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Abstract. We construct and analyze a projection-free linearly implicit method for the
approximation of flows of harmonic maps into spheres. The proposed method is un-
conditionally energy stable and, under a sharp discrete regularity condition, achieves
second-order accuracy with respect to the constraint violation. Furthermore, the method
accommodates variable step sizes to speed up the convergence to stationary points and
to improve the accuracy of the numerical solutions near singularities, without affecting
the unconditional energy stability and the constraint violation property. We illustrate
the accuracy in approximating the unit-length constraint and the performance of the
method through a series of numerical experiments, and compare it with the linearly
implicit Euler and two-step BDF methods.

1. Introduction

Let Ω ⊂ Rd denote a bounded domain with Lipschitz boundary ∂Ω, and let ΓD ⊂ ∂Ω
be the Dirichlet part of the boundary, of positive surface measure. Harmonic maps (into
the sphere) are the stationary points of the Dirichlet energy functional

I[u] =
1

2

∫
Ω
|∇u|2 dx,

among all vector fields u ∈ H1(Ω;Rℓ) satisfying the unit-length constraint |u| = 1 a.e.
in Ω, subject to Dirichlet boundary conditions u|ΓD

= uD. Here, H1(Ω;Rℓ) denotes the
Sobolev space consisting of vector fields u : Ω → Rℓ in L2(Ω;Rℓ) with square-integrable
gradients, while uD : ΓD → Rℓ is a given function, which is assumed to be equal to the
trace of a function ũD ∈ H1(Ω;Rℓ) with |ũD| = 1 a.e. in Ω. The resulting Euler–Lagrange
equations are

(1)

−∆u = λu, |u| = 1 in Ω,

u = uD on ΓD,
∂u

∂n
= 0 on ∂Ω \ ΓD.

The function λ = |∇u|2 is the Lagrange multiplier related to the unit-length constraint;
see [12, Ch. 7] and references therein.
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Gradient flows provide an attractive tool to solve the Euler–Lagrange equations as
these decrease the Dirichlet energy along trajectories. The simplest case corresponds to
the L2-gradient flow and it is known as the harmonic map heat flow (into spheres)

(2) ∂tu−∆u = |∇u|2u, |u|2 = 1 in Ω,

subject to initial and boundary conditions u(0, ·) = u0 ∈ AuD and u(t, ·)|ΓD
= uD, where

the class of admissible vector fields AuD is defined by AuD := {u ∈ H1(Ω;Sℓ−1) : u|ΓD
=

uD} and Sℓ−1 := {v ∈ Rℓ : |v| = 1} denotes the unit sphere in Rℓ. Under our assumptions,
ũD ∈ AuD ; in particular, AuD ̸= ∅.

Equation (2) and various generalizations appear in numerous applications, including
the Landau–Lifshitz–Gilbert (LLG) equation for magnetization dynamics [8], models of
nematic liquid crystals [18], and geometric evolution equations describing mean curvature
flow of surfaces [25, 26]. A common feature in these applications is that the exact solution
inherently satisfies a unit-length constraint. This intrinsic requirement has inspired the
development of efficient numerical methods that preserve the unit-length property at the
discrete level.

One straightforward approach involves the renormalization of numerical solutions using
post-processing techniques to restore the crucial unit-length attribute to the solutions.
Numerical methods that incorporate a projection step to satisfy the constraint at certain
nodes exactly lead to restrictions concerning the step size or the class of admissible trian-
gulations; see [11, 10, 6, 7]. Newton schemes can in general only be guaranteed to converge
locally in the neighborhood of a sufficiently regular energy-stable solution [17]. Methods
that satisfy the constraint everywhere make use of appropriate nonlinear interpolation
procedures and are known to be optimally convergent for certain sufficiently regular solu-
tions; see [22]. The optimal convergence of piecewise affine finite element discretizations
with nodal constraints has been established in [24, 17]. An alternative approach to develop
higher-order schemes for the harmonic map heat flow and the LLG equation can be based
on equivalent unconstrained formulations; cf. [16]. This however requires the solution of
nonlinear systems of equations in each time step.

The standard variational formulation of the Euler–Lagrange equations (1) is to seek a
vector field u ∈ AuD such that

(3) (∇u,∇v) =

∫
Ω
|∇u|2u · v dx

for all v ∈ H1
D(Ω;Rℓ) ∩ L∞(Ω;Rℓ); the test space in (3) is dictated by the fact that

|∇u|2u ∈ L1(Ω;Rℓ). Here, H1
D(Ω;Rℓ) denotes the subspace of H1(Ω;Rℓ) made of all

functions with vanishing traces on ΓD. An alternative formulation, due to Alouges [5], is

(4) (∇u,∇v) = 0

for all v ∈ Tu, where

Tu := {v ∈ H1
D(Ω;Rℓ) : v · u = 0 a.e. in Ω}

represents a solution-dependent test space, a closed subspace of H1
D(Ω;Rℓ); see, e.g., [12,

Ch. 7] for further details. The alternative form (4) appears much simpler. Even though
the test space Tu depends on the solution u, the primary advantage of (4) is that it can be
easily linearized; see [5]. Based on formulation (4), several projection-free linear schemes
are proposed in [13]; the resulting constraint violation is controlled linearly by the step
size, independently of the number of iterations. The approach has then been used for
various related problems in [1, 23, 28].
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We now describe the main idea of the projection-free linearly implicit Euler scheme. In
[13], semi-implicit time discretization schemes are introduced for gradient flow problems
represented by

(5) (ut, v)⋆ + (∇u,∇v) = 0,

subject to initial and boundary conditions u(·, 0) = u0 ∈ AuD and u(·, t)|ΓD
= uD. The

variational formulation (5) holds for a.e. t ∈ [0, T ] for some final time T > 0, and for all
test functions v ∈ Tu(t). The pointwise unit-length constraint is imposed in the equivalent

form ut · u = 0. The inner product (·, ·)⋆ can be either the L2- or the H1-inner product,
denoted by (·, ·) and (∇·,∇·), respectively. Equation (5) then represents either the L2- or
the H1-gradient flow for harmonic maps into spheres, respectively.

Starting from u0, the projection-free linearly implicit Euler method iteratively computes
a sequence (un)n⩾1 of approximations as follows: For a fixed step size τ, let dtu

n :=
(un − un−1)/τ denote the backward difference quotient. At each iteration, one seeks
dtu

n ∈ H1
D(Ω;Rℓ), satisfying the discrete linearized unit-length condition dtu

n · un−1 = 0,
such that

(6) (dtu
n, v)⋆ + (∇un−1 + τ∇dtu

n,∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · un−1 = 0. The new approximation is then given by un :=

un−1 + τdtu
n and satisfies the required Dirichlet boundary condition un|ΓD

= uD. Note
that (6) can be reformulated as

(7) (dtu
n, v)⋆ + (∇un,∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · un−1 = 0. The iteration is unconditionally well posed and

energy decreasing; indeed, choosing v = τ dtu
n in (7) yields

(8)
1

2
∥∇un∥2 − 1

2
∥∇un−1∥2 + τ∥dtun∥2⋆ +

τ2

2
∥∇dtu

n∥2 = 0,

which implies, for every m ⩾ 1, the energy identity

(9)
1

2
∥∇um∥2 + τ

m∑
n=1

∥dtun∥2⋆ +
τ2

2

m∑
n=1

∥∇dtu
n∥2 = 1

2
∥∇u0∥2.

This yields the summability of the discrete time derivatives ∥dtun∥2⋆ and hence the weak
convergence of subsequences to solutions of (4). A bound for the constraint violation thus
follows from the orthogonality condition and |u0| = 1, as we have

(10) |um|2 − 1 = |um−1|2 − 1 + τ2|dtum|2 = · · · = τ2
m∑

n=1

|dtun|2.

