 + ασM(r))ϕ = 0 on I1 ∪ I2 ∪ I3, i.e. since ϕ satisfies homogeneous, regular,

second–order linear o.d.e’s on each Ii, we may argue that ϕ is identically zero outside

[γ, δ], i.e. on the whole interval Ī, in view of the uniqueness of solutions of the initial–

value problem for such o.d.e’s (continue e.g. ϕ to the left of γ with initial conditions

ϕ(γ) = ϕ′(γ) = 0 etc.), the continuity of ϕ at z∗ and zb, and the interface conditions

ϕ′(z∗−) = ρϕ′(z∗+), ϕ′(zb−) = ϕ′(zb+). Hence, adding any amount of dissipation will

render the initial– and boundary–value problem (1.1)–(1.6) well–posed. In the absence

of dissipation a hypothesis of the type (2.3) will certainly ensure existence of solu-

tions. While this type of condition is probably too restrictive for realistic applications,

nevertheless one must somehow avoid hitting eigenvalues of M.

Using energy techniques we may derive L2 a priori estimates for the solution of

(1.1)–(1.6). For example taking the (·, ·)ρ inner product of both sides of (1.1) with u,

using (1.2)–(1.5) and then taking real parts, yields

Re ((1 + σβ(r))ur, u)ρ =
ασ

2

d

dr
‖uz‖2

ρ + σ Im (ν(r)ur, u)ρ − (ν(r)u, u)ρ .

On the other hand, taking the imaginary part of the (·, ·)ρ inner product of both sides

of (1.1) with ur, using again (1.2)–(1.5), and taking imaginary parts gives

Re (β(r)ur, u)ρ =
α

2

d

dr
‖uz‖2

ρ + σ (ν(r)ur, ur)ρ − Im (ν(r)ur, u)ρ .

Combining these two identities we obtain

(2.6) Re(ur, u)ρ = −σ2(ν(r)ur, ur)ρ − (ν(r)u, u)ρ + 2σ Im(ν(r)ur, u)ρ ≤ 0.

Hence (d/dr)‖u‖2
ρ ≡ 2 Re(ur, u)ρ ≤ 0 for 0 ≤ r ≤ R, implying that

(2.7) ‖u(r)‖ρ ≤ ‖u(s)‖ρ, 0 ≤ s ≤ r ≤ R,

i.e. that the solution of (1.1)–(1.6) is nonincreasing in the ‖ · ‖ρ norm in the presence

of nonzero dissipation. If ν = 0 and a solution exists, then, by (2.6),

(2.8) ‖u(r)‖ρ = ‖u0‖ρ , 0 ≤ r ≤ R.

In both cases these a priori L2 bounds imply uniqueness of solutions.
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3. The Finite Element Methods

In this section we shall briefly consider some finite element methods for the numerical

solution of (1.1)–(1.6). Specifically, we shall discretize the problem in the depth variable

using two Galerkin/ finite element methods that take special account of the interface

conditions, and then in range, using range–stepping techniques.

The first finite element method, which we shall refer to as the standard Galerkin

method for this interface problem, uses piecewise polynomials in z that are continuous

across the interfaces. Given an integer M we let {z0, z1, . . . , zM} be a (not necessarily

uniform) partition of Ī such that z0 = 0, zM = zmax and for some 1 ≤ κ < λ < M ,

zκ = z∗, zλ = zb. We denote ei = (zi−1, zi), hi = zi − zi−1, h = maxi hi, and, for

an integer s ≥ 2, consider Qh, the finite dimensional subspace of H1
0 (I) consisting of

complex–valued functions, continuous on Ī and vanishing at z = 0 and z = zmax, such

that χ
∣∣
ei
∈ Ps−1(ei), 1 ≤ i ≤ M , where Pm(ei) are the polynomials on ei of degree

≤ m. On Qh we consider the sesquilinear form

(3.1) a(ϕ, χ) := (ϕ′, χ′)ρ , ϕ, χ ∈ Qh.

