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Abstract. Stability of the BDF methods of order up to five for parabolic equations can
be established by the energy technique via Nevanlinna–Odeh multipliers. The nonexis-
tence of Nevanlinna–Odeh multipliers makes the six-step BDF method special; however,
the energy technique was recently extended by the authors in [Akrivis et al., SIAM J.
Numer. Anal. 59 (2021) 2449–2472] and covers all six stable BDF methods. The seven-
step BDF method is unstable for parabolic equations, since it is not even zero-stable. In
this work, we construct and analyze a stable linear combination of two non zero-stable
schemes, the seven-step BDF method and its shifted counterpart, referred to as WSBDF7
method. The stability regions of the WSBDFq, q ⩽ 7, with a weight ϑ ⩾ 1, increase as
ϑ increases and are larger than the stability regions of the classical q-step BDF methods,
corresponding to ϑ = 1. We determine novel and suitable multipliers for the WSBDF7
method and establish stability for parabolic equations by the energy technique. The pro-
posed approach is applicable for mean curvature flow, gradient flows, fractional equations
and nonlinear equations.

1. Introduction

Let T > 0, u0 ∈ H, and consider the initial value problem of seeking u ∈ C((0, T ];D(A))∩
C([0, T ];H) satisfying

(1.1)
{
u′(t) + Au(t) = f(t), 0 < t < T,

u(0) = u0,

with A a positive definite, selfadjoint, linear operator on a Hilbert space (H, (·, ·)) with
domain D(A) dense in H and f : [0, T ] → H a given forcing term. We shall analyze
the discretization of (1.1) by the weighted and shifted q-step backward difference formula
(WSBDFq) with q = 7, described by a weight ϑ > 0 and the corresponding characteristic
polynomials α and β,

(1.2) α(ζ) := ϑa(ζ) + (1− ϑ)ã(ζ) =

q∑
j=0

αjζ
j, β(ζ) := ϑζq + (1− ϑ)ζq−1, q ⩽ 7,
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with a and ã the characteristic polynomials of the q-step BDF method and the shifted
q-step BDF method, respectively, for 1 ⩽ q ⩽ 7,

(1.3)


a(ζ) =

q∑
j=1

1

j
ζq−j(ζ − 1)j =

q∑
j=0

ajζ
j,

ã(ζ) = a(ζ)−
q∑

j=2

1

j − 1
ζq−j(ζ − 1)j =

q∑
j=0

ãjζ
j.

In particular, ã(ζ) = a(ζ) for q = 1.
Let N ∈ N, τ := T/N be the time step, and tn := nτ, n = 0, . . . , N, be a uniform

partition of the interval [0, T ]. We recursively define a sequence of approximations um to
the nodal values u(tm) of the exact solution by the WSBDF7 method,

(1.4)
7∑

i=0

αiu
n+i + ϑτAun+7 + (1− ϑ)τAun+6 = ϑτfn+7 + (1− ϑ)τfn+6, ϑ ⩾ 2.6,

for n = 0, . . . , N − 7, with fm := f(tm), assuming that starting approximations u0, . . . , u6

are given. For convenience, we suppressed the dependence of α and of its coefficients on ϑ.
We are particularly interested in the WSBDF7 method (1.4) for ϑ = 3,

(1.5)
7∑

i=0

αiu
n+i + 3τAun+7 − 2τAun+6 = 3τfn+7 − 2τfn+6, n = 0, . . . , N − 7.

Let P7 ∈ P7 be the Lagrange interpolating polynomial of a function y at the nodes
tn, tn+1, . . . , tn+7. We recall that the seven-step BDF method,

(1.6)
7∑

i=0

aiy
n+i = τf(tn+7, y

n+7),

for an o.d.e. y′ = f(t, y), is constructed by approximating the derivative of y at the node
tn+7 in the relation y′(tn+7) = f

(
tn+7, y(tn+7)

)
by the derivative P ′

7(tn+7) of the interpo-
lating polynomial. Analogously, the shifted seven-step BDF method,

(1.7)
7∑

i=0

ãiy
n+i = τf(tn+6, y

n+6),

is constructed by approximating y′(tn+6) in the relation y′(tn+6) = f
(
tn+6, y(tn+6)

)
by

P ′
7(tn+6). Notice that ϑP ′

7(tn+7)+(1−ϑ)P ′
7(tn+6) is, in general, different from P ′

7(tn+6+ϑτ).
Multiplying (1.6) and (1.7) by ϑ and 1 − ϑ, respectively, and adding the results, we

obtain the weighted and shifted seven-step BDF (WSBDF7) method,

(1.8) ϑ
7∑

i=0

aiy
n+i + (1− ϑ)

7∑
i=0

ãiy
n+i = ϑτf(tn+7, y

n+7) + (1− ϑ)τf(tn+6, y
n+6).

In particular, for ϑ = 1 and ϑ = 0, the WSBDF7 method reduces to the standard seven-step
BDF method and to the corresponding shifted seven-step BDF method.

It is well known that both methods, seven-step BDF and shifted seven-step BDF meth-
ods, are not zero-stable; for seven-step BDF method, see, e.g., [12, Theorem 3.4]; concerning
shifted seven-step BDF method, it is easily seen that ã(−13)ã(−12) < 0, whence ã has a
root in the interval (−13,−12). The order of both methods is 7. Here, we show that their
combination, WSBDF7, is A(φ)-stable for ϑ = 3, stable even for parabolic equations.
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The explicit form of the polynomials a and ã in (1.3) with q = 7 is

a(ζ) =
1

420

(
1089ζ7 − 2940ζ6 + 4410ζ5 − 4900ζ4 + 3675ζ3 − 1764ζ2 + 490ζ − 60

)
,

ã(ζ) =
1

420

(
60ζ7 + 609ζ6 − 1260ζ5 + 1050ζ4 − 700ζ3 + 315ζ2 − 84ζ + 10

)
.

Let | · | denote the norm on H induced by the inner product (·, ·), and introduce on
V, V := D(A1/2), the norm ∥ · ∥ by ∥v∥ := |A1/2v|. We identify H with its dual, and denote
by V ′ the dual of V , and by ∥ · ∥⋆ the dual norm on V ′, ∥v∥⋆ = |A−1/2v|. We shall use the
notation (·, ·) also for the antiduality pairing between V ′ and V. For simplicity, we denote
by ⟨·, ·⟩ the inner product on V, ⟨v, w⟩ := (A1/2v, A1/2w).

Our stability results are established by the energy technique utilizing suitable multipliers,
and are given in the following two theorems and in a corollary.

Theorem 1.1 (Stability of method (1.5)). Let u0, u1, . . . , u6 ∈ V. The WSBDF7 method
(1.5) is stable in the sense that

(1.9) |un|2 + τ∥un∥2 ⩽ C
6∑

j=0

(
|uj|2 + τ∥uj∥2

)
+ Cτ

n∑
ℓ=6

∥f ℓ∥2⋆, n = 7, . . . , N.

Here C denotes a generic constant, independent of T and the operator A as well as of f, τ,
and n.

Theorem 1.2 (Second stability estimate). Let u0, u1, . . . , u6 ∈ V, and let us indicate by a
dot the application of the seven-step weighted and shifted backward difference operator,

(1.10) v̇m :=
1

τ

7∑
i=0

αiv
m−7+i, m = 7, . . . , N.

The WSBDF7 method (1.5) is stable in the sense that

(1.11) ∥un∥2 + τ |u̇n|2 ⩽ C
6∑

j=0

∥uj∥2 + Cτ
n∑

ℓ=6

|f ℓ|2, n = 7, . . . , N.

Here C denotes a generic constant as in Theorem 1.1.

Corollary 1.1 (Third stability estimate). Let u0, u1, . . . , u6 ∈ V, and let us denote by
∂τu

n := (un − un−1)/τ, n = 1, . . . , N, the backward difference quotients. The WSBDF7
method (1.5) is stable in the sense that

(1.12) ∥un∥2 + τ |∂τun|2 ⩽ C

6∑
j=0

∥uj∥2 + Cτ

6∑
j=1

|∂τuj|2 + Cτ

n∑
ℓ=6

|f ℓ|2, n = 7, . . . , N,

with a generic constant C.