By taking the L1-norm of this identity, the sum on the right-hand side is bounded by
τ(c⋆/2)∥∇u0∥2 provided that the induced norm ∥ · ∥⋆ controls the L2-norm up to a factor

c
1/2
⋆ (see (13) below).
The iterative scheme (6) is built upon the weak formulation (5) by Alouges and an

implicit Euler temporal discretization. Recently, linearly implicit backward difference
formula (BDF) schemes were introduced in [4] for the LLG equation. For the harmonic
map heat flow, a numerical approximation employing a nodal treatment of the unit-length
constraint was proposed in [15]. More recently, An, Gao, and Sun [9] designed semi-implicit
Euler and Crank–Nicolson finite difference projection methods for the LLG equation. A
similar semi-implicit approach, but based on the two-step BDF method, was proposed
in [20]. These works have yielded optimal/quasi-optimal error estimates, leading to bounds
on the constraint violation, in situations involving sufficiently regular solutions.
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In this paper, we design a projection-free linearly implicit (θ, µ)-method for flows of
harmonic maps, utilizing Alouges’ weak formulation, and address its approximation prop-
erties when the smoothness of the solution is not guaranteed. Here, 0 < θ ⩽ 1 and
0 ⩽ µ ⩽ 1 denote two parameters of the method characterizing its energy dissipation and
its approach to realize the unit-length constraint, respectively; see Section 2.1 below. The
proposed method offers several key advantages: (1) It is unconditionally energy stable and
achieves second-order accuracy in approximating the unit-length constraint, requiring only
minimal regularity conditions on the solution, akin to the projection-free two-step BDF
method proposed in [2]; see Propositions 2.1 and 2.3 below. (2) It accommodates variable
step sizes, which paves the way to the application of acceleration techniques for achieving
faster convergence to stationary points and adaptive approaches to improve the accuracy
of numerical solutions near singularities (such as a singularity at t = 0 for nonsmooth ini-
tial data or a finite blow-up for smooth initial data), without affecting the unconditional
energy stability and the constraint violation property. This capability represents a notable
advantage over the projection-free two-step BDF method proposed in [2], as stability for
BDF methods in the case of variable step sizes is a delicate matter; see, e.g., [3]. We
illustrate the accuracy in approximating the unit-length constraint and the performance
of the proposed method through a series of numerical experiments, comparing it with the
linearly implicit Euler and two-step BDF methods.

To fix the ideas, we develop our theory for the problem of approximating flows of har-
monic maps (into the sphere), which serves as a prototype of a geometrically constrained
partial differential equation. Using the same ideas, projection-free linearly implicit it-
erative schemes with second-order accuracy in the constraint approximation supporting
variable step sizes can be designed and analyzed for a broad class of problems, e.g., in
micromagnetics, liquid crystal theory, and bending theory. We stress that our results
are developed for a semi-discrete method, in which only the time discretization of (5) is
considered, but hold verbatim if a spatial discretization with a nodal treatment of the con-
straint is used; see [13], where a fully discrete method based on first-order finite elements
for the linearly implicit Euler method is introduced and analyzed. Moreover, the method
can be extended to more general target manifolds than the unit sphere, e.g., to manifolds
that can be characterized as the zero level set of a C2-function satisfying certain growth
conditions. Again, we refer to [13], where this extension is developed for the method based
on the linearly implicit Euler method.

The paper is organized as follows. In Section 2, we introduce the projection-free linearly
implicit (θ, µ)-method and the main theoretical results. For the sake of comparison, we
also discuss the implicit Euler method and the two-step BDF method. The extension of
the proposed method to accommodate variable step sizes and the corresponding analyses
of energy decay and constraint violation are presented in Section 3. Numerical results are
provided in Section 4 to support the theoretical analysis and illustrate the performance of
the schemes.

In this work, we use standard notation for differential operators and Lebesgue and
Sobolev spaces. We let | · | denote the Euclidean length of vectors as well as the Frobenius
norm of matrices, and ∥ · ∥ the L2-norm of functions or vector fields.

2. Projection-free methods and main results

In this section, we introduce a projection-free linearly implicit method for the time
discretization of flows of harmonic maps, which is proved to be of quadratic constraint
accuracy. To evaluate and compare the effectiveness of the proposed scheme, we also
discuss the projection-free two-step BDF method recently introduced and analyzed in [2].
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2.1. The linearly implicit (θ, µ)-method. The implicit Euler method (6) proposed
in [13] is known as the simplest projection-free method for harmonic maps, and exhibits
only first-order convergence with respect to the step size of the error in the unit-length
constraint. In this subsection, we generalize the approach to obtain a linearly implicit
(θ, µ)-method.

Let tn = nτ for all n ⩾ 0, where τ > 0 denotes a fixed step size. For n ⩾ 1 and a
sequence (un)n⩾0 in a Hilbert space, we define

dtu
n :=

un − un−1

τ
, un−1+θ := un−1 + θτdtu

n, ûn−1+µ := un−1 + µτdtu
n−1,

where 0 ⩽ θ, µ ⩽ 1. Here, un−1+θ denotes the interpolated value at tn−1+θ = tn−1 + θτ
of the linear interpolant based on (tn−1, u

n−1) and (tn, u
n) (serving as an approximation

to u(tn−1+θ)), while ûn−1+µ denotes the extrapolated value at tn−1+µ = tn−1 + µτ of the
linear interpolant based on (tn−2, u

n−2) and (tn−1, u
n−1) (serving as an approximation to

u(tn−1+µ)). Note that, even if θ = µ, un−1+θ ̸= ûn−1+µ in general.
Since ûn−1+µ relies on two previous approximations for positive µ, for the given initial

value u0, we first determine a second starting approximation u1 by employing a single
step of the linearly implicit Euler method (6). Subsequently, for given approximations
un−2 and un−1, we seek dtu

n ∈ H1
D(Ω;Rℓ), satisfying the linearized unit-length condition

dtu
n · ûn−1+µ = 0, such that

(11) (dtu
n, v)⋆ + (∇un−1+θ,∇v) = (dtu

n, v)⋆ + (∇
[
un−1 + θτdtu

n
]
,∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · ûn−1+µ = 0. Thus, upon computing dtu

n, a new approxi-
mation is defined as

un := un−1 + τdtu
n.

The new approximation un satisfies the required Dirichlet boundary condition un|ΓD
= uD,

provided the approximation un−1 at the previous time level satisfies this condition.
We will demonstrate that, for suitable choices of the parameters θ and µ, the linearly

implicit (θ, µ)-method (11) is energy decreasing and, under a sharp regularity condition
on the numerical solution, satisfies a constraint violation estimate of second order. We
present the main theoretical results in the next subsection.

Remark 2.1 (relevant choices for θ and µ). We now comment on the choice of the
parameters θ and µ in the proposed method. The resulting schemes will be compared with
each other numerically in Section 4.
(i) For θ = 1 and µ = 0, (11) reduces to the implicit Euler method (6).
(ii) For θ = 1/2 and µ = 1/2, we get the linearly implicit midpoint method, which will be
unconditionally energy stable and will achieve second-order accuracy in approximating the
unit-length constraint; see Propositions 2.1 and 2.3 below.
(iii) For θ = 1 and µ = 1/2, we get a modified implicit Euler method. In this case,
the variational formulation (11) to be solved at each iteration is the same as that of the
linearly implicit Euler method (6). However, like in the midpoint method for n ⩾ 2, the

orthogonality constraint is considered with respect to the extrapolated value ûn−1/2. We
will see that the modified linearly implicit Euler method will be characterized by the same
energy decay property (8) as the standard linearly implicit Euler method, but will have the
same quadratic constraint accuracy as the midpoint method; see Propositions 2.1 and 2.3
below.

We now summarize the proposed (θ, µ)-method (11) in the following algorithm.

Algorithm 2.1 ((θ, µ)-method). Choose u0 ∈ H1(Ω;Rℓ) with u0|ΓD
= uD and |u0| =

1.
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(0) Compute dtu
1 ∈ H1

D(Ω;Rℓ) such that dtu
1 · u0 = 0 and

(dtu
1, v)⋆ + (∇[u0 + τdtu

1],∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · u0 = 0; set u1 = u0 + τdtu

1 and n = 2.

(1) Set ûn−1+µ := un−1 + µτdtu
n−1. Compute dtu

n ∈ H1
D(Ω;Rℓ) such that dtu

n ·
ûn−1+µ = 0 and

(dtu
n, v)⋆ + (∇[un−1 + θτdtu

n],∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · ûn−1+µ = 0. Then, set un = un−1 + τdtu

n.
(2) Stop if ∥dtun∥⋆ + θτ∥∇(dtu

n)∥ ⩽ εstop or if nτ ⩾ T .
(3) Increase n → n+ 1 and continue with (1).

Remark 2.2. The first stopping criterion used in Algorithm 2.1, i.e., step (2), applies
to the case of energy minimization and is chosen in such a way that, if we define the

approximate harmonic map generated by the algorithm as u
Nstop−1
h , where Nstop is the

smallest integer for which the stopping criterion is met, then the following relationship
holds

(12) (∇u
Nstop−1
h ,∇v) = R(v) for all admissible v and ∥R∥H1(Ω)⋆ ⩽ εstop.

The aim is to ensure a fair comparison of the methods in numerical experiments: By
utilizing the same tolerance for the standard Euler, modified Euler, and midpoint methods,
the resulting approximate harmonic maps satisfy the harmonic map equation (4) with a
comparable accuracy (in the sense that the dual norm of the residual can be bounded by
the same tolerance). The second criterion applies to the case in which one is interested in
approximating the gradient flow dynamics until a certain prescribed final time T > 0.