Qh has the standard approximation properties; in the numerical tests we shall use

s = 4, i.e. C0 cubics.

The second method employs a non–standard variational formulation due to Baker,

[10], in which no continuity of the elements of the finite element space at the interfaces is

required. For some integer s ≥ 2, using the same notation as above, we let for i = 1, 2, 3,

Sh,i stand for the complex–valued functions χ ∈ Cs−2(Īi) such that χ
∣∣
ej
∈ Ps−1(ej) for

each ej in Ii. In addition, we let χ(0) = 0 for χ ∈ Sh,1 and χ(zmax) = 0 for χ ∈ Sh,3.

Our finite element space Sh will simply be Sh,1 × Sh,2 × Sh,3. On Sh define for γ > 0

the sesquilinear form

(3.2)
aγ(ϕ, χ) :=(ϕ′, χ′)ρ + ϕ′(z∗−)[χ̄(z∗)] +

(
χ̄′(z∗−) +

γ

h
[χ̄(z∗)]

)
[ϕ(z∗)]

+ ρϕ′(zb−)[χ̄(zb)] + ρ
(
χ̄′(zb−) +

γ

h
[χ̄(zb)]

)
[ϕ(zb)],

where by [ψ(z)] we denote the jump ψ(z+) − ψ(z−) for z = z∗, zb. In addition, we

shall require that the partition is quasi–uniform, i.e. minj(hj/h) ≥ µ for some positive

constant µ (so that certain inverse inequalities hold) and that γ > 0 is sufficiently

large. For details, cf. [10] or [11]. Again, in the applications we have in mind, we shall

use s = 4, i.e. cubic splines on each Ii. Accordingly, this method will be referred to in

the sequel as the spline (nonstandard) method.

Semidiscrete finite element approximations to the solution of the wide–angle equation

may now be defined as follows. We let (Xh, B) be any one of the pairs of spaces and

sesquilinear forms already defined, i.e., let either (Xh, B) = (Qh, a) or (Xh, B) =

(Sh, aγ). We seek uh : [0, R]→ Xh, such that for all χ ∈ Xh

(3.3)
([1 + σ(β(r) + iν(r))]uhr, χ)ρ − ασB(uhr, χ)

= −iαB(uh, χ) + i ([β(r) + iν(r)]uh, χ)ρ , 0 ≤ r ≤ R,
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where uh(·, 0) = u0
h ∈ Xh is an approximation to u0 (L2 projection, interpolant etc.)

such that

(3.4) ‖u0 − u0
h‖ρ ≤ c(u0)hs.

The equation (3.4) represents a system of o.d.e’s for the coefficients of uh(r) with

respect to a basis of Xh. We may write it compactly as

(3.5) (1 + ασMh(r))uhr = iαMh(r)uh, 0 ≤ r ≤ R, uh(0) = u0
h,

where Mh(r) : Xh → Xh, 0 ≤ r ≤ R, approximates M(r) of section 2 and is defined

by (3.3).

The operator 1 + ασMh(r) will be assumed to be invertible. This follows (indeed

with an upper bound on the L2–norm of the inverse independent of h) e.g. if we impose

sufficient conditions such as (2.3), modulo a multiplicative constant in the right–hand

side of (2.3) if B = aγ. One may then prove, using the ideas of the energy proof that

led to (2.7), that max0≤r≤R ‖u(r)− uh(r)‖ρ ≤ chs, for some constant c independent of

h, provided (3.4) holds and u is sufficiently (piecewise) smooth, cf. [11].

Going on now to full discretizations of (3.5), let R = Nk, rn = nk, n = 0, 1, 2, . . . , N .