The application of the energy technique to establish stability of high order multistep
methods for parabolic equations relies on suitable multipliers. The multiplier technique
was introduced by Nevanlinna and Odeh in [18] and is based on Dahquist’s equivalence
between A- and G-stability; see also [13, §V.8, pp. 342–347]. In [18], suitable multipliers
for the three-, four- and five-step BDF methods were determined; see also [3] for opti-
mal Nevanlinna–Odeh multipliers for these methods, i.e., multipliers with minimal sum of
absolute values.
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The multiplier technique became widely known and popular after its first actual applica-
tion to the stability analysis for parabolic equations by Lubich, Mansour, and Venkatara-
man in 2013; see [17]. In recent years, the energy technique has been frequently used in the
analyses of various variants of BDF methods of order up to 5, such as fully implicit, linearly
implicit or implicit–explicit, for a series of linear and nonlinear equations of parabolic type.
Nonexistence of Nevanlinna–Odeh multipliers for the six-step BDF method was established
in [1]; there, to overcome this difficulty, the notion of multipliers was slightly modified,
and multipliers for the six-step BDF method were determined, which, in combination with
the Grenander–Szegő theorem for symmetric banded Toeplitz matrices, made the energy
technique applicable also to this method for parabolic equations with self-adjoint elliptic
part.

Here, focusing on the discretization of parabolic equations with self-adjoint elliptic part
by multistep methods, we first extend the notion of multipliers, and then determine suitable
multipliers for the WSBDF7 method (1.5) and prove Theorems 1.1 and 1.2 by the energy
technique. The new, more general notion of multipliers reduces to the corresponding notion
in [1] in the case of the BDF methods; however, both the proofs and the stability results
here and in [1] are different. The present approach is shorter and simpler but it yields
weaker stability results, in the sense that (1.9) leads to optimal order error estimates in
the discrete ℓ∞(H) norm but to suboptimal by half-an-order error estimates in the discrete
ℓ∞(V ) norm; see (7.2); in contrast, the stability estimates in [1] lead to optimal order error
estimate in the discrete ℓ∞(H) as well as in the discrete ℓ2(V ) norms. Of course, (1.11)
leads to optimal order error estimates in the discrete ℓ∞(V ) norm. Let us also mention that
the stability approach in [1] is restricted to BDF methods, in which case banded Toeplitz
matrices enter. In the case of the WSBDF7 method (1.5), the corresponding matrices
reduce to banded Toeplitz matrices only if we disregard their last row and column; this
fact prevents us from using the Grenander–Szegő theorem.

In 1991, linear multistep methods of orders from 2 to 7 for ordinary differential equations,
with stability regions larger than the stability regions of the BDF method of the same
order, were constructed in [16]. In particular, the seven-step methods of order 7 of [16]
are the WSBDF7 method (1.4) with a parameter ϑ ⩾ 2.6. High order implicit-explicit
multistep methods were constructed and analyzed in [9]. Then, in 1995, implicit-explicit
multistep schemes of orders from 1 to 4 were constructed in [4]; the method of order 2 in [4]
coincides with the WSBDF2 method, but the methods of order 3 and 4 are different from
the WSBDFq, q = 3, 4, methods. The construction techniques in [16] and for the WSBDF
methods are significantly different. The point of departure in [16] is the polynomial β
in (1.2); the corresponding polynomial α is then determined via the order conditions.
Here, the WSBDF7 method (1.8) is constructed by the simpler, direct, and more flexible
weighted and shifted technique, which immediately extends also to variable time step
schemes. For example, the variable time-step WSBDF3 methods for parabolic equations
are presented in [7]. However, there is no published work on variable or even uniform
time-step WSBDFq, q ⩾ 4, methods.

The proposed methods, for q ⩽ 6, including the classical case ϑ = 1, have been recently
widely used to various applied scientific phenomena, such as mean curvature flow [11, 15],
gradient flows [14], and fractional equations [8].

An outline of the paper is as follows: In the short Section 2, we briefly comment on the
stability regions of the WSBDF7 method (1.8) for various values of the parameter ϑ. In
Section 3, we make precise the requirements on the multipliers for multistep methods that
are suitable for our stability approach, and show that our notion extends the multiplier
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notion of [1] for BDF methods. The remaining part of the article is devoted to the WSBDF7
method (1.5). First, in Section 4 we give a suitable multiplier for this method and in Section
5 comment on the determination of such multipliers; in particular, we provide information
about the range of such multipliers with up to the first four nonvanishing components.
Sections 6 and 7 are devoted to the proof of the stability estimates (1.9), (1.11) and (1.12),
and to the derivation of error estimates. We conclude in Section 8 with numerical results.

2. Stability regions

The q-step BDF methods are A(φq)-stable with φ1 = φ2 = 90◦, φ3 ≈ 86.03◦, φ4 ≈
73.35◦, φ5 ≈ 51.84◦, and φ6 ≈ 17.84◦; see [13, Section V.2]. The WSBDFq methods are
A(φ̃q)-stable with φ̃1 = φ̃2 = 90◦, φ̃3 ≈ 89.55◦, φ̃4 ≈ 85.32◦, φ̃5 ≈ 73.2◦, and φ̃6 ≈ 51.23◦,
for the weights ϑ3 = 20, ϑ4 = 60, ϑ5 = 48, ϑ6 = 50, respectively; see [16, Table 2]. Notice
that φq < φ̃q < φq−1 for q = 3, 4, 5, 6. It can also be shown that φ̃q → φq−1 as ϑ → ∞
for q = 3, . . . , 7; see Remark 2.1. It seems that the value φ̃7 ≈ 18.32◦ > φ6 ≈ 17.84◦

for ϑ7 = 200/7 given in [16] is incorrect. We numerically computed the approximations
φ̃1 = φ̃2 = 90◦, φ̃3 ≈ 89.99◦, φ̃4 ≈ 85.93◦, φ̃5 ≈ 73.2◦, φ̃6 ≈ 51.63◦, and φ̃7 ≈ 17.47◦ for the
weight ϑ = 100.

Remark 2.1 (The limit of the stability angles φ̃q of WSBDFq). Nørsett, [19, p. 263], es-
tablished an A(φq)-stability criterion for the q-step BDF methods, namely, in his notation,

tan(φq) = min
x∈Dq

(
−
√
1− x2 · Iq(x)

Rq(x)

)
, Dq = {x ∈ [−1, 1], Rq(x) < 0};

here Iq(x) and Rq(x) are related to the imaginary and real parts of points on the root locus
curve of the method, and are expressed in terms of the Chebyshev polynomials. Using this
criterion and results in [16, p. 7], we have

tan(φ̃q) = min
x∈D̃q

(
−
√
1− x2 · lim

ϑ→∞

Ĩq(x)

R̃q(x)

)
, D̃q = {x ∈ [−1, 1], R̃q(x) < 0}

for the stability angle φ̃q of the WSBDFq method. Now, we can easily check that

lim
ϑ→∞

Ĩq(x)

R̃q(x)
=

Iq−1(x)

Rq−1(x)
, q = 3, . . . , 7,

and infer that
φ̃q → φq−1 as ϑ → ∞, q = 3, . . . , 7.

Here, we examine the stability regions of the WSBDF7 method (1.8). For the test
equation y′(t) = λy(t), λ ∈ C, the method reads

(2.1)
7∑

i=0

αiy
n+i = λτϑyn+7 + λτ(1− ϑ)yn+6, n = 0, . . . , N − 7.

To study the stability regions, we set z = λτ in (2.1) and consider the characteristic
polynomial

p(ζ) := α(ζ)− zβ(ζ), ζ ∈ C;
again, for convenience, we suppressed the dependence of the polynomials α and β on ϑ;
see (1.2). Then, the stability region of the method is the set of all z ∈ C such that the
characteristic polynomial p satisfies the root condition. We plot the stability regions of
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Figure 2.1. The stability regions (upper panel) as well as zoom in around
the origin (lower panel), in light blue, for ϑ = 1, 3, 10, respectively.

the WSBDF7 method (2.1) for ϑ = 1, 3, 10 in Figure 2.1. Notice that the stability regions
increase as ϑ increases.

3. Multipliers for multistep methods

Here, we extend the notion of multipliers for multistep methods applied to parabolic
equations with self-adjoint elliptic part. The present, more general notion of multipliers
reduces to the corresponding notion in [1] in the case of the BDF methods. The multiplier
technique hinges on the celebrated equivalence of A- and G-stability for multistep methods
by Dahlquist.

Lemma 3.1 ([10]; see also [5] and [13, Section V.6]). Let ρ(ζ) = ρqζ
q + · · · + ρ0 and

σ(ζ) = σqζ
q + · · · + σ0 be polynomials of degree q, with real coefficients, that have no

common divisor. Let (·, ·) be a real inner product with associated norm | · |. If

(A) Re
ρ(ζ)

σ(ζ)
> 0 for |ζ| > 1,

then there exist a positive definite symmetric matrix G = (gij) ∈ Rq,q and real γ0, . . . , γq
such that for v0, . . . , vq in the inner product space,

(G)
( q∑

i=0

ρiv
i,

q∑
j=0

σjv
j
)
=

q∑
i,j=1

gij(v
i, vj)−

q∑
i,j=1

gij(v
i−1, vj−1) +

∣∣∣ q∑
i=0

γiv
i
∣∣∣2.