2.2. Energy decay and constraint violation for the (θ, µ)-method. Hereafter, we
assume that the norm induced by the inner product (·, ·)⋆ satisfies

(13) ∥v∥ ⩽ c
1/2
⋆ ∥v∥⋆ for all v ∈ H1

D(Ω;Rℓ).

This inequality trivially holds for both the L2- and H1-norms.
In the following proposition, we show the unconditional stability of the method.

Proposition 2.1 (energy identity). The sequence generated by Algorithm 2.1 satisfies,
for all m ⩾ 2, the energy identity

(14)
1

2
∥∇um∥2 + τ

m∑
n=1

∥dtun∥2⋆ +
τ2

2
∥∇dtu

1∥2 +
(
θ − 1

2

)
τ2

m∑
n=2

∥∇dtu
n∥2 = 1

2
∥∇u0∥2.

Proof. Testing (11) by the admissible test function v := dtu
n, we have

∥dtun∥2⋆ + (∇[un−1 + θτdtu
n],∇dtu

n) = 0,

i.e.,

∥dtun∥2⋆ + (∇un−1/2 + (θ − 1/2)τ∇dtu
n,∇dtu

n) = 0,

and thus

∥dtun∥2⋆ +
1

2τ

(
∥∇un∥2 − ∥∇un−1∥2

)
+
(
θ − 1

2

)
τ∥∇dtu

n∥2 = 0.

Multiplying this relation by τ and summing over n from n = 2 to n = m yields

1

2
∥∇um∥2 + τ

m∑
n=2

∥dtun∥2⋆ +
(
θ − 1

2

)
τ2

m∑
n=2

∥∇dtu
n∥2 = 1

2
∥∇u1∥2.

Using the energy identity (8) for the first step (n = 1) performed with the linearly implicit
Euler method, we obtain the asserted identity. □
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We now proceed with studying the constraint violation properties, which provide an un-
conditional linear rate and a quadratic rate under a mild but necessary discrete regularity
condition.

For a sequence (vn)n⩾0, let d
2
t v

n denote the second difference quotient

d2t v
n :=

1

τ
(dtv

n − dtv
n−1) =

1

τ2
(vn − 2vn−1 + vn−2), n ⩾ 2.

The following lemma will be useful in the analysis; it presents a discrete version of the
identity ∂t|v|2 = 2∂tv · v.

Lemma 2.1 (discrete chain rule). For a sequence (vn)n⩾0, we have

2dtv
n · v̂n−1+µ = dt|vn|2 − µτ2dt|dtvn|2 − µτ3|d2t vn|2 − (1− 2µ) τ |dtvn|2,

for n ⩾ 2.

Proof. We start by splitting the left-hand side of the asserted identity as

2dtv
n · v̂n−1+µ = 2dtv

n · vn−1/2 − 2dtv
n · (vn−1/2 − v̂n−1+µ)

= dt|vn|2 − 2µτdtv
n · (dtvn − dtv

n−1)− (1− 2µ) τ |dtvn|2,
where we have used the relation

vn−1/2 − v̂n−1+µ = vn−1/2 − vn−1 − µτdtv
n−1

= τdtv
n/2− µτdtv

n−1

= µτ(dtv
n − dtv

n−1) + (1/2− µ) τdtv
n.

Note that

dtv
n · (dtvn − dtv

n−1) =
(
|dtvn|2 − |dtvn−1|2

)
/2 + τ2|d2t vn|2/2

= τdt|dtvn|2/2 + τ2|d2t vn|2/2;
then, the desired result follows immediately. □

From Lemma 2.1 we deduce that, if dtu
n · ûn−1+µ = 0, then

(15) dt|un|2 = µτ2dt|dtun|2 + µτ3|d2tun|2 + (1− 2µ) τ |dtun|2,
for all n ⩾ 2. Using this identity, in the following proposition, we establish the constraint
violation property of the method.

Proposition 2.2 (constraint violation error). The sequence generated by Algorithm 2.1
satisfies, for all m ⩾ 2,

(16) |um|2 − 1 = µτ2|dtum|2 + (1− µ)τ2|dtu1|2 + µτ4
m∑

n=2

|d2tun|2 + (1− 2µ)τ2
m∑

n=2

|dtun|2

and

∥|um|2 − 1∥L1 ⩽ τ2
(
µ∥dtum∥2 + (1− µ)∥dtu1∥2

+ µτ2
m∑

n=2

∥d2tun∥2 + |1− 2µ|
m∑

n=2

∥dtun∥2
)
.

(17)

Proof. Summing in (15) over n from n = 2 to n = m and multiplying the result by τ , we
immediately obtain

|um|2 − |u1|2 = µτ2
(
|dtum|2 − |dtu1|2 + τ2

m∑
n=2

|d2tun|2
)
+ (1− 2µ) τ2

m∑
n=2

|dtun|2.
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As |u0|2 = 1 and u1 is computed by the linearly implicit Euler method, we have |u1|2 =
|u0|2 + τ2|dtu1|2 = 1 + τ2|dtu1|2, which yields (16). Integration of (16) over Ω then leads
to the constraint violation relation (17). □

From Proposition 2.2, we immediately deduce the following properties:
(a) If 0 ⩽ µ ⩽ 1/2, then |um| ⩾ 1 almost everywhere in Ω.
(b) If µ = 0, (16) reduces to the first-order constraint violation (10) of the linearly implicit
Euler method.
(c) If µ = 1/2 (midpoint and modified Euler methods), then (16) reduces to

|um|2 − 1 =
τ2

2

(
|dtum|2 + |dtu1|2 + τ2

m∑
n=2

|d2tun|2
)
.

In the following proposition, we provide uniform upper bounds of the constraint violation
error.

Proposition 2.3 (bound of the constraint violation error). Let 1/2 ⩽ θ ⩽ 1.
(a) There exists c1 > 0 such that ∥|um|2 − 1∥L1 ⩽ c1τ for all m ⩾ 2 unconditionally.
(b) Let µ = 1/2. There exists c2 > 0 such that ∥|um|2− 1∥L1 ⩽ c2τ

2 for m ⩾ 2 if and only
if there exists c > 0 such that the discrete regularity property

(18) ∥dtum∥2 + ∥dtu1∥2 + τ2
m∑

n=2

∥d2tun∥2 ⩽ c

is valid. The constants c1, c2 > 0 depend on the energy of u0 and the constant c⋆ > 0
in (13); c2 depends also on the constant c in (18).

Proof. For all n ⩾ 2, the identity τd2tu
n = dtu

n − dtu
n−1 implies

τ2∥d2tun∥2 ⩽ 2
(
∥dtun∥2 + ∥dtun−1∥2

)
,

and summation over n yields the inverse inequality

(19) τ2
m∑

n=2

∥d2tun∥2 ⩽ 4

m∑
n=1

∥dtun∥2.

Combining the inverse inequality (19) with the energy stability (14) from Proposition 2.1,
we see that the bound in (17) is of order τ unconditionally. If µ = 1/2, by design, the
bound is of order τ2 if and only if the sharp discrete regularity condition (18) holds. □

The unconditional stability and the control of the constraint violation allow to apply
weak compactness arguments and show the weak convergence of a subsequence of approx-
imations toward a harmonic map; see, e.g., the proofs in [12, Ch. 7].

Remark 2.3 (beyond harmonic maps). The proposed approach is general and can be
applied to a vast class of geometrically constrained partial differential equations. As an
example, consider the LLG equation (see, e.g., [14, 6, 7, 21, 4])

∂tm = −m×∆m+ αm× ∂tm,

which models the dynamics of the magnetization m, a unit-length vector field, in ferro-
magnetic materials. Here, α > 0 denotes the so-called Gilbert damping constant. Ap-
plying the approach to this problem leads to the following method: Given m0 and m1

(with m1 computed by one step of the linearly implicit Euler method), for n ⩾ 2, set
m̂n−1+µ := mn−1+µτdtm

n−1 and compute dtm
n ∈ H1

D(Ω;Rℓ) such that dtm
n·m̂n−1+µ = 0

and
α(dtm

n, v) + (m̂n−1+µ × dtm
n, v) + (∇[mn−1 + θτdtm

n],∇v) = 0
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for all v ∈ H1
D(Ω;Rℓ) with v ·m̂n−1+µ = 0. Combining the analysis of this work with those

in [6, 1], one can show that the method is unconditionally stable, formally of second order
in time if θ = µ = 1/2, and convergent toward a weak solution of the problem.