We seek approximations Un ∈ Xh to u(·, rn) obtained by discretizing in range the o.d.e.

system (3.5). A straightforward scheme to consider is, of course, the Crank–Nicolson

method in which the functions Un are defined by U0 = u0
h and for 0 ≤ n ≤ N − 1 by

(3.6)
(
1 + ασMh(r

n+1/2)
)
∂Un = iαMh(r

n+1/2)Un+1/2,

where ∂Un = (Un+1 − Un)/k, Un+1/2 = (Un + Un+1)/2, and the functions β(·, r) and

ν(·, r) inMh(r) are evaluated at rn+1/2 = rn + k/2. It is not hard to see that for each

n, a unique solution of (3.6) always exists, satisfies ‖Un+1‖ρ ≤ ‖Un‖ρ (with equality if

ν = 0) and the optimal–order L2 error estimate

max
n
‖Un − un‖ρ ≤ c(k2 + hs),

provided (3.4) holds. We refer the reader to [11] for details.

One may also consider discretizing the o.d.e. system representing (3.5) by a higher–

order accurate range discretization to match the potential high–order of accuracy of

the discretization in depth. With this aim in mind, and only for purposes of compact

notation, write (3.5) as

(3.7) uhr = Fh(r)uh , 0 ≤ r ≤ R, uh(0) = u0
h,

where Fh(r) = iα(1 + ασMh(r))
−1Mh(r). Consider, as an example, the two–stage

Gauss–Legendre implicit Runge–Kutta scheme [11], [13], given by the constants a11 =

a22 = 1/4, a12 = (1/4)− µ, a21 = (1/4) + µ, τ1 = (1/2)− µ, τ2 = (1/2) + µ, µ =
√

3/6,

w1 = w2 = 1/2. The corresponding fully discrete scheme for (3.7) is then: U0 = u0
h,
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and for n = 0, 1, 2, . . . , N − 1 (with rn,j = rn + τjk)

(3.8)

Un,i = Un + k

2∑
j=1

aijFh(rn,j)Un,j, i = 1, 2,

Un+1 = Un + k
2∑
i=1

wiFh(rn,i)Un,i.

For this scheme one may prove that its solution exists uniquely and satisfies ‖Un‖ρ ≤
‖U0‖ρ, (as an equality if ν = 0) unconditionally, as well as the optimal order error

estimate maxn ‖Un − u(rn)‖ρ ≤ c(k4 + hs), in case the coefficients β and ν are range–

independent. If β and ν are range– and depth–dependent, then the numerical evidence

suggests that the optimal–order L2 error bound O(k4 + hs) apparently still persists.

Proving such an error estimate runs into difficulties though due to certain incompati-

bilities of the variable coefficients at the interfaces; this may be viewed as yet another

manifestation of ‘order reduction due to stiffness’. These matters have some theoret-

ical significance for high–order range (or time)–stepping and are currently the object

of study by the authors.

The implementation of (3.7) in matrix–vector form, (after a finite element basis for

Xh has been selected) is done along the lines of the similar in spirit but considerably

simpler algorithm presented in [13] for the parabolic equation without interfaces. The

idea is to use an inner iteration to decouple the intermediate equations defining the Un,i,

i = 1, 2, in (3.8) while preserving the basic sparsity structure of the various subproblems

involved. What complicates matters is the presence of (the matrix representation

of) the operator I + ασMh(r) at different points rn,j in the left–hand sides of the

intermediate stage equations. This problem may also be resolved in a satisfactory

manner, cf. [11]; the overall algorithm requires solving a number of sparse linear

systems at each range step. The scheme simplifies considerably in the case of range–

independent coefficients.

The resulting algorithm may then be compared in terms of its accuracy vs. compu-

tational cost with, say, a classical Crank–Nicolson finite difference scheme. This was

done in the case of an artificial test problem for which the exact solution was known.