Let us briefly comment on the assumption that ρ and σ are polynomials of the same
degree; obviously, if (A) were satisfied for polynomials of different degrees, then A-stable
explicit methods would exist. First, nonconstant polynomials cannot satisfy (A) since they
cannot retain the sign of their real part as |z| → ∞. This shows also that the degree of ρ
cannot exceed the degree of σ, since then we could write ρ/σ as the sum of a nonconstant
polynomial and a rational function R such that the degree of its numerator is lower than
the degree of its denominator, whence, in particular, lim|z|→∞ ReR(z) = 0. Finally, (A)
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is symmetric with respect to ρ and σ since Re[ρ(z)/σ(z)] Re[σ(z)/ρ(z)] = cos2 φ > 0 for
ρ(z)/σ(z) = reiφ not purely imaginary.

Next, we specify our requirements on the multipliers; in Section 4, we shall provide
motivation for these requirements.
Definition 3.1 (Multipliers). Let α and β be the characteristic polynomials of an A(0)-
stable q-step method; then, αqβq > 0, and thus we can assume that the leading coefficients
αq and βq are positive. For a q-tuple of real numbers (µ1, . . . , µq) consider the polynomial
µ(ζ) := ζq − µ1ζ

q−1 − · · · − µq. Then, (µ1, . . . , µq) is called a multiplier of the method if
it satisfies three properties, namely, if the pairs of polynomials (α, µ) and (β, µ) have no
common divisors, except possibly of a common factor of the form ζℓ for the pair (β, µ), and
satisfy the A-stability condition (A) in Lemma 3.1 and a slightly more restrictive version
of it, respectively, that is,

(3.1) Re
α(ζ)

µ(ζ)
> 0 for |ζ| > 1,

i.e., the method described by the coefficients of the polynomials α and µ is A-stable, and

(3.2) Re
β(ζ)

µ(ζ)
> c⋆ for |ζ| > 1,

for some positive constant c⋆, and the polynomial µ does not have unimodular roots.
The A-stability condition (3.1) is symmetric with respect to the polynomials α and µ,

since for any not purely imaginary complex number z = reiφ, we have Re zRe 1
z
= cos2 φ >

0. This property is crucial because otherwise the A-stability condition (A) would not be
equivalent to the obviously symmetric condition (G). On the other hand, the more stringent
condition (3.2) cannot be symmetric in case µ has unimodular roots, since it implies that
β does not have unimodular roots. For instance for µ(ζ) = ζ − 1 and β(ζ) = ζ, i.e., for the
characteristic polynomials of the implicit Euler method, we obviously have

lim
ζ→1

µ(ζ)

β(ζ)
= 0,

while, with ζ = reiφ,

Re
β(ζ)

µ(ζ)
=

r2 − r cosφ

r2 − 2r cosφ+ 1
and r2 − r cosφ

r2 − 2r cosφ+ 1
⩾ 1

2
⇐⇒ r ⩾ 1.

The additional condition that µ does not have unimodular roots makes condition (3.2)
symmetric; cf. also Lemma 3.2.

Let us note that the third property of multipliers, i.e., that µ does not have unimodular
roots, is not needed for the proof of Theorem 1.1; we will use it only in the proof of Theorem
1.2.
Remark 3.1 (Equivalent version of the conditions on the pair (β, µ)). Let ℓ ⩾ 0 be the
largest integer such that ζℓ is a common factor of β and µ. We factor ζℓ out, and write β
and µ in the form
(3.3) β(ζ) = ζℓδ(ζ) and µ(ζ) = ζℓκ(ζ).

Then, the conditions on the pair (β, µ) in the previous Definition can be equivalently
formulated in the form: the pair of polynomials (δ, κ) has no common divisor and satisfies
the condition

(3.4) Re
δ(ζ)

κ(ζ)
> c⋆ for |ζ| > 1,
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for some positive constant c⋆.

The following result is an immediate consequence of the maximum principle for harmonic
functions.

Lemma 3.2 (Equivalent versions of conditions (3.1) and (3.2)). With the notation in
Definition 3.1 and µ0 := −1, conditions (3.1) and (3.2) are equivalent to

(3.5) −
q∑

j,ℓ=0

αjµℓ cos((j + ℓ− q)φ) ⩾ 0 ∀φ ∈ R

and, if the polynomial µ does not have unimodular roots,

(3.6) −
q∑

j,ℓ=0

βjµℓ cos((j + ℓ− q)φ) ⩾ c̃⋆ ∀φ ∈ R,

for some positive constant c̃⋆, respectively.

Proof. The rational functions α/µ and β/µ are holomorphic outside the unit disk in the
complex plane and

lim
|z|→∞

α(z)

µ(z)
= αq > 0, lim

|z|→∞

β(z)

µ(z)
= βq > 0.

Therefore, according to the maximum principle for harmonic functions, (3.1) and (3.2) for
c⋆ ⩽ βq are equivalent to

Re
[
α(ζ)µ(ζ̄)

]
⩾ 0 ∀ζ ∈ K , and Re

β(ζ)

µ(ζ)
⩾ c⋆ ∀ζ ∈ K ,

respectively, with K the unit circle in the complex plane, K := {ζ ∈ C : |ζ| = 1}, i.e.,
equivalent to
(3.7) Re

[
α(eiφ)µ(e−iφ)

]
⩾ 0 and Re

[
β(eiφ)µ(e−iφ)

]
⩾ c⋆|µ(eiφ)|2 ∀φ ∈ R.

Now, µ(ζ) = −
∑q

ℓ=0 µℓζ
q−ℓ, and thus

β(eiφ)µ(e−iφ) = −
q∑

j=0

βje
jiφ

q∑
ℓ=0

µℓe
(ℓ−q)iφ = −

q∑
j,ℓ=0

βjµℓe
(j+ℓ−q)iφ,

whence

Re
[
β(eiφ)µ(e−iφ)

]
= −

q∑
j,ℓ=0

βjµℓ cos((j + ℓ− q)φ),

and, since |µ(eiφ)|2 is bounded from above and below by positive constants, (3.6) is equiv-
alent to the second relation in (3.7). Analogously, the first relation in (3.7) is equivalent
to (3.5). □
Remark 3.2 (BDF methods). In the case of the standard q-step BDF method, we have
β(ζ) = ζq, whence (3.6) takes the form

−
q∑

ℓ=0

µℓ cos(ℓφ) ⩾ c̃⋆ ∀φ ∈ R,

i.e., since µ0 = −1,

(3.8) 1− µ1 cosφ− · · · − µq cos(qφ) ⩾ c̃⋆ ∀φ ∈ R.
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Since c̃⋆ can be chosen arbitrarily small, (3.8) can be written as a positivity condition,

(3.9) 1− µ1 cosφ− · · · − µq cos(qφ) > 0 ∀φ ∈ R.

Conditions (3.1), with α the characteristic polynomial of the q-step BDF method, and
(3.9) were used in [1] to establish stability of BDF methods for parabolic equations with self-
adjoint elliptic part by the energy technique. The motivation for the positivity condition
(3.9) in [1] was that 1− µ1 cosφ− · · · − µq cos(qφ) is the generating function of symmetric
banded Toeplitz matrices of arbitrary dimension entering into the stability analysis, and
(3.9) ensured the positive definiteness of these matrices.

4. Multipliers for the WSBDF7 method (1.5)
From now on, we consider the WSBDF7 method (1.5), i.e., (1.4) with ϑ = 3.
As we shall see,

(4.1) µ1 = 1.6, µ2 = −1.6, µ3 = 1.1, µ4 = −0.3, µ5 = µ6 = µ7 = 0,

are multipliers of the method with c̃⋆ := 0.01 in (3.6).
Let us now use these specific multipliers to motivate our requirements in Definition 3.1.
To prove the first stability result for method (1.5) by the energy technique, we sub-

tract and add the term c⋆A
(
un+7 −

∑4
j=1 µju

n+7−j
)

from and to its left-hand side, and
subsequently test by un+7 − µ1u

n+6 − · · · − µ7u
n = un+7 − µ1u

n+6 − · · · − µ4u
n+3 to obtain

(4.2)
( 7∑

i=0

αiu
n+i, un+7 −

4∑
j=1

µju
n+7−j

)
+ τAn+7 + τc⋆

∥∥∥un+7 −
4∑

j=1

µju
n+7−j

∥∥∥2 = τFn+7,

n = 0, . . . , N − 7, with
An+7 :=

〈
3un+7 − 2un+6 − c⋆

(
un+7 −

4∑
j=1

µju
n+7−j

)
, un+7 −

4∑
j=1

µju
n+7−j

〉
,

Fn+7 :=
(
3fn+7 − 2fn+6, un+7 −

4∑
j=1

µju
n+7−j

)
.