2.3. The linearly implicit two-step BDF method. In this subsection, we recall the
linearly implicit two-step BDF method for harmonic maps proposed in [2], along with
its energy decay and constraint violation properties. This will provide the theoretical
foundations for the experimental comparison of the algorithms carried out in Section 4.

The discrete time derivative u̇n associated with the two-step backward difference formula
(BDF2) is expressed as

u̇n =
1

2τ

(
3un − 4un−1 + un−2

)
.

Following [4], let ûn := un−1 + τdtu
n−1 = 2un−1 − un−2 be the extrapolated value at

tn = nτ of the linear interpolant based on (tn−2, u
n−2) and (tn−1, u

n−1). Notice that
ûn = ûn−1+µ for µ = 1 is an approximation to u(tn).

For the given initial value u0, one can compute the second starting approximation u1 by
a single step method, for instance, by employing one step with the linearly implicit Euler
method (6). Then, for given approximations un−2 and un−1, we first seek u̇n ∈ H1

D(Ω;Rℓ),
satisfying the linearized unit-length condition u̇n · ûn = 0, such that

(20) (u̇n, v)⋆ +
1

3
(∇[4un−1 − un−2 + 2τ u̇n],∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · ûn = 0. Notice that the new approximation

un :=
1

3
(4un−1 − un−2 + 2τ u̇n)

satisfies the required Dirichlet boundary condition un|ΓD
= uD, provided the approxima-

tions un−2 and un−1 satisfy this condition.
The algorithm of the BDF2 method [2] is summarized as follows.

Algorithm 2.2 (BDF2 method). Choose u0 ∈ H1(Ω;Rℓ) with u0|ΓD
= uD and |u0| =

1.
(0) Compute dtu

1 ∈ H1
D(Ω;Rℓ) such that dtu

1 · u0 = 0 and

(dtu
1, v)⋆ + (∇[u0 + τdtu

1],∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · u0 = 0; set u1 = u0 + τdtu

1 and n = 2.

(1) Set ûn = 2un−1 − un−2 and compute u̇n ∈ H1
D(Ω;Rℓ) with u̇n · ûn = 0 and

(u̇n, v)⋆ +
1

3
(∇[4un−1 − un−2 + 2τ u̇n],∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · ûn = 0; set un = (4un−1 − un−2 + 2τ u̇n)/3.

(2) Stop if ∥u̇n∥⋆ + 2τ∥∇u̇n∥/3 ⩽ εstop or if nτ ⩾ T .
(3) Increase n → n+ 1 and continue with (1).

Remark 2.4. (i) Notice also that (20) can be written in the form

(u̇n, v)⋆ + (∇un,∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · ûn = 0.

(ii) Similarly to Algorithm 2.1, the first stopping criterion used in step (2) of Algorithm 2.2
is chosen in such a way that the following relationship holds

(21) (∇u
Nstop−1
h ,∇v) ≈ R(v) for all admissible v and ∥R∥H1(Ω)⋆ ⩽ εstop.
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Note that the first condition in (12) holds with equality sign for the implicit Euler, modified
Euler, and midpoint methods, while the first condition in (21) holds approximately for the
BDF2 method. The aim is to ensure a fair comparison of all four methods in numerical
experiments.

We now recall the main properties of the BDF2 method established in [2]:
(i) Energy decay property : Let G ∈ R2×2 be the positive definite, symmetric matrix given
by

G :=
1

4

(
5 −2

−2 1

)
.

Let Un = (un, un−1)⊤ and let ∥ · ∥G be a BDF-adapted variant of the L2 norm,

∥Un∥2G = (GUn,Un) =
5

4
∥un∥2 − (un, un−1) +

1

4
∥un−1∥2.

Then, the BDF2 method satisfies the following energy identity (G-stability) for all m ⩾ 2

∥∇Um∥2G + τ
m∑

n=2

∥u̇n∥2⋆ +
τ4

4

m∑
n=2

∥d2t∇un∥2 = ∥∇U1∥2G.

Constraint violation result : If u1 is computed by the linearly implicit Euler method (6),
the sequence (|un|)n⩾1 is increasing almost everywhere in Ω, and we have the following
constraint violation result: For all m ⩾ 2, it holds that

(22)
∥∥|um|2 − 1

∥∥
L1 =

3

2

(
1− 1

3m

)
τ2∥dtu1∥2 +

3

2
τ4

m∑
n=2

(
1− 1

3m+1−n

)
∥d2tun∥2.

It follows that
∥∥|um|2 − 1

∥∥
L1 ⩽ cpτ

p unconditionally for p = 1. The result holds for p = 2
under the sharp discrete regularity condition

(23) ∥dtu1∥2 + τ2
m∑

n=2

∥d2tun∥2 ⩽ c.

3. Variable step sizes

In this section, we extend the (θ, µ)-method to allow for variable step sizes, aiming to
improve the accuracy of the numerical solutions near singularities (e.g., a singularity at
t = 0 for nonsmooth initial data or a finite time blow-up even for smooth initial data) and
to apply acceleration techniques to speed up the convergence to stationary states, retaining
the unconditional energy stability and the constraint violation properties. The analysis of
the BDF2 method depends crucially on its G-stability property; cf. [2]; consequently, the
extension to variable step sizes is cumbersome.

In this section, we set t0 := 0, and, for given positive step sizes (τn)n⩾1, we define the
nodes tn := tn−1 + τn, n ⩾ 1. Using this notation, we denote by

dtu
n :=

un − un−1

τn

the backward difference quotient.
For given starting approximation u0, we compute u1 by one step of the implicit Eu-

ler method: First, we determine dtu
1 ∈ H1

D(Ω;Rℓ), satisfying the linearized unit-length
condition dtu

1 · u0 = 0, such that

(24) (dtu
1, v)⋆ + (∇u0 + τ1∇dtu

1,∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · u0 = 0. Then, we define u1 := u0 + τ1dtu

1.



APPROXIMATION OF HARMONIC MAP FLOWS 11

Next, for n ⩾ 2, let sn := τn/τn−1 denote the ratio of two consecutive step sizes. For
given approximations un−2 and un−1, and 0 ⩽ µ ⩽ 1, let

ûn−1+µ := (1 + µsn)u
n−1 − µsnu

n−2 = un−1 + µτndtu
n−1

be the extrapolated value at tn−1+µ = tn−1 + µτn of the linear interpolant based on

(tn−2, u
n−2) and (tn−1, u

n−1). Then, seek dtu
n ∈ H1

D(Ω;Rℓ), satisfying the linearized
unit-length condition dtu

n · ûn−1+µ = 0, such that

(25) (dtu
n, v)⋆ + (∇

[
un−1 + θτndtu

n
]
,∇v) = 0

for all v ∈ H1
D(Ω;Rℓ) with v · ûn−1+µ = 0. Here, 0 < θ ⩽ 1. Thus, having computed dtu

n,
we define the new approximation un := un−1 + τndtu

n that satisfies the required Dirichlet
boundary condition un|ΓD

= uD, provided the approximation un−1 at the previous step
satisfies this condition.

Remark 3.1. Similarly as the (θ, µ)-method (11) with constant step size for harmonic
maps, (25) reduces to

(i) the linearly implicit Euler method for θ = 1 and µ = 0;
(ii) the linearly implicit midpoint method for θ = 1/2 and µ = 1/2;
(iii) a modified linearly implicit Euler method for θ = 1 and µ = 1/2.

We now extend the analysis of the previous section to the case of variable step sizes.
We discuss the energy decay and constraint violation properties of the method. It can be
proved that the iteration (25) becomes stationary for n → ∞.

We begin with the discrete energy law satisfied by the approximations.

Proposition 3.1 (energy decay). For the (θ, µ)-method (25) and m ⩾ 2, if u1 is computed
by the linearly implicit Euler method (24), we have

(26)
1

2
∥∇um∥2 +

m∑
n=1

τn∥dtun∥2⋆ +
τ21
2
∥∇dtu

1∥2 +
(
θ − 1

2

) m∑
n=2

τ2n∥∇dtu
n∥2 = 1

2
∥∇u0∥2.

The proof is analogous to the one of Proposition 2.1 and is therefore omitted.
We now study the constraint violation properties. In the case of variable step sizes, the

second difference quotient d2tu
n is defined by

(27) d2tu
n :=

1

τn
(dtu

n − dtu
n−1), n ⩾ 2.

We have the following analogue of Lemma 2.1.

Lemma 3.1 (discrete chain rule). For a sequence (vn)n⩾0 and n ⩾ 2 we have

2dtv
n · v̂n−1+µ = dt|vn|2 − µτ2ndt|dtvn|2 − µτ3n|d2t vn|2 − (1− 2µ) τn|dtvn|2.