For each of three methods (the two finite element methods with s = 4 coupled with

the range–stepping technique (3.8), and the finite difference scheme) L2–error levels at

some R were fixed and ‘optimal’ values of h and k that minimize the computational

work at a particular error level were calculated. The work required for each method

with the optimal values of h and k was then measured for each error level. For small

accuracies (up to 10−2 in our problem) the finite difference method was more econom-

ical. However, at higher accuracies the two finite element methods were much more

efficient, with the cubic spline scheme having a slight edge; cf. [11] for details.
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4. Numerical Experiments

In this section we consider two test problems of underwater acoustic propagation

frequently used in the literature as benchmarks for testing numerical schemes for the

wide–angle equation. In the sequel we shall use the p = 3/4, q = 1/4 equation and let

ν = k0θ/2, where, cf. [14], θ = Θ(z) + n2(z, r) b(z)
27.287527

, and Θ is a volume absorption

function taken equal to zero in [0, zb] and equal to 0.01 exp[−9(z− zmax)2/(zmax− zb)2]

in [zb, zmax]. We further let b(z) be the piecewise constant attenuation function equal

to b1 = 0 in the water and having a nonzero value b2 in the two bottom layers.

The first problem to be considered is posed in a range–independent environment and

was initially stated in [1]; cf. also [2, p. 378], [7], [15]. For this problem, called Problem

I in the sequel, z∗ = 100 m, zb = 200 m, zmax = 250 m, ρ1 = 1 g/cm3, ρ2 = 1.2 g/cm3,

b1 = 0, b2 = 0.5db/wavelength, and the speed of sound is piecewise constant, given by

c1 = 1500 m/sec in Ī1 and c2 = 1590 m/sec in [z∗, zmax]. We take c0 = c1. A point

harmonic source of f = 250 Hz is placed at a depth zS = 99.5 m and a receiver at the

same depth. The solution is computed up to R = 10 km. A Gaussian starting field, [2],

models the source. It is well–known that this problem is hard to integrate, develops

a null of the acoustic field in the vicinity of 7 km, and is a good test for the phase

accuracy of a numerical method. We used two finite element codes based on the two

variational formulations of section 3, namely two programs called CCUB and SPLN,

corresponding to the standard Galerkin method with C0 cubics, and to the cubic spline

nonstandard scheme, respectively. Both were coupled with the range–stepping method

based on (3.8); the latter scheme simplifies considerably when β and ν are functions

of z only as in this example. We also used the standard IFD WIDE Crank–Nicolson

finite difference code, [6], for comparison purposes.

In Figures 1–4 we present propagation loss vs. range graphs for all three methods.

In Figure 1 we give the SNAP normal mode profile which does not give the correct

behavior near the null, while in Figures 2–4 we give, for various M and N , the finite

element and the IFD WIDE results. (Recall that M is the number of depth mesh

intervals and N the total number of range steps required to reach R = 10 km.) We

observe that both SPLN and CCUB give results that are quite close to those of IFD

WIDE (SPLN seems to be better than CCUB); we also see that as the meshes become

finer, the finite element results near the null improve. It is evident that the phase

accuracy of these schemes is comparable to that of IFD WIDE.

As an additional check for this problem we show in Figures 5 and 6 graphs of the

amplitude of the acoustic field at the depth zR = 99.5 m computed by SPLN and

CCUB vs. the analogous graphs from IFD WIDE. (The parameters M and N are the

same as in Figures 2 and 4, respectively.) All three methods give similar results and

the existence of a shadow zone in the vicinity of 7 km range is confirmed.

Hence, all three methods seem to give accurate results for the values of M , N shown.

However (with computations done on a CONVEX C–120 using Convex Fortran at

FORTH, Heraklion) the finite element methods are considerably more economical. For

the runs shown in the figures 2–6, the IFD WIDE code (with M = 800, N = 5000, an
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Figure 1. Propagation loss as a function of range for Problem I: SNAP

normal mode.

Figure 2. Propagation loss as a function of range for Problem I: IFD

WIDE (M = 800, N = 5000) vs. SPLN (M = 175, N = 1750).

optimized pair) took 186 CPU secs, the CCUB run (M = 200, N = 1000, Figures 4

or 6) 135 CPU secs, while SPLN with M = 175, N = 2400 (Figure 3) required 96 CPU

secs, going down to 70 secs when M = 175, N = 1750 (Figures 2 or 5). The SPLN

code seems to have the advantage then, taking less than one–half the time to produce

similar results to IFD WIDE.
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Figure 3. Propagation loss as a function of range for Problem I: IFD

WIDE (M = 800, N = 5000) vs. SPLN (M = 175, N = 2400).