The term Fn+7 in (4.2) can be easily estimated from above via elementary inequalities.
Subsequently, the term involving the approximate solutions will be absorbed in the third
term on the left-hand side of (4.2); this is the motivation for the use of a positive constant
c⋆ in (3.4) or in (3.2).

To estimate the first term in (4.2) from below, we shall first prove that the pair of
polynomials α and µ, with α given in (1.2) for ϑ = 3,

420α(ζ)=3147ζ7− 10038ζ6+ 15750ζ5− 16800ζ4+ 12425ζ3− 5922ζ2+ 1638ζ− 200,(4.3)

and µ the polynomial associated to the multipliers in (4.1),

(4.4) µ(ζ) = ζ7 − 1.6ζ6 + 1.6ζ5 − 1.1ζ4 + 0.3ζ3,

satisfy the conditions in Definition 3.1; see Proposition 4.1. This fact in combination with
Lemma 3.1 will enable us to utilize a relation of the form (G).

Analogously, to estimate An+7 from below, in view of its specific form and, in particular,
the fact that it depends only on five consecutive approximations, namely on un+3, . . . , un+7,
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it suffices to use polynomials of degree 4. Thus, we factor ζ3 out of the polynomials β in
(1.2) for ϑ = 3 and µ and consider the polynomials δ and κ,

(4.5) δ(ζ) := 3ζ4 − 2ζ3,

and

(4.6) κ(ζ) := ζ4 − 8

5
ζ3 +

8

5
ζ2 − 11

10
ζ +

3

10
=
(
ζ − 3

5

)(
ζ3 − ζ2 + ζ − 1

2

)
;

cf. (3.3). Now, to take advantage of a relation of the form (G), given that the polynomials
δ − c⋆κ and κ enter into the first and second arguments in the inner product in An+7, we
need to prove that the pair of polynomial (δ − c⋆κ, κ) satisfies the conditions in Lemma
3.1; obviously, these conditions can be reformulated in the form that the polynomials δ
and κ have no common divisor and satisfy condition (3.4). We shall prove these properties
in Proposition 4.2.

Proposition 4.1 (Polynomials α and µ satisfy condition (3.1)). The polynomials α for
ϑ = 3 of (4.3) and µ of (4.4) do not have common divisor and satisfy condition (3.1).

Proof. First, µ(ζ) = ζ3(ζ − 3/5)κ̃(ζ) with κ̃(ζ) := ζ3 − ζ2 + ζ − 1/2; see (4.4) and (4.6).
Thus, to show that the roots of µ are inside the unit disk, it suffices to show that this is
the case for κ̃. Now,

κ̃
(1
2

)
= −1

8
< 0 and κ̃(1) =

1

2
> 0,

and thus κ̃ has a real root ζ1 ∈ (1/2, 1). Actually, this is the only real root of κ̃, since κ̃ is
strictly increasing on the real axis,

κ̃′(x) = 3x2 − 2x+ 1 = 2x2 + (x− 1)2 > 0.

Let ζ2, ζ3 be the complex conjugate roots of κ̃. Then, according to Vieta’s formulas,

ζ1ζ2ζ3 = ζ1|ζ2|2 =
1

2
,

which, in combination with ζ1 > 1/2, implies |ζ2| < 1. Thus, |ζ1|, |ζ2|, |ζ3| < 1. We infer
that all roots of µ are inside the unit disk.

The generating polynomial α of the WSBDF7 method (1.5) is

420α(ζ) = 3147ζ7 − 10038ζ6 + 15750ζ5 − 16800ζ4 + 12425ζ3 − 5922ζ2 + 1638ζ − 200;

see (4.3). First, α(0) = −10/21, α(3/5) = 53/11822. Furthermore, 420α(ζ) = (ζ − 1)α̃(ζ)
with

α̃(ζ) := 3147ζ6 − 6891ζ5 + 8859ζ4 − 7941ζ3 + 4484ζ2 − 1438ζ + 200

=
(
3147ζ3 − 3744ζ2 + 1968ζ − 1311

2

)
κ̃(ζ)− 1

4
ν(ζ)

and ν(ζ) := 46ζ2−806ζ+511, and it is easy to check that none of the roots of the quadratic
polynomial ν is a root of κ̃; consequently, the polynomials α̃ and κ̃ do not have common
divisor. We then easily infer that the polynomials α and µ do not have common divisor.

Now, the rational function α/µ is holomorphic outside the unit disk in the complex plane
and

lim
|z|→∞

α(z)

µ(z)
= α7 =

1049

140
> 0.
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Therefore, according to the maximum principle for harmonic functions, the A-stability
property (A) is equivalent to

Re
α(ζ)

µ(ζ)
⩾ 0 ∀ζ ∈ K ,

with K the unit circle in the complex plane, i.e., equivalent to

Re
[
α(eiφ)µ(e−iφ)

]
⩾ 0 ∀φ ∈ R.

In view of (4.4), this property takes the form

(4.7) Re
[
420α(eiφ)e−i3φκ(e−iφ)

]
⩾ 0 ∀φ ∈ R.

Now, it is easily seen that

420α(eiφ)e−i3φ = 3147 cos(4φ)− 10238 cos(3φ) + 17388 cos(2φ)− 22722 cosφ+ 12425

+ i
[
3147 sin(4φ)− 9838 sin(3φ) + 14112 sin(2φ)− 10878 sinφ

]
.

With x := cosφ, recalling the elementary trigonometric identities
cos(2φ) = 2x2 − 1, cos(3φ) = 4x3 − 3x, cos(4φ) = 8x4 − 8x2 + 1,

sin(2φ) = 2x sinφ, sin(3φ) = (4x2 − 1) sinφ, sin(4φ) = (8x3 − 4x) sinφ,

we see that

(4.8)
420α(eiφ)e−i3φ = 8(1− x)(−3147x3 + 1972x2 + 772x− 227)

+ i4(6294x3 − 9838x2 + 3909x− 260) sinφ.

Notice that the factor 1− x in the real part of α(eiφ)e−i3φ is due to the fact that α(1) = 0.
Similarly,

κ(e−iφ) = cos(4φ)− 1.6 cos(3φ) + 1.6 cos(2φ)− 1.1 cosφ+ 0.3

− i
[
sin(4φ)− 1.6 sin(3φ) + 1.6 sin(2φ)− 1.1 sinφ

]
and

(4.9) κ(e−iφ) =
1

10
(80x4 − 64x3 − 48x2 + 37x− 3)− i

1

10
(80x3 − 64x2 − 8x+ 5) sinφ.

In view of (4.8) and (4.9), the desired property (4.7) can be written in the form
2

5
(1− x)P (x) ⩾ 0 ∀x ∈ [−1, 1]

with
P (x) := 2(−3147x3 + 1972x2 + 772x− 227)(80x4 − 64x3 − 48x2 + 37x− 3)

+ (1 + x)(6294x3 − 9838x2 + 3909x− 260)(80x3 − 64x2 − 8x+ 5),

i.e.,

(4.10) P (x) = 32000x6 − 124640x5 + 173872x4 − 104870x3 + 24891x2 − 1105x+ 62.

Now, P is positive in the interval [−1, 1], and thus (4.7) is valid. Indeed, first, all terms
are positive for −1 ⩽ x < 0, whence P is positive in [−1, 0). For 0 ⩽ x ⩽ 1, see Figure
4.1. □
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x

P

y

1

100

200

O

Figure 4.1. The graph of polynomial P of (4.10) in the interval [0, 1].

Proposition 4.2 (Polynomials δ and κ satisfy condition (3.4)). The polynomials δ and κ
of (4.5) and (4.6) do not have common divisor and satisfy the analogue of condition (3.6)
with c̃⋆ = 0.01, and thus condition (3.4) for some positive constant c⋆. In addition, the dual
to (3.4) is also valid,

(4.11) Re
κ(ζ)

δ(ζ)
> ĉ⋆ for |ζ| > 1,

for some positive constant ĉ⋆.

Proof. First, κ(0) = 3/10 and κ(2/3) = 1/810, whence the polynomials δ and κ have no
common divisor.