We omit the proof as it follows along the lines of that of Lemma 2.1. Lemma 3.1 implies
that, if dtu

n · ûn−1+µ = 0, for n ⩾ 2 we have

(28) dt|un|2 = µτ2ndt|dtun|2 + µτ3n|d2tun|2 + (1− 2µ)τn|dtun|2.

This relation is the crucial ingredient for the identity established in the following propo-
sition.
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Proposition 3.2 (constraint violation error). For the (θ, µ)-method (25) and m ⩾ 2, if
|u0| = 1 and u1 is computed by the linearly implicit Euler method (24), we have

(29)

|um|2 − 1 = µτ2m|dtum|2 + (1− µ)τ21 |dtu1|2 + µ
m−1∑
n=1

τ2n(1− s2n+1)|dtun|2

+ µ

m∑
n=2

τ4n|d2tun|2 + (1− 2µ)

m∑
n=2

τ2n|dtun|2.

Thus, we have the constraint violation estimate

(30)

∥|um|2 − 1∥L1 ⩽ µτ2m∥dtum∥2 + (1− µ)τ21 ∥dtu1∥2 + µ
m−1∑
n=1

τ2n|1− s2n+1|∥dtun∥2

+ µ

m∑
n=2

τ4n∥d2tun∥2 + |1− 2µ|
m∑

n=2

τ2n∥dtun∥2.

Proof. We multiply (28) by τn and write it in the form

|un|2 − |un−1|2 = µτ2n
(
|dtun|2 − |dtun−1|2

)
+ µτ4n|d2tun|2 + (1− 2µ) τ2n|dtun|2.

Summing over n from n = 2 to n = m, we obtain

|um|2 − |u1|2 = µ
m∑

n=2

τ2n
(
|dtun|2 − |dtun−1|2

)
+ µ

m∑
n=2

τ4n|d2tun|2 + (1− 2µ)

m∑
n=2

τ2n|dtun|2.

Shifting the indices in the sum and using the definition of the step size ratio (sn+1 =
τn+1/τn), the first term on the right-hand side can be rewritten as

m∑
n=2

τ2n
(
|dtun|2 − |dtun−1|2

)
= τ2m|dtum|2 − τ22 |dtu1|2 +

m−1∑
n=2

τ2n(1− s2n+1)|dtun|2.

We thus obtain

|um|2 − |u1|2

= µ
(
τ2m|dtum|2 − τ22 |dtu1|2 +

m−1∑
n=2

τ2n(1− s2n+1)|dtun|2 +
m∑

n=2

τ4n|d2tun|2
)

+ (1− 2µ)

m∑
n=2

τ2n|dtun|2.

If |u0| = 1 and u1 is computed by the implicit Euler method, then |u1|2 = |u0|2+τ21 |dtu1|2 =
1 + τ21 |dtu1|2, which yields (29). Taking the L1 norm, we obtain the constraint violation
estimate (30). □

Remark 3.2. (i) Notice that in the case of constant step size, we have sn = 1 for all
n ⩾ 2, and the bound in the constraint violation estimate (30) reduces to the expression
on the right-hand side of (17).
(ii) If 0 ⩽ µ ⩽ 1/2 and if the step size monotonically decreases, i.e., if sn ⩽ 1 for all
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2 ⩽ n ⩽ m, it follows from (29) that |um| ⩾ 1.
(iii) From (29), for µ = 0, we obtain the constraint violation identity

|um|2 − 1 =
m∑

n=1

τ2n|dtun|2

of the implicit Euler method. For µ = 1/2, we obtain the constraint violation identity

|um|2 − 1 =
1

2

(
τ21 |dtu1|2 + τ2m|dtum|2 +

m−1∑
n=1

τ2n(1− s2n+1)|dtun|2 +
m∑

n=2

τ4n|d2tun|2
)

of the midpoint and modified Euler methods.

4. Numerical experiments

We illustrate the accuracy in approximating the unit-length constraint and the overall
performance of the proposed (θ, µ)-method (Algorithm 2.1) through a series of numerical
experiments in two dimensions, comparing it with the BDF2 method (Algorithm 2.2).
Moreover, for the (θ, µ)-method, we present numerical results obtained using variable step
sizes.

In all computations, the domain of the problem is Ω = (−1/2, 1/2)2 with ΓD = ∂Ω,
and the vector fields attain values in R3. For the spatial discretization, we consider a fixed
unstructured triangular mesh Th of Ω generated by Netgen [30] (consisting of 4901 vertices
and 9544 triangles, and having mesh size h ≈ 2.287 · 10−2). For the approximation of
vector-valued functions, we use H1-conforming first-order finite elements, i.e., we consider
the space Vh ⊂ H1(Ω;R3) of vector-valued Th-piecewise affine and globally continuous
functions. The pointwise orthogonality imposed in the variational formulation of the
methods is enforced only at the vertices of Th. For all methods, the solution of the arising
constrained linear system is based on the null-space method given in [29, 27]. Moreover,
we consider a fixed tolerance εstop = 10−6 or a fixed final time T = 1 in the stopping
criterion of step (2).

4.1. Constant step size. We start with a collection of numerical experiments to assess
the performance of the schemes in the case of constant step size.

4.1.1. Comparison of Algorithms 2.1 and 2.2 (H1-gradient flow). We consider the model
problem from [2, Section 4.1]. Let uD = π−1

st |ΓD
, where

(31) π−1
st (x) = (|x|2 + 1)−1(2x, 1− |x|2)⊤

denotes the inverse stereographic projection. It is well known that u = π−1
st is a harmonic

map with u|ΓD
= uD.

The discrete Dirichlet data are obtained interpolating the exact solution on the bound-
ary. To initialize the iterative algorithms, we consider a fixed initial guess u0h = Ihu0,
where Ih : C(Ω;R3) → Vh denotes the nodal interpolation operator (or its scalar-valued
counterpart) and

(32) u0(x) =
(
[u1(x) + φ(x)]2 + [u2(x)− φ(x)]2 + u3(x)

2
)−1/2

u1(x) + φ(x)
u2(x)− φ(x)

u3(x)


with

φ(x) = 16 sin(4πx1)(x
2
1 − 1/4)(x22 − 1/4).

In our first numerical experiment, we compare the proposed (θ, µ)-method and the
BDF2 method for the case of the H1-gradient flow, i.e., (·, ·)⋆ = (∇·,∇·), considering the
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step sizes τ = 2−m for m = 4, . . . , 10. For the (θ, µ)-method, we consider the relevant
cases of the implicit Euler method (θ = 1, µ = 0) and the midpoint method (θ = 1/2,
µ = 1/2). The results are displayed in Table 1. We compare the algorithms and test their
convergence with respect to τ by assessing the following quantities:

• Nstop, the number of iterations required to meet the tolerance;

• δ∞[u
Nstop

h ] := ∥|uNstop

h | − 1∥L∞ , the constraint violation error, measured using the L∞-
norm (not unconditionally controlled by the algorithms);

• δuni[u
Nstop

h ] := ∥Ih|u
Nstop

h |2 − 1∥L1 , the constraint violation error, measured using the
L1-norm (this is the quantity that should decay linearly for the implicit Euler method
and, under a sharp discrete regularity condition, quadratically for the BDF2 method
and the midpoint method);

• A2, B2, and C2, the quantities that, if uniformly bounded with respect to τ , guarantee

the second-order convergence of δuni[u
Nstop

h ] as τ → 0 for the BDF2 method (see (23))
and the midpoint method (see (18)). Specifically, we have

A2 = τ2
Nstop∑
n=2

∥d2tunh∥2, B2 = ∥dtu1h∥2, and C2 = ∥dtu
Nstop

h ∥2.

Note that C2 is relevant only for the midpoint method, and that none of these quantities
plays a role in the analysis of the implicit Euler method;

• δener[u
Nstop

h ] = |I[uNstop

h ]− I[u]|, the energy approximation error.