Figure 4. Propagation loss as a function of range for Problem I: IFD

WIDE (M = 800, N = 5000) vs. CCUB (M = 200, N = 1000).

The advantage of the high–order methods is more pronounced in the case of problems

with coefficients depending on range as well. The results of one such test case (referred

to as Problem II and proposed in [16]) are shown in the sequel. In this problem

z∗ = L = 500 m, zb = 1000 m, zmax = 1250 m, ρ1 = 1 g/cm3, ρ2 = 105 g/cm3
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Figure 5. Amplitude as a function of range for Problem I: IFD WIDE

(M = 800, N = 5000) vs. SPLN (M = 175, N = 1750).

Figure 6. Amplitude as a function of range for Problem I: IFD WIDE

(M = 800, N = 5000) vs. CCUB (M = 200, N = 1000).

(modelling the rigid bottom), and the sound speed in [0, z∗] is given by (in m/sec)

c1(z, r) =1500
{

1 + (π`1/L)2e−2πr/L + (2π`2/L)2e−4πr/L

− (2π`1/L)[1− (2π`2/L)e−2πr/L] cos(πz/L)e−πr/L

− (4π`2/L) cos(2πz/L)e−2πr/L
}−1/2

,



12 GEORGIOS D. AKRIVIS, VASSILIOS A. DOUGALIS, AND NIKOLAOS A. KAMPANIS

where `1 = 0.032 L, `2 = 0.016 L. In [z∗, zmax] we take c2 = 108 m/sec. The attenuation

coefficients are again b1 = 0, b2 = 0.5 db/wavelength. The reference sound speed c0

was taken equal to 1700 m/sec. The field, generated by a point harmonic source with

f = 25 Hz at zs = 250 m (initially modelled by a Gaussian) was computed up to

R = 4 km with receiver at zR = 250 m. Whilst the problem is not very realistic, [16],

it has been widely used for model comparisons.

In Figures 7 and 8 we present propagation loss vs. range graphs of the output of

the IFD WIDE and the SPLN programs for this problem. Both methods (and also

the CCUB, not shown here) give comparable results. The IFD WIDE method was

used with M = 1000, N = 2000 (for values less than these, its accuracy deteriorates)

while the SPLN program with M = 65 and N = 300. The difference between the

SPLN results is that, in Figure 7, the range–dependent matrices that occur in the fully

discrete high–order SPLN method are updated at every range step, while in Figure 8 at

every two range steps. The time of the IFD WIDE run (on the Convex) was 299 CPU

secs, while the SPLN runs of figures 7 and 8 required 74 and 48 secs, respectively. (If

the update is done every three steps SPLN takes 35 secs without much deterioration in

the profile. Let us also mention that the CCUB code with M = 61 and N = 300 took

124 secs with update at each step.) It is thus seen that for this problem the high–order

SPLN method is at least four times faster than lower–order finite difference methods

even when the matrices are updated at every step.

Figure 7. Propagation loss as a function of range, Problem II: IFD

WIDE (M = 1000, N = 2000) vs. SPLN (M = 65, N = 300/1).
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Figure 8. Propagation loss as a function of range, Problem II: IFD

WIDE (M = 1000, N = 2000) vs. SPLN (M = 65, N = 300/2).

5. Conclusion

On the basis of these theoretical and computational results we may conclude that the

high–order numerical methods proposed here approximate well the solution of the wide–

angle equation and seem to be computationally more efficient than classical implicit

finite difference schemes for the same problems. The authors feel that such schemes

should be seriously considered as a basis for the development of very fast wide–angle

PE codes in the future.
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