Since the roots of κ are inside the unit disk, the rational function δ/κ is holomorphic
outside the unit disk in the complex plane; see the proof of Proposition 4.1. Furthermore,

lim
|z|→∞

δ(z)

κ(z)
= 3 ⩾ c⋆.

Therefore, according to the maximum principle for harmonic functions, the A-stability
property (3.4) is equivalent to

Re
δ(ζ)

κ(ζ)
⩾ c⋆ ∀ζ ∈ K ,

that is, equivalent to
Re
[
(3ei2φ − 2eiφ)ei2φκ(e−iφ)

]
⩾ c⋆|κ(eiφ)|2 ∀φ ∈ R.

Thus, it suffices to show that
(4.12) Re

[
(3ei2φ − 2eiφ)ei2φκ(e−iφ)

]
⩾ c̃⋆ = 0.01 ∀φ ∈ R.

With x := cosφ, recalling the elementary trigonometric identities
cos(2φ) = 2x2 − 1, sin(2φ) = 2x sinφ,

we easily see that

(4.13)
3ei2φ − 2eiφ = 3 cos(2φ)− 2 cosφ+ i

(
3 sin(2φ)− 2 sinφ

)
= 6x2 − 2x− 3 + i2(3x− 1) sinφ.

Similarly,

(4.14)
ei2φκ(e−iφ) = 1.3 cos(2φ)− 2.7 cosφ+ 1.6− i

(
0.7 sin(2φ)− 0.5 sinφ

)
= 2.6x2 − 2.7x+ 0.3− i(1.4x− 0.5) sinφ.
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In view of (4.13) and (4.14), the desired property (4.12) can be written in the form

(4.15)
g(x) := (6x2 − 2x− 3)(2.6x2 − 2.7x+ 0.3) + 2(1− x2)(3x− 1)(1.4x− 0.5)

= 7.2x4 − 15.6x3 + 6.8x2 + 1.7x+ 0.1 ⩾ c̃⋆, x ∈ [−1, 1].

Now, g attains its minimum 0.01379862357 in [−1, 1] at −0.09331476; this value of the mini-
mum is the motivation for choosing c̃⋆ = 0.01 in (3.6) for the multiplier (1.6,−1.6, 1.1,−0.3,
0, 0, 0). Thus, (4.12) is valid. See also Figure 4.2.

Let us provide also a complete theoretical proof of (4.15). For negative and positive x,
we write g in the form g(x) = 7.2x4 − 15.6x3 + 0.01 + g1(x) = x2g2(x) + 1.7x+ 0.1, with

g1(x) = 6.8x2 + 1.7x+ 0.09 and g2(x) = 7.2x2 − 15.6x+ 6.8.

The roots x1,2 and x3,4 of g1 and g2, respectively, are

x1 = −0.17388461, x2 = −0.07611538, x3 = 0.60461977, x4 = 1.56204688.

Therefore, g1 and g2, respectively, are positive outside the intervals [x1, x2] and [x3, x4],
and we easily see that g(x) ⩾ 0.01 in [−1,−0.17388461] and in [−0.07611538, 0.60461977].

Furthermore,

g′(x) = 28.8x3 − 46.8x2 + 13.6x+ 1.7 and g′′(x) = 86.4x2 − 93.6x+ 13.6.

The roots of g′′ are x5 = 0.17289116 and x6 = 0.91044216. Therefore, g′′ is negative
in [0.60461977, x6] and positive in [x6, 1], whence g′ is decreasing in [0.60461977, x6] and
increasing in [x6, 1]. Since g′(0.60461977) = −0.82001368 and g′(1) = −2.7, we see that g′

is negative in [0.60461977, 1], whence g is decreasing in [0.60461977, 1]. Therefore, g(x) ⩾
g(1) = 0.2 for x ∈ [0.60461977, 1]. Summarizing, up to now, we proved that (4.15) is valid
in [−1,−0.17388461] and in [−0.07611538, 1].

Finally, let us write g in the form g(x) = x2g3(x) + g4(x) + 0.01 with

g3(x) = 7.2x2 − 15.6x− 1.228 and g4(x) = 8.028x2 + 1.7x+ 0.09.

The function g3 is obviously decreasing in [−1,−0.07611538]. Since g3(−0.07611538) =
0.00111349, and the discriminant of g4 is −8 · 10−5, we see that g3 and g4 are positive in
[−1,−0.07611538]. Therefore, g(x) > 0.01 for x ∈ [−1,−0.07611538]. This completes the
proof of (4.15).

The roots of δ are ζ1 = 0 and ζ2 = 2/3, whence the rational function κ/δ is holomorphic
outside the unit disk in the complex plane. Therefore, (4.11), for ĉ⋆ ⩽ 1/3, is equivalent to

Re
κ(ζ̄)

δ(ζ̄)
⩾ ĉ⋆ ∀ζ ∈ K ,

that is, equivalent to

Re
[
(3ei2φ − 2eiφ)ei2φκ(e−iφ)

]
⩾ ĉ⋆|δ(eiφ)|2 ∀φ ∈ R.

Obviously, |δ(eiφ)| ⩽ 5. We have already seen in (4.12) that the function on the left-hand
side is strictly positive, and easily infer that this inequality is indeed valid for some positive
constant ĉ⋆. □
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x

g − c̃⋆

y

1

1

O
x

y

−0.0933

Figure 4.2. The graph of the polynomial g − c̃⋆ of (4.15) in the interval
[−0.4, 1], left, and zoom in in the interval [−0.17, 0], right.

5. On the determination of multipliers

In this section, the objective is the derivation of necessary conditions for multipliers for
the WSBDF7 method with ϑ = 3 such that µ5 = µ6 = µ7 = 0; we utilized these conditions
to determine the multipliers (4.1). Let us mention that multipliers with µ4 = µ5 = µ6 =
µ7 = 0 do not exist; see Remark 5.1.

In the case µ5 = µ6 = µ7 = 0, we have µ(ζ) = ζ3κ(ζ) with κ(ζ) = ζ4 − µ1ζ
3 − µ2ζ

2 −
µ3ζ − µ4, and, provided that the roots of κ lie in the unit disk, the A-stability condition
(3.1) takes the form

4(1− x)P (x) ⩾ 0 ∀x ∈ [−1, 1]

with
P (x) := 2(−3147x3 + 1972x2 + 772x− 227)·

·
(
8x4 − 8x2 + 1− µ1(4x

3 − 3x)− µ2(2x
2 − 1)− µ3x− µ4

)
+ (1 + x)(6294x3 − 9838x2 + 3909x− 260)

(
8x3 − 4x− µ1(4x

2 − 1)− 2µ2x− µ3

)
,

i.e.,
P (x) = 3200x6 − 9904x5 + 8184x4 + 2990x3 − 7020x2 + 2584x− 454

+ (−1600x5 + 4952x4 − 4492x3 − 257x2 + 2287x− 260)µ1

+ (−800x4 + 2476x3 − 2446x2 + 2064x− 454)µ2

+ (−400x3 + 4385x2 − 3195x+ 260)µ3

+ (6294x3 − 3944x2 − 1544x+ 454)µ4 ⩾ 0 ∀x ∈ [−1, 1].

(5.1)

Analogously, condition (3.4), for some positive constant c⋆, leads to the strict inequality
condition

g(x) > 0 ∀x ∈ [−1, 1]

with
g(x) :=

(
3(8x4 − 8x2 + 1)− 2(4x3 − 3x)

)
·

·
(
8x4 − 8x2 + 1− µ1(4x

3 − 3x)− µ2(2x
2 − 1)− µ3x− µ4

)
+ (1− x2)

(
3(8x3 − 4x)− 2(4x2 − 1)

)(
8x3 − 4x− µ1(4x

2 − 1)− 2µ2x− µ3

)
,

i.e., to
g(x) =− 2x+ 3 + (−3x+ 2)µ1 + (−6x2 + 2x+ 3)µ2

+ (−12x3 + 4x2 + 9x− 2)µ3 + (−24x4 + 8x3 + 24x2 − 6x− 3)µ4 > 0
(5.2)

for all x ∈ [−1, 1]. Notice that the strict inequality in (5.2) implies that (3.6) is satisfied
with c̃⋆ := min−1⩽x⩽1 g(x); consequently, (3.4) is satisfied for some positive constant c⋆.
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Necessary conditions for (5.1) and (5.2) can be derived by evaluating P and g at certain
points. For instance, we obtain the following necessary condition, which we utilized to
determine the multipliers (4.1).

Lemma 5.1 (Range of multipliers). If (µ1, µ2, µ3, µ4, 0, 0, 0) is a multiplier of the WSBDF7
method with ϑ = 3, then there holds

1.5561 ⩽ µ1 < 2.3133, − 2.2024 < µ2 < −1.4259,

0.5394 < µ3 < 1.3955, − 0.6518 < µ4 < −0.0504.