Finally, eoc∞ and eocuni denote the experimental rates q of the convergences of δ∞[u
Nstop

h ]

and δuni[u
Nstop

h ] as τ → 0, respectively, computed as logarithmic slopes

q = − log(errk+1/errk)/ log 2

for any two consecutive instances of the errors.
Looking at Table 1, we see that Nstop ∝ τ−1 for all algorithms. For any fixed τ , the

algorithms require approximately the same number of iterations to satisfy the stopping
criterion. In particular, for the BDF2 and the midpoint methods, the number of iterations
is almost identical. For the implicit Euler method, we see a clear first-order convergence
of the L1-error (as expected from the theory). We also see a first-order convergence of the
L∞-error. For the BDF2 method and the midpoint method, we observe a second-order
convergence of the constraint violation error measured in both the L1-norm and the L∞-
norm. The midpoint method is slightly more accurate, in the sense that for each value
of τ the constraint violation error is about 1/3 of the one of the BDF2 method. The
quantities A2, B2 (and C2 for the midpoint method) stay uniformly bounded as τ → 0,
which is a numerical validation of the discrete regularity property. For both methods, the
quantity A2 converges linearly to 0 as τ → 0. The energy approximation error decays
for the implicit Euler method, whereas it stabilizes at about 2.8 · 10−4 for both the BDF
method and the midpoint method. We believe that the lack of convergence of the energy
error as τ → 0 for the higher-order methods is due to the spatial approximation error
becoming predominant.

In Fig. 1, for both the BDF2 method and the midpoint method, we show the evolution
of the energy and the constraint violation L1-error during the iteration for τ = 2−5. On
the one hand, we see that the energetic behavior of the methods is very similar, as the
curves are nearly superimposed (for τ = 2−5 the difference between the energy values
obtained with the two schemes is of the order of 0.01%). For both methods, the energy
monotonically decays in an exponential fashion and converges to the approximate energy
value of the inverse stereographic projection. On the other hand, the behavior of the
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Implicit Euler method

τ Nstop δ∞[u
Nstop
h ] eoc∞ δuni[u

Nstop
h ] eocuni δener[u

Nstop
h ]

2−4 274 1.068e−2 — 4.790e−3 — 1.757e−2

2−5 535 5.445e−3 0.9716 2.436e−3 0.9755 8.420e−3

2−6 1057 2.750e−3 0.9856 1.228e−3 0.9876 4.008e−3

2−7 2101 1.382e−3 0.9928 6.169e−4 0.9938 1.846e−3

2−8 4190 6.926e−4 0.9964 3.091e−4 0.9969 7.775e−4

2−9 8368 3.468e−4 0.9982 1.547e−4 0.9984 2.460e−4

2−10 16723 1.735e−4 0.9991 7.741e−5 0.9992 1.904e−5

BDF2 method

τ Nstop δ∞[u
Nstop
h ] eoc∞ δuni[u

Nstop
h ] eocuni δener[u

Nstop
h ] A2 B2

2−4 262 1.449e−3 — 6.915e−4 — 2.106e−3 3.771e−3 1.134e−1

2−5 523 3.778e−4 1.940 1.805e−4 1.937 3.342e−4 1.988e−3 1.204e−1

2−6 1046 9.649e−5 1.969 4.615e−5 1.968 1.260e−4 1.019e−3 1.242e−1

2−7 2090 2.439e−5 1.984 1.167e−5 1.984 2.437e−4 5.153e−4 1.261e−1

2−8 4179 6.131e−6 1.992 2.934e−6 1.992 2.735e−4 2.591e−4 1.271e−1

2−9 8357 1.537e−6 1.996 7.356e−7 1.996 2.810e−4 1.299e−4 1.276e−1

2−10 16712 3.848e−7 1.998 1.842e−7 1.998 2.829e−4 6.505e−5 1.278e−1

midpoint method

τ Nstop δ∞[u
Nstop
h ] eoc∞ δuni[u

Nstop
h ] eocuni δener[u

Nstop
h ] A2 B2 C2

2−4 263 4.841e−4 — 2.308e−4 — 5.069e−4 3.908e−3 1.134e−1 7.338e−15

2−5 524 1.260e−4 1.942 6.019e−5 1.939 7.805e−5 2.022e−3 1.204e−1 7.967e−15

2−6 1046 3.217e−5 1.970 1.538e−5 1.968 2.311e−4 1.027e−3 1.242e−1 8.307e−15

2−7 2090 8.129e−6 1.984 3.890e−6 1.984 2.703e−4 5.174e−4 1.261e−1 8.484e−15

2−8 4179 2.044e−6 1.992 9.780e−7 1.992 2.802e−4 2.596e−4 1.271e−1 8.514e−15

2−9 8357 5.123e−7 1.996 2.452e−7 1.996 2.827e−4 1.300e−4 1.276e−1 8.529e−15

2−10 16712 1.283e−7 1.998 6.139e−8 1.998 2.833e−4 6.508e−5 1.278e−1 8.552e−15

Table 1. Comparison of the implicit Euler, BDF2 and midpoint methods
(H1-gradient flow).
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Figure 1. Evolution of the energy (left) and the constraint violation L1-
error (right) for the approximations generated by the BDF2 and the mid-
point (MP) methods (H1-gradient flow, τ = 2−5).

schemes is clearly different as far as the evolution of the constraint violation error is
concerned. While the error is monotonically increasing for the BDF2 method (as expected
from the theory, see (22)), for the midpoint method it reaches its maximal value in the very
first iteration, and then decays monotonically until it stabilizes to its final value. For the
sake of readability, in the plots we have omitted the results for the implicit Euler method.
However, we report that the energetic behavior is very similar, whereas the constraint
violation error, in agreement with (10), has the same monotonically increasing behavior
of the BDF2 method (but the value is one order of magnitude larger).

4.1.2. Comparison of Algorithms 2.1 and 2.2 (L2-gradient flow). We repeat the exper-
iment of Section 4.1.1 for the implicit Euler, midpoint, and BDF2 methods, this time
focusing on the L2-gradient flow (i.e., (·, ·)⋆ = (·, ·)) instead of the H1-gradient flow. The
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spatial discretization and the stopping tolerance are the same as before, while we consider
the values τ = 2−m for m = 10, . . . , 16 for the step size.

Implicit Euler method

τ Nstop δ∞[u
Nstop
h ] eoc∞ δuni[u

Nstop
h ] eocuni δener[u

Nstop
h ]

2−10 358 2.718e−2 — 1.419e−2 — 6.182e−2

2−11 704 1.430e−2 0.9268 7.535e−3 0.9132 2.920e−2

2−12 1394 7.338e−3 0.9622 3.895e−3 0.9520 1.396e−2

2−13 2776 3.719e−3 0.9807 1.982e−3 0.9743 6.697e−3

2−14 5538 1.872e−3 0.9902 1.001e−3 0.9865 3.170e−3

2−15 11063 9.392e−4 0.9951 5.027e−4 0.9931 1.434e−3

2−16 22113 4.704e−4 0.9975 2.519e−4 0.9965 5.726e−4

BDF2 method

τ Nstop δ∞[u
Nstop
h ] eoc∞ δuni[u

Nstop
h ] eocuni δener[u

Nstop
h ] A2 B2

2−10 347 1.609e−2 — 7.327e−3 — 3.100e−2 6.151e2 4.441e3

2−11 691 5.912e−3 1.444 2.319e−3 1.660 8.393e−3 5.269e2 5.857e3

2−12 1382 2.111e−3 1.486 6.787e−4 1.772 2.097e−3 3.977e2 7.058e3

2−13 2763 7.093e−4 1.574 1.876e−4 1.855 3.567e−4 2.692e2 7.954e3

2−14 5526 2.237e−4 1.664 4.983e−5 1.913 1.151e−4 1.670e2 8.552e3

2−15 11051 6.862e−5 1.705 1.290e−5 1.949 2.400e−4 9.726e1 8.918e3

2−16 22101 2.068e−5 1.731 3.291e−6 1.971 2.724e−4 5.438e1 9.128e3

midpoint method

τ Nstop δ∞[u
Nstop
h ] eoc∞ δuni[u

Nstop
h ] eocuni δener[u

Nstop
h ] A2 B2 C2

2−10 347 5.514e−3 — 2.491e−3 — 8.888e−3 7.141e2 4.441e3 9.241e−13

2−11 692 2.013e−3 1.454 7.798e−4 1.675 2.439e−3 5.826e2 5.857e3 9.678e−13

2−12 1382 7.107e−4 1.502 2.271e−4 1.780 4.910e−4 4.258e2 7.058e3 9.953e−13

2−13 2764 2.372e−4 1.583 6.263e−5 1.858 7.187e−5 2.818e2 7.954e3 9.896e−13

2−14 5526 7.469e−5 1.667 1.662e−5 1.914 2.275e−4 1.721e2 8.552e3 9.974e−13

2−15 11051 2.291e−5 1.705 4.302e−6 1.950 2.690e−4 9.924e1 8.918e3 9.987e−13

2−16 22101 6.905e−6 1.730 1.097e−6 1.971 2.798e−4 5.516e1 9.128e3 9.994e−13

Table 2. Comparison of the implicit Euler, BDF2 and midpoint methods
(L2-gradient flow).