Proof. First,
g(1) = 1− µ1 − µ2 − µ3 − µ4, 2g(−1/2) = 8 + 7µ1 + µ2 − 8µ3 + 7µ4,

g(0) = 2(µ1 − µ3)− 3(µ4 − µ2 − 1).

Furthermore,
(5.3) g(0) + 2g(1) = 5 + µ2 − 4µ3 − 5µ4 > 0,

(5.4) 7g(1) + 2g(−1/2) = 15− 6µ2 − 15µ3 > 0.

Also,
10−3P (0.999999)/0.21 = −2 + 3µ1 + 4µ2 + 5µ3 + 6µ4,

whence
(5.5) 3g(1) + 10−3P (0.999999)/0.21 = 1 + µ2 + 2µ3 + 3µ4 > 0.

Multiplying (5.5) by 2 and adding the result to (5.3), we get 7 + 3µ2 + µ4 > 0. Adding
the positive quantities

g(0.214929)/1.3552 = 1.8965 + µ1 + 2.3264µ2 − 2.3264µ4,

g(0.941785)/0.8254 = 1.3526− µ1 − 0.5309µ2 + 0.5309µ4,

we obtain 3.2491+ 1.7955µ2 − 1.7955µ4 > 0, which, in combination with 7+ 3µ2 + µ4 > 0,
yields 15.8176 + 7.1820µ2 > 0, i.e., µ2 > −2.2024. Similarly, adding the positive quantities

g(0.214929)/3.1527 = 0.8152 + 0.4299µ1 + µ2 − µ4,

g(0.941785)/0.4382 = 2.5477− 1.8836µ1 − µ2 + µ4,

we obtain 3.3629− 1.4537µ1 > 0, i.e., µ1 < 2.3133.
Summation of the nonnegative quantities

P (0.68481813)/431.5990 = −0.8759 + 1.3696µ1 + µ2 − µ4,

P (0.09319637)/280.9437 = −0.9653− 0.1864µ1 − µ2 + µ4,

leads to −1.8412 + 1.1832µ1 ⩾ 0, i.e., µ1 ⩾ 1.5561.
Adding the positive quantities

g(−0.264464)/2.7934 = 1.2633 + µ1 + 0.7344µ2 − 1.3884µ3,

g(0.962266)/0.8868 = 1.2128− µ1 − 0.7118µ2 − 0.3699µ3,

we obtain 2.4761 + 0.0226µ2 − 1.7583µ3 > 0, which, in combination with (5.4), yields
15.1956− 10.8888µ3 > 0, i.e., µ3 < 1.3955.

Also, summation of the nonnegative quantities
P (−1/9)/510.3402 = −1.6273− µ1 − 1.4050µ2 + 1.3122µ3 + 1.1134µ4,

P (1/2)/517.2500 = −0.5631 + µ1 + 0.4369µ2 − 0.5631µ3 − µ4,
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yields −2.1904 − 0.9681µ2 + 0.7491µ3 + 0.1134µ4 ⩾ 0, which, together with (5.3), yields
−5.0152− 3.1232µ2 − 3.2924µ4 > 0. Similarly, adding the nonnegative quantities

P (0.68481813)/591.1336 = −0.6395 + µ1 + 0.7301µ2 − 0.7301µ4,

P (0.09319637)/52.3659 = −5.1786− µ1 − 5.3650µ2 + 5.3650µ4,

we have −5.8181 − 4.6349µ2 + 4.6349µ4 ⩾ 0, which, together with −5.0152 − 3.1232µ2 −
3.2924µ4 > 0, yields −42.4005− 29.7357µ2 > 0, i.e., µ2 < −1.4259.

From the positivity of g(1) and
g(−0.26)/2.7800 = 1.2662 + µ1 + 0.7462µ2 − 1.3880µ3 − 0.0244µ4 > 0,

we have 2.2662 − 0.2538µ2 − 2.3880µ3 − 1.0244µ4 > 0, which, together with (5.5), yields
6.9204+1.8804µ2+5.1152µ4 > 0. Combining the latter condition with −5.8181−4.6349µ2+
4.6349µ4 ⩾ 0, we obtain 21.1350 + 32.4239µ4 > 0 i.e., µ4 > −0.6518.

Adding the nonnegative quantities
P (0.81865385)/611.3646 = −0.6632 + µ1 + 0.9741µ2 + 0.5950µ3,

10−3P (−0.407988)/0.7755 = −3.2576− µ1 − 2.4417µ2 + 2.9924µ3,

we get −3.9208− 1.4676µ2+3.5874µ3 ⩾ 0. Similarly, adding the nonnegative and positive,
respectively, quantities

P (−1/9)/510.3402 = −1.6273− µ1 − 1.4050µ2 + 1.3122µ3 + 1.1134µ4,

g(1/33)/1.9091 = 1.5397 + µ1 + 1.6003µ2 − 0.9030µ3 − 1.6550µ4,

we have −0.0876 + 0.1952µ2 + 0.4092µ3 − 0.5416µ4 > 0, which, together with (5.5), yields
0.2788+1.1272µ2+2.3108µ3 > 0. Combining the latter relation with the already established
relation −3.9208 − 1.4676µ2 + 3.5874µ3 ⩾ 0, we get −4.0104 + 7.4350µ3 > 0, i.e., µ3 >
0.5394.

Combining −2.1904 − 0.9681µ2 + 0.7491µ3 + 0.1134µ4 ⩾ 0 with −0.0876 + 0.1952µ2 +
0.4092µ3−0.5416µ4 > 0, we obtain −0.5124+0.5424µ3−0.5022µ4 > 0. From the positivity
of g(1) and the nonnegativity of

P (0.7)/594.2772 = −0.6437 + µ1 + 0.7563µ2 + 0.0588µ3 − 0.6740µ4,

we get 0.3563 − 0.2437µ2 − 0.9412µ3 − 1.6740µ4 > 0. Combined with (5.3), the latter
relation yields 1.5748−1.9160µ3−2.8925µ4 > 0, which together with −0.5124+0.5424µ3−
0.5022µ4 > 0 leads to −0.1276− 2.5311µ4 > 0, i.e., µ4 < −0.0504. The proof is complete.

□
Remark 5.1 (Nonexistence of multipliers of the form (µ1, µ2, µ3, 0, 0, 0, 0)). Our first at-
tempt was to determine multipliers of the form (µ1, µ2, µ3, 0, 0, 0, 0). That such multipliers
do not exist follows immediately from Lemma 5.1 since µ4 must be negative.

6. Stability

Here we prove the stability estimates, Theorems 1.1 and 1.2, and Corollary 1.1.
6.1. Proof of Theorem 1.1. According to Propositions 4.1 and 4.2, respectively, in
combination with Lemma 3.1, there exist two positive definite symmetric matrices G =

(gij) ∈ R7,7 and G̃ = (g̃ij) ∈ R4,4 such that with the notation Un := (un−6, . . . , un)⊤ and
Un := (un−3, . . . , un)⊤, and the norms |Un|G and ∥Un∥G̃ given by

(6.1) |Un|2G =
7∑

i,j=1

gij(u
n−7+i, un−7+j), ∥Un∥2

G̃
=

4∑
i,j=1

g̃ij⟨un−4+i, un−4+j⟩,
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there holds

(6.2)
( 7∑

i=0

αiu
n+i, un+7 −

4∑
j=1

µju
n+7−j

)
⩾ |Un+7|2G − |Un+6|2G

and

(6.3) An+7 ⩾ ∥Un+7∥2
G̃
− ∥Un+6∥2

G̃
.

Utilizing (6.2) and (6.3), we infer from (4.2) that

(6.4) |Un+7|2G − |Un+6|2G + τ∥Un+7∥2
G̃
− τ∥Un+6∥2

G̃
+ c⋆τ

∥∥∥un+7 −
4∑

j=1

µju
n+7−j

∥∥∥2 ⩽ τFn+7.

Furthermore, the terms involving the forcing term can be estimated by elementary in-
equalities in the form

Fn+7 ⩽
∥∥3fn+7 − 2fn+6

∥∥
⋆

∥∥∥un+7 −
4∑

j=1

µju
n+7−j

∥∥∥
⩽ 1

4c⋆
∥3fn+7 − 2fn+6∥2⋆ + c⋆

∥∥∥un+7 −
4∑

j=1

µju
n+7−j

∥∥∥2.
Using this estimate in (6.4) and summing over n, from n = 0 to n = m− 7, we obtain

(6.5) |Um|2G − |U6|2G + τ∥Um∥2
G̃
− τ∥U 6∥2

G̃
⩽ τ

4c⋆

m∑
n=7

∥3fn − 2fn−1∥2⋆.

Now, with c1 and c2 the smallest eigenvalues of the matrices G and G̃, respectively, we
have

|Um|2G ⩾ c1|um|2, ∥Um∥2
G̃
⩾ c2∥um∥2, |U6|2G ⩽ C

6∑
j=0

|uj|2, ∥U 6∥2
G̃
⩽ C

6∑
j=0

∥uj∥2.

Thus, (6.5) yields

|um|2 + τ∥um∥2 ⩽ C
6∑

j=0

(
|uj|2 + τ∥uj∥2

)
+ Cτ

m∑
n=7

∥3fn − 2fn−1∥2⋆.

The asserted result (1.9) is an obvious consequence of this estimate.

6.2. Proof of Theorem 1.2. With the notation (1.10), we write the WSBDF7 method
(1.5) in the form

(6.6) u̇n + 3Aun − 2Aun−1 = 3fn − 2fn−1, n = 7, . . . , N.

Let us introduce the notation

(6.7) vm := 3um − 2um−1 and gm := 3fm − 2fm−1, m = 1, . . . , N,

and write (6.6) as

(6.8) u̇n + Avn = gn, n = 7, . . . , N.
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For n ⩾ 11, to take advantage of the properties of the multiplier (4.1), we consider
method (6.8) with n replaced by n − j, multiply it by µj, j = 1, 2, 3, 4, and subtract the
resulting relations from (6.8), to obtain

(6.9) u̇n −
4∑

j=1

µju̇
n−j + A

(
vn −

4∑
j=1

µjv
n−j
)
= gn −

4∑
j=1

µjg
n−j, n = 11, . . . , N.

Now, we subtract and add the term ĉ⋆(3u̇
n − 2u̇n−1) from and to the left-hand side of

(6.9), and subsequently test the relation by

τ(3u̇n − 2u̇n−1) =
7∑

i=0

αiv
n−7+i,

to obtain

(6.10) τIn+ ĉ⋆τ |3u̇n−2u̇n−1|2+
〈 7∑

i=0

αiv
n−7+i, vn−

4∑
j=1

µjv
n−j
〉
= τGn, n = 11, . . . , N,

with 
In :=

(
u̇n −

4∑
j=1

µju̇
n−j − ĉ⋆(3u̇

n − 2u̇n−1), 3u̇n − 2u̇n−1
)
,

Gn :=
(
gn −

4∑
j=1

µjg
n−j, 3u̇n − 2u̇n−1

)
.

In view of (4.11), the pair of polynomials (κ − ĉ⋆δ, δ) satisfies the A-stability condition
(A) in Lemma 3.1; let us denote by Ĝ = (ĝij) ∈ R4,4 the corresponding positive definite
symmetric matrix entering into the analogue to (G) for this pair of polynomials.

With the notation Vn := (vn−6, . . . , vn)⊤, U̇n := (u̇n−3, . . . , u̇n)⊤, and the norms ∥ · ∥G
and | · |Ĝ, given, in analogy to (6.1), by

∥Vn∥2G =
7∑

i,j=1

gij⟨vn−7+i, vn−7+j⟩, |U̇n|2
Ĝ
=

4∑
i,j=1

ĝij(u̇
n−4+i, u̇n−4+j),

we have

(6.11)
〈 7∑

i=0

αiv
n−7+i, vn −

4∑
j=1

µjv
n−j
〉
⩾ ∥Vn∥2G − ∥Vn−1∥2G

and

(6.12) In ⩾ |U̇n|2
Ĝ
− |U̇n−1|2

Ĝ
;

cf. (6.2).
Now, in view of (6.11) and (6.12), relation (6.10) yields

(6.13) ∥Vn∥2G − ∥Vn−1∥2G + τ
(
|U̇n|2

Ĝ
− |U̇n−1|2

Ĝ

)
+ ĉ⋆τ |3u̇n − 2u̇n−1|2 ⩽ τGn.
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Furthermore, the terms involving the forcing term can be estimated by elementary in-
equalities in the form

Gn ⩽
∣∣∣gn − 4∑

j=1

µjg
n−j
∣∣∣ |3u̇n − 2u̇n−1|

⩽ 1

4ĉ⋆

∣∣∣gn − 4∑
j=1

µjg
n−j
∣∣∣2 + ĉ⋆|3u̇n − 2u̇n−1|2.

Using this estimate in (6.13) and summing over n, from n = 11 to n = m, we obtain

∥Vm∥2G − ∥V10∥2G + τ
(
|U̇m|2

Ĝ
− |U̇ 10|2

Ĝ

)
⩽ τ

4ĉ⋆

m∑
n=11

∣∣∣gn − 4∑
j=1

µjg
n−j
∣∣∣2,

and easily see that

∥Vm∥2G + τ |U̇m|2
Ĝ
⩽ ∥V10∥2G + τ |U̇ 10|2

Ĝ
+ Cτ

m∑
n=6

|fn|2, m = 11, . . . , N.

From this estimate, we infer that

∥vm∥2 + τ |u̇m|2 ⩽ C
10∑
j=4

∥vj∥2 + Cτ
10∑
j=7

|u̇j|2 + Cτ
m∑

n=6

|fn|2, m = 11, . . . , N,

and thus

(6.14) ∥vm∥2 + τ |u̇m|2 ⩽ C
10∑
j=3

∥uj∥2 + Cτ
10∑
j=7

|u̇j|2 + Cτ
m∑

n=6

|fn|2, m = 11, . . . , N.

Let us denote by Em the square root of the quantity on the right-hand side of (6.14).
Then, for ℓ = 11, . . . ,m ⩽ N, (6.14) yields ∥vℓ∥ ⩽ Em, whence

∥uℓ∥ ⩽ 2

3
∥uℓ−1∥+ 1

3
Em, ℓ = 11, . . . ,m.

Iterating from ℓ = 11 to ℓ = m, we obtain

∥um∥ ⩽
(2
3

)m−10

∥u10∥+ 1

3

m−11∑
j=0

(2
3

)j
Em,

and thus

(6.15) ∥um∥ ⩽ ∥u10∥+ Em, m = 11, . . . , N.

Now, (6.14) and (6.15) yield

(6.16) ∥um∥2 + τ |u̇m|2 ⩽ C

10∑
j=3

∥uj∥2 + Cτ

10∑
j=7

|u̇j|2 + Cτ

m∑
n=6

|fn|2, m = 11, . . . , N.

In view of (6.16), to complete the proof of (1.11), it suffices to show that

(6.17) ∥um∥2 + τ |u̇m|2 ⩽ c

6∑
j=0

∥uj∥2 + cτ
m∑
ℓ=6

|f ℓ|2, m = 7, 8, 9, 10.
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This can be done via elementary inequalities; cf. [2, Appendix] and [1]. Testing (6.6) for
n = 7 by u̇7 and using (1.10), we have

|u̇7|2 + 3α7

τ
∥u7∥2 = −3

τ

6∑
i=0

αi⟨u7, ui⟩+ 2

τ

7∑
i=0

αi⟨u6, ui⟩+ (3f 7 − 2f 6, u̇7).

Estimating the terms on the right-hand side by the Cauchy–Schwarz and the weighted
arithmetic–geometric mean inequalities, we can hide the terms involving |u̇7|2 and ∥u7∥2/τ
to the left-hand side, and easily obtain (6.17) for m = 7. Then, using (6.17) for m = 7, we
similarly obtain the asserted result for m = 8, and subsequently also for m = 9, 10.

6.3. Proof of Corollary 1.1. We write the characteristic polynomial α of the WSBDF7
method (1.5) in the form α(ζ) = (ζ − 1)α̃(ζ) with α̃(ζ) = α̃6ζ

6 + · · · + α̃0. The difference
quotients ∂τu

m := (um − um−1)/τ satisfy then the equations

(6.18)
6∑

i=0

α̃i∂τu
n+i = u̇n+6, n = 1, . . . , N − 6.

Since the roots of the polynomial α̃ lie in the open unit disk, the rational function
1

ζ6α̃(1/ζ)
=

1

α̃6 + α̃5ζ + · · ·+ α̃0ζ6

is holomorphic in a disk of radius larger than 1 centered at the origin. Thus, Taylor
expansion about 0 yields

1

ζ6α̃(1/ζ)
=

∞∑
n=0

γnζ
n, |ζ| ⩽ 1, where |γn| ⩽ cγn with γ < 1.