The results of the simulations are displayed in Table 2. For the implicit Euler method,
the expected linear decay of the constraint violation error (measured both with respect
to the L1-norm and the L∞-norm) is clearly visible. However, differently from what
we observed for the H1-gradient flow, this behavior emerges only for the smallest step
sizes (there is a much longer preasymptotic phase than for the H1-gradient flow). The
energy approximation error converges to 0 linearly as τ → 0. In terms of accuracy, the
performance of the H1-gradient flow is significantly better, e.g., the smallest constraint

violation error obtained with the L2-gradient flow, δuni[u
Nstop

h ] = 2.519 · 10−4, requires
τ = 2−16 and 22113 iterations. With the H1-gradient flow, the choice τ = 2−9 results only

in 8368 iterations and leads to a smaller error (δuni[u
Nstop

h ] = 1.547 · 10−4).
A long preasymptotic phase is observed also for the BDF2 method with L2-gradient

flow (much longer than for the version with H1-gradient flow). Indeed, the quadratic
convergence guaranteed by the method is (almost) seen only for the smallest step sizes.
On the other hand, as we saw for the case of the H1-gradient flow, the convergence of the
energy approximation is spoiled by the spatial approximation error. A difference between
the two considered gradient flow metrics is visible also looking at the order of magnitude
of A2 and B2, with the values for the L2-gradient flow being significantly larger than
those for the H1-gradient flow. The quantity A2 tends to 0 as τ increases, whereas we can
observe a slight growth of B2.

Similarly, in the case of the midpoint method, we see the expected second-order con-
vergence of the L1-error only when the step size becomes sufficiently small. Again, the
energy approximation error does not converge. The quantity A2 tends to 0 as τ decreases,
whereas we can observe a slight growth of both B2 and C2.
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4.1.3. Modified implicit Euler method. We repeat the experiment for the modified implicit
Euler method (Algorithm 2.1 with θ = 1 and µ = 1/2), considering both the H1-gradient
flow and the L2-gradient flow. The modified implicit Euler method is a mixture of the
standard Euler and midpoint methods, for which the variational formulation to be solved
at each iteration is the one of the standard Euler method. However, like in the midpoint
method, for n ⩾ 2, the orthogonality constraint is considered with respect to extrapolated

value û
n−1/2
h , instead of un−1

h .

Modified implicit Euler method (H1-gradient flow)

τ Nstop δ∞[u
Nstop
h ] eoc∞ δuni[u

Nstop
h ] eocuni δener[u

Nstop
h ] A2 B2 C2

2−4 271 4.830e−4 — 2.304e−4 — 5.055e−4 3.706e−3 1.134e−1 7.037e−15

2−5 532 1.259e−4 1.940 6.016e−5 1.937 7.815e−5 1.966e−3 1.204e−1 7.795e−15

2−6 1054 3.216e−5 1.969 1.538e−5 1.968 2.311e−4 1.012e−3 1.242e−1 8.216e−15

2−7 2099 8.129e−6 1.984 3.890e−6 1.984 2.703e−4 5.136e−4 1.261e−1 8.318e−15

2−8 4187 2.044e−6 1.992 9.780e−7 1.992 2.802e−4 2.587e−4 1.271e−1 8.490e−15

2−9 8365 5.123e−7 1.996 2.452e−7 1.996 2.827e−4 1.298e−4 1.276e−1 8.517e−15

2−10 16721 1.283e−7 1.998 6.139e−8 1.998 2.833e−4 6.502e−5 1.278e−1 8.530e−15

Modified implicit Euler method (L2-gradient flow)

τ Nstop δ∞[u
Nstop
h ] eoc∞ δuni[u

Nstop
h ] eocuni δener[u

Nstop
h ] A2 B2 C2

2−10 347 5.462e−3 — 2.461e−3 — 8.764e−3 6.533e2 4.441e3 9.186e−13

2−11 700 1.996e−3 1.453 7.757e−4 1.666 2.423e−3 5.499e2 5.857e3 9.657e−13

2−12 1390 7.109e−4 1.489 2.266e−4 1.775 4.892e−4 4.106e2 7.058e3 9.945e−13

2−13 2772 2.380e−4 1.579 6.258e−5 1.857 7.205e−5 2.756e2 7.954e3 9.894e−13

2−14 5534 7.495e−5 1.667 1.662e−5 1.913 2.275e−4 1.699e2 8.552e3 9.973e−13

2−15 11059 2.296e−5 1.707 4.302e−6 1.950 2.690e−4 9.854e1 8.918e3 9.987e−13

2−16 22109 6.912e−6 1.732 1.097e−6 1.971 2.798e−4 5.496e1 9.128e3 9.994e−13

Table 3. Performance of the modified implicit Euler method (H1- and
L2-gradient flows).

The results of the simulations are displayed in Table 3. Comparing the performance of
this method for both gradient flow metrics with the previous three approaches, we can see
that the modified implicit Euler method behaves like the midpoint method.

4.1.4. Performance in the presence of singularities. It is well known that the heat flow of
harmonic maps can develop singularities, even if the initial value is smooth. In this sub-
section, we test the performance of the projection-free linearly implicit midpoint method
in such a situation.

(a) Initial value. (b) Final value.

Figure 2. Pictures of the initial value (left) and the final value (right).
The picture of the final value refers to the results obtained for τ = 2−14.
The color scale refers to the third component of the field, which attains
values between -1 (blue) and 1 (red).
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The problem specifications are the same as in the previous experiments, except for the
initial value and the stopping criterion. We consider the initial value [19]

(33) u0(x) = |x|−1
(
x sinϕ(2|x|), |x| cosϕ(2|x|)

)⊤
with ϕ(s) = (3π/2)min{s2, 1}. We refer to [13, Section 6.2] for numerical results for the
harmonic map heat flow with this initial value obtained with the linearly implicit Euler
method (6). Restricting ourselves to the L2-gradient flow and the midpoint method, we
simulate the gradient flow dynamics in the fixed time interval [0, T ] with T = 1 using the
values τ = 2−m for m = 11, . . . , 16 for the step size. For pictures of the initial value u0h
and the final value uNh (with N = 2m) computed by the algorithm for the case m = 14,
we refer to Fig. 2.

midpoint method

τ N δ∞[uN
h ] eoc∞ δuni[u

N
h ] eocuni A2 B2 C2

2−11 2048 6.696e−1 — 3.213e−3 — 1.446e4 7.644e3 1.924e−10

2−12 4096 2.807e−1 1.254 1.062e−3 1.597 1.671e4 1.156e4 9.759e−13

2−13 8192 6.974e−2 2.009 3.036e−4 1.807 1.480e4 1.684e4 8.836e−13

2−14 16384 1.058e−2 2.720 8.545e−5 1.829 1.057e4 2.371e4 8.563e−13

2−15 32768 1.311e−3 3.013 2.694e−5 1.666 7.707e3 3.220e4 8.498e−13

2−16 65536 2.706e−4 2.276 8.859e−6 1.604 6.026e3 4.182e4 8.484e−13

Table 4. Performance of the midpoint method for the harmonic map heat
flow in the presence of singularities.
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Figure 3. Evolution in [0, 1/5] of the energy (left), the L2-norm of the
update (middle), and the constraint violation L1-error (right) for the ap-
proximations generated by the midpoint method (τ = 2−14).

Looking at the results in Table 4, we observe the convergence of the constraint violation
errors, but the rate is only superlinear. In particular, the convergence of δuni[u

N
h ] is not

of second order, which is in agreement with the unboundedness of B2, for which we
observe a moderate grow. In Fig. 3, for τ = 2−14, we show the evolution in [0, 1/5] of
the energy I[u+hτ (t)], of the L2-norm of ∥∂tuhτ (t)∥, and of the constraint violation error

∥Ih|u+hτ (t)|
2 − 1∥L1 (note that we omit the results for t ∈ (1/5, 1] because the curves are

nearly constant, as the evolution has already reached the stationary state). Here, uhτ (t)
(resp., u+hτ (t)) denotes the globally continuous and piecewise affine interpolant (resp., the
forward piecewise constant interpolant) of the sequence of snapshots (unh)n⩾0. Looking
at the evolution of the energy, we see an abrupt decay at t ≈ 0.06, which is when the
singularity disappears. In this phase, the dynamics is faster, as the spike in the plot of
∥∂tuhτ (t)∥ reveals, which leads to a local growth of ∥Ih|u+hτ (t)|

2 − 1∥L1 .