An obvious consequence of this expansion are the relations

(6.19) α̃6γ0 = 1 and
6∑

j=0

α̃6−jγn−j = 0, n ∈ N, where γ−6 = · · · = γ−1 = 0.

To solve the linear difference equation (6.18), we consider the corresponding equations with
n replaced by n− 6− j, j = 0, . . . , n − 7, multiply them by γj and sum over j. In view of
(6.19), this leads to

(6.20) ∂τu
n = −

6∑
i=1

6+i∑
j=7

α̃6−iγn−j∂τu
j−i +

n−7∑
j=0

γju̇
n−j, n = 7, . . . , N.

Since |γj| ⩽ cγj with γ < 1, from (6.20) and (6.19), we obtain

(6.21) |∂τun| ⩽ C
6∑

i=1

|∂τui|+ C max
7⩽ℓ⩽n

|u̇ℓ|, n = 7, . . . , N.

The asserted estimate (1.12) is an immediate consequence of (6.21) and (1.11).

7. Error estimates

Error estimates are easily established by combining the stability and consistency of the
method.
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Proposition 7.1 (Error estimates). Assume that the solution u of (1.1) is sufficiently
smooth and that the starting approximations ui ∈ V to u(ti), i = 0, . . . , 6, are sufficiently
accurate, namely,
(7.1) |u(ti)− ui|+ τ 1/2∥u(ti)− ui∥ ⩽ Cτ 7, i = 0, . . . , 6.

Then, we have the error estimate
(7.2) |u(tn)− un|+ τ 1/2∥u(tn)− un∥ ⩽ Cτ 7, n = 0, . . . , N,

with a constant C independent of the time step τ .

Proof. Let dℓ, ℓ = 7, . . . , N, denote the consistency error of the WSBDF7 method (1.5) for
the initial value problem (1.1), the amount by which the exact solution misses satisfying
(1.5),

(7.3) τdn+7 =
7∑

i=0

αiu(tn+i) + 3τAu(tn+7)− 2τAu(tn+6)− 3τfn+7 + 2τfn+6,

n = 0, . . . , N − 7, that is,

(7.4) τdn+7 =
7∑

i=0

αiu(tn+i)− 3τu′(tn+7) + 2τu′(tn+6).

An immediate consequence of the fact that the WSBDF7 method is a linear combination
of two methods of order 7, namely the seven-step BDF method and the shifted seven-step
BDF method, is that its order is 7, i.e.,

(7.5)
7∑

i=0

iℓαi = ℓ(3 · 7ℓ−1 − 2 · 6ℓ−1), ℓ = 0, 1, . . . , 7;

actually, the consistency error of the WSBDF7 method is a linear combination of the
consistency errors of the seven-step BDF and shifted seven-step BDF methods. Therefore,
by Taylor expanding about tn in (7.4), we see that, due to the order conditions (7.5),
leading terms of order up to 7 cancel, and we obtain

τdn+7 =
1

7!

[
7∑

i=0

αi

∫ tn+i

tn

(tn+i − s)7u(8)(s) ds− 21τ

∫ tn+7

tn

(tn+7 − s)6u(8)(s) ds

+ 14τ

∫ tn+6

tn

(tn+6 − s)6u(8)(s) ds

]
,

n = 0, . . . , N − 7. Thus, under obvious regularity requirements, we obtain the desired
optimal order consistency estimate
(7.6) max

7⩽ℓ⩽N
∥dℓ∥⋆ ⩽ Cτ 7.

Subtracting the numerical method (1.5) from the consistency relation (7.3), we see that
the errors eℓ := u(tℓ)− uℓ, ℓ = 0, . . . , N, satisfy the error equation

(7.7)
7∑

i=0

αie
n+i + 3τAen+7 − 2τAen+6 = τdn+7, n = 0, . . . , N − 7.

Now, the stability estimate (1.9) for the error equation (7.7) in combination with the
consistency estimate (7.6) and our assumption (7.1) on the starting approximations lead
to the asserted error estimate (7.2). □
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8. Numerical results

We consider initial and boundary value problems for the equation
(8.1) ut −∆u+ u = f in Ω × [0, T ],

with Ω = (−1, 1)2 and T = 1, subject to periodic boundary conditions. We used the WS-
BDF7 method, the standard six- and seven-step BDF methods, as well as two algebraically
stable four-stage Runge–Kutta methods [6, 13], namely the Radau IIA and Gauss methods,
of classical orders 7 and 8, respectively, for time stepping. In space, we discretized by the
spectral collocation method with the Chebyshev–Gauss–Lobatto points.

We express the space discrete approximation un
I in terms of its values at the Chebyshev–

Gauss–Lobatto points,

un
I (x, y) =

Nx∑
i=0

Ny∑
j=0

un
ijℓi(x)ℓj(y), ℓi(x) =

Nx∏
j=0
j ̸=i

x− xj

xi − xj

,

where un
ij := un

I (xi, yj) at the mesh points (xi, yj). Here, −1 = x0 < x1 < · · · < xNx = 1
and −1 = y0 < y1 < · · · < yNy = 1 are nodes of Lobatto quadrature rules. In order to test
the temporal error, we fix Nx = Ny = 30; the spatial error is negligible since the spectral
collocation method converges exponentially; see, e.g., [20, Theorem 4.4, §4.5.2].
Example 8.1. We chose the initial value and the forcing term such that the exact solution
of equation (8.1) is

u(x, y, t) = (t8 + 1) sin(πx) sin(πy).

We present in Table 8.1 the L2-norm of the errors as well as the corresponding conver-
gence orders (rates) for the WSBDF7 method with ϑ = 3, 5, 10. In Tables 8.2 and 8.3,
respectively, we present the L2-norm of the errors as well as the corresponding convergence
orders (rates) for the (unstable) seven-step BDF (BDF7) and the (stable) six-step BDF
(BDF6) methods, and for the four-stage Radau IIA and Gauss methods.

Table 8.1. WSBDF7 methods for ϑ = 3, 5, 10. The discrete L2-norm errors
and numerical convergence orders with Nx = Ny = 30. The CPU times are
given in seconds.

τ ϑ = 3 Rate CPU ϑ = 5 Rate CPU ϑ = 10 Rate CPU
1/30 4.3994e-08 1.50 7.5004e-08 1.53 1.4354e-07 1.49
1/40 6.1509e-09 6.83 2.13 1.0200e-08 6.93 2.07 2.0078e-08 6.83 2.04
1/50 1.2572e-09 7.11 2.38 2.1259e-09 7.02 2.44 4.2649e-09 6.94 2.45
1/60 3.4785e-10 7.04 2.87 5.9202e-10 7.01 3.05 1.1960e-09 6.97 2.88

Let us mention that the four-stage Radau IIA and Gauss methods achieve here their
full orders 7 and 8, respectively, due to the periodic boundary conditions. As is well
known, in the case of other boundary conditions these methods suffer from order reduction;
see, for instance, [21, Chapter 8]. High-order Runge–Kutta methods achieve their full
order for parabolic equations only under unnatural compatibility conditions, which are
satisfied in the case of periodic boundary conditions and smooth solutions. The order
reduction is due to the fact that the consistency error of high-order Runge–Kutta methods
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Table 8.2. BDF7 and BDF6 methods. The discrete L2-norm errors and
numerical convergence orders with Nx = Ny = 30. The CPU times are given
in seconds.

τ BDF7 Rate CPU BDF6 Rate CPU
1/30 6.3047e-08 1.51 4.0286e-07 1.26
1/40 1.9600e-09 12.06 1.95 7.3621e-08 5.90 1.68
1/50 3.5199e-10 7.69 2.44 1.9579e-08 5.93 2.09
1/60 7.4116e-10 -4.08 3.18 6.6204e-09 5.94 2.52

Table 8.3. Four-stage Radau IIA and Gauss methods. The discrete L2-
norm errors and numerical convergence orders with Nx = Ny = 30. The
CPU times are given in seconds.

τ Radau IIA Rate CPU Gauss Rate CPU
1/30 1.6172e-10 122.72 7.4790e-12 119.73
1/40 2.1984e-11 6.93 160.38 7.5111e-13 7.98 156.01
1/50 4.6588e-12 6.95 199.37 1.2423e-13 8.06 202.60
1/60 1.3099e-12 6.95 244.02 2.6920e-14 8.38 234.54

cannot be expressed in terms of the exact solution only; the underlying equation enters
into their consistency errors. Multistep methods, on the other hand, do not suffer from
order reduction: for smooth solutions, they achieve their full order of convergence since, in
contrast to Runge–Kutta methods, their consistency errors can be expressed in terms of
the exact solution only.
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