4.2. Variable step size. In this section, we present two numerical experiments to show-
case the performance of the midpoint method with variable step size.
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4.2.1. Prescribed variable step size. Consider the projection-free linearly implicit midpoint
method with variable step size τn, i.e., the iteration defined by (25) with θ = µ = 1/2 for
n ⩾ 2 (initialized by one step of the implicit Euler method with step size τ1 for n = 1).
From the analysis of Section 3, we obtain that the iterates generated by the scheme satisfy
the discrete energy law

(34)
1

2
∥∇um∥2 +

m∑
n=1

τn∥dtun∥2⋆ +
τ21
2
∥∇dtu

1∥2 = 1

2
∥∇u0∥2

and the upper bound of the constraint violation error

∥|um|2 − 1∥L1 ⩽
1

2

(
τ21 ∥dtu1∥2 + τ2m∥dtum∥2 +

m∑
n=2

τ4n∥d2tun∥2
)

+
1

2

m−1∑
n=1

τ2n|1− s2n+1|∥dtun∥2;

(35)

see (26) and (30), respectively. We now aim to exploit the flexibility given by the variable
step size to accelerate the convergence to stationary configurations.

First of all, motivated by the heuristic fact that the step size should increase as the
iteration evolves toward convergence, we aim to obtain a nondecreasing sequence of step
sizes, i.e., we impose that τn ⩽ τn+1 or, equivalently, sn+1 ⩾ 1.

Consider now the right-hand side of (35), which consists of two terms. Up to the
generalization to variable step sizes, the first term is the same term that is present in
the corresponding estimate for the method with constant step size. This term decays
quadratically with respect to the step size if a discrete regularity condition is satisfied.
The second term arises when the step size used in the method is not constant. Motivated
by the similarity of this term to the second term on the left-hand side of (34), and observing
that the latter is uniformly bounded, we aim to define τn+1 in such a way that the step
size powers in the two terms on the right-hand side of (35) are balanced, which is true if
|1− s2n+1| = s2n+1− 1 = cτn for some c > 0. Manipulating this identity, we obtain the step
size update

(36) τn+1 = τn
√
1 + cτn.

To numerically validate this choice, we repeat the experiments of Sections 4.1.1 and 4.1.2
for the linearly implicit midpoint method with variable step size. We consider the initial
step size τ1 = 2−m for m = 6, . . . , 10 for the H1-gradient flow (resp., m = 10, . . . , 16 for
the L2-gradient flow) and update it during the iteration using the aforementioned formula
with c = 1, i.e., τn+1 = τn

√
1 + τn.

The results of the simulation are displayed in Table 5, where we collect the same outputs
considered before, plus the value τNstop of the step size at the final iteration.

Looking at the results obtained for theH1-gradient flow and comparing them with those
obtained for constant step size (see the third table in Table 1), we see that the quality of
the results improves significantly and the method with variable step size clearly overcomes
the one using a constant step size. Indeed, for the same computational cost, i.e., if the
number of iterations is approximately the same, the constraint violation error observed
for the method with variable step size is much smaller: e.g., for about 2000 iterations
(obtained for τ = 2−7 in the case of constant step size), the constraint violation error
measured in the L1-norm is of the order of 10−6; for the same number of iterations, the
method with variable step size yields an error of the order of 10−8. Looking at the other
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midpoint method with τn+1 = τn
√
1 + τn (H1-gradient flow)

τ1 Nstop τNstop δ∞[u
Nstop
h ] δuni[u

Nstop
h ] δener[u

Nstop
h ] A2 B2 C2

2−6 139 183.5 1.775e−5 5.605e−6 3.010e−4 1.435e−3 1.242e−1 1.247e−18

2−7 266 9.413 4.710e−6 1.488e−6 2.882e−4 7.250e−4 1.261e−1 2.319e−16

2−8 522 4.042 1.216e−6 3.843e−7 2.847e−4 3.644e−4 1.271e−1 3.591e−16

2−9 1035 3.938 3.091e−7 9.774e−8 2.838e−4 1.827e−4 1.276e−1 2.816e−17

2−10 2059 2.158 7.795e−8 2.465e−8 2.836e−4 9.147e−5 1.278e−1 1.969e−16

midpoint method with τn+1 = τn
√
1 + τn (L2-gradient flow)

τ1 Nstop τNstop δ∞[u
Nstop
h ] δuni[u

Nstop
h ] δener[u

Nstop
h ] A2 B2 C2

2−10 319 0.001 200 5.503e−3 2.485e−3 8.865e−3 7.148e2 4.441e3 9.574e−13

2−11 637 5.780e−4 2.011e−3 7.780e−4 2.433e−3 5.831e2 5.857e3 9.616e−13

2−12 1272 2.890e−4 7.102e−4 2.267e−4 4.894e−4 4.261e2 7.058e3 9.926e−13

2−13 2543 1.445e−4 2.370e−4 6.251e−5 7.227e−5 2.819e2 7.954e3 9.971e−13

2−14 5086 7.225e−5 7.465e−5 1.659e−5 2.276e−4 1.721e2 8.552e3 9.934e−13

2−15 10170 3.612e−5 2.290e−5 4.295e−6 2.691e−4 9.928e1 8.918e3 9.977e−13

2−16 20339 1.806e−5 6.902e−6 1.095e−6 2.798e−4 5.518e1 9.128e3 9.983e−13

Table 5. Midpoint method with prescribed variable step size.

quantities, we see that the lack of convergence of the energy values is the same for both
variants of the method and that the discrete regularity condition seems to hold.

For the L2-gradient flow (compare the second table in Table 5 with the third table in
Table 2), we see that the difference in the performance of the midpoint method in the case
of constant and variable step sizes is negligible. We conclude that the prescribed step size
update rule is very effective for energy minimization in the case of the H1-gradient flow,
but not very impactful for the L2-gradient flow.

4.2.2. Adaptive step size control. In this subsection, we endow the linearly implicit mid-
point method with a simple adaptive mechanism, which allows to adjust the step size
without assuming any knowledge on the specific problem data.

Specifically, for all n ⩾ 2, after the computation of the update dtu
n
h via (25) and

the definition of the new approximation unh = un−1
h + τndtu

n
h, we adjust the step size

τn+1 for the next iteration according to the following rule: Given 0 < τmin < τmax,
if ∥dtunh∥ > ∥dtun−1

h ∥, then we reduce the step size for the next iteration as τn+1 =

max
{
τmin, τn

√
1− τn/τmax

}
; otherwise, if ∥dtunh∥ ⩽ ∥dtun−1

h ∥, then we enlarge the step

size as τn+1 = min
{
τmax, τn

√
1 + τn/τmax

}
. The approach reduces the step size whenever

the gradient flow dynamics accelerates, conversely the step size increases if the dynamics
slows down. The specific formula for the adjustment comes from the discussion in Sec-
tion 4.2.1 (cf. (36)), where we choose c = 1/τmax to guarantee that the step size is always
positive.

We test the approach using the setups of Section 4.1.4 (harmonic map heat flow with sin-
gular solutions). We consider the initial step size τ1 = 2−m for m = 11, . . . , 16. Moreover,
we set τmin = 2−18 and τmax = 1.

adaptive midpoint method

τ0 N δ∞[uN
h ] δuni[u

N
h ] A2 B2 C2

2−11 1721 7.053e−1 3.478e−3 1.435e4 7.644e3 7.489e−5

2−12 3250 2.855e−1 1.075e−3 1.666e4 1.156e4 9.792e−13

2−13 6497 7.343e−2 3.104e−4 1.494e4 1.684e4 8.837e−13

2−14 12991 1.130e−2 8.661e−5 1.071e4 2.371e4 8.571e−13

2−15 25981 1.403e−3 2.707e−5 7.786e3 3.220e4 8.496e−13

2−16 51960 2.706e−4 8.873e−6 6.066e3 4.182e4 8.482e−13

Table 6. Performance of the midpoint method with adaptively adjusted
step size for the harmonic map heat flow in the presence of singularities.
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Figure 4. Evolution in [0, 1/5] of the energy (top-left), the L2-norm of the
update (top-right), the constraint violation L1-error (bottom-left), and the
step size (bottom-right) for the approximations generated by the midpoint
method with adaptively adjusted step size (τ1 = 2−14).

Comparing the results in Table 6 and Fig. 4 with those obtained for constant step size
(see Table 4), we see that the number of iterations N needed by the adaptive method to
simulate the gradient flow dynamics in the interval of interest (a measure of the overall
computational cost of the simulation) is reduced by 20% despite achieving approximately
the same accuracy in the realization of the unit-length constraint. In Fig. 4 (bottom-right),
we see that the reduction of the computational cost is obtained by increasing the step size
throughout the entire evolution, except for t ∈ (0.06, 0.08), where the faster dynamics (cf.
the plots in Fig. 4 (top)) requires a more accurate time discretization.
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