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ABSTRACT. We construct and analyze a projection-free linearly implicit method for the
approximation of flows of harmonic maps into spheres. The proposed method is un-
conditionally energy stable and, under a sharp discrete regularity condition, achieves
second-order accuracy with respect to the constraint violation. Furthermore, the method
accommodates variable step sizes to speed up the convergence to stationary points and
to improve the accuracy of the numerical solutions near singularities, without affecting
the unconditional energy stability and the constraint violation property. We illustrate
the accuracy in approximating the unit-length constraint and the performance of the
method through a series of numerical experiments, and compare it with the linearly
implicit Euler and two-step BDF methods.

1. INTRODUCTION

Let £2 C R? denote a bounded domain with Lipschitz boundary 042, and let Iy C 012
be the Dirichlet part of the boundary, of positive surface measure. Harmonic maps (into
the sphere) are the stationary points of the Dirichlet energy functional

1
Iu] = 2/9|Vu2dx,

among all vector fields u € H'(2;R’) satisfying the unit-length constraint |u| = 1 a.e.
in (2, subject to Dirichlet boundary conditions u|r, = up. Here, H'(§2;R?) denotes the
Sobolev space consisting of vector fields u : 2 — R’ in L?(£2; RY) with square-integrable
gradients, while up : I'h — R’ is a given function, which is assumed to be equal to the
trace of a function ap € H'(£2;RY) with |ap| = 1 a.e. in §2. The resulting Euler-Lagrange
equations are

— Au = A, lul =1 in £2,
(1) ou

u=up onlp, — =0 ondN2\Ip.
n

0

The function A = |Vu|? is the Lagrange multiplier related to the unit-length constraint;
see [12, Ch. 7] and references therein.
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Gradient flows provide an attractive tool to solve the Euler-Lagrange equations as
these decrease the Dirichlet energy along trajectories. The simplest case corresponds to
the L2-gradient flow and it is known as the harmonic map heat flow (into spheres)

(2) o — Au = |Vul|?u, |u>=1 in £,

subject to initial and boundary conditions u(0,-) = u® € A,y and u(t,-)|r, = up, where
the class of admissible vector fields A, is defined by A, = {u € H'(£2;S"Y) : u|r, =
up} and S“! := {v € R’ : |v| = 1} denotes the unit sphere in R¢. Under our assumptions,
up € A,y ; in particular, A, # 0.

Equation and various generalizations appear in numerous applications, including
the Landau-Lifshitz—Gilbert (LLG) equation for magnetization dynamics [§], models of
nematic liquid crystals [I§], and geometric evolution equations describing mean curvature
flow of surfaces [25] 26]. A common feature in these applications is that the exact solution
inherently satisfies a unit-length constraint. This intrinsic requirement has inspired the
development of efficient numerical methods that preserve the unit-length property at the
discrete level.

One straightforward approach involves the renormalization of numerical solutions using
post-processing techniques to restore the crucial unit-length attribute to the solutions.
Numerical methods that incorporate a projection step to satisfy the constraint at certain
nodes exactly lead to restrictions concerning the step size or the class of admissible trian-
gulations; see [11], 10} [6, [7]. Newton schemes can in general only be guaranteed to converge
locally in the neighborhood of a sufficiently regular energy-stable solution [17]. Methods
that satisfy the constraint everywhere make use of appropriate nonlinear interpolation
procedures and are known to be optimally convergent for certain sufficiently regular solu-
tions; see [22]. The optimal convergence of piecewise affine finite element discretizations
with nodal constraints has been established in [24], [I7]. An alternative approach to develop
higher-order schemes for the harmonic map heat flow and the LLG equation can be based
on equivalent unconstrained formulations; cf. [16]. This however requires the solution of
nonlinear systems of equations in each time step.

The standard variational formulation of the Euler-Lagrange equations is to seek a
vector field u € A, such that

(3) (Vu,Vv) = /Q |Vu|?u - vda

for all v € HJ(£2;RY) N L®(;RY); the test space in is dictated by the fact that
\Vul|?u € L'(2;RY). Here, H}(2;R") denotes the subspace of H'(£2;R’) made of all
functions with vanishing traces on Ip. An alternative formulation, due to Alouges [5], is

(4) (Vu,Vu) =0
for all v € T,,, where
T, :={ve Hy(2;RY) :v-u=0ae. in 2}

represents a solution-dependent test space, a closed subspace of Hp ({2; RY); see, e.g., [12,
Ch. 7] for further details. The alternative form appears much simpler. Even though
the test space T;, depends on the solution u, the primary advantage of is that it can be
easily linearized; see [5]. Based on formulation , several projection-free linear schemes
are proposed in [I3]; the resulting constraint violation is controlled linearly by the step
size, independently of the number of iterations. The approach has then been used for
various related problems in [I} 23] 28].
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We now describe the main idea of the projection-free linearly implicit Euler scheme. In
[13], semi-implicit time discretization schemes are introduced for gradient flow problems
represented by

(5) (ug,v)x + (Vu, Vv) =0,

subject to initial and boundary conditions u(-,0) = u® € A, and u(-,t)|r, = up. The
variational formulation holds for a.e. t € 0,7 for some final time 7" > 0, and for all
test functions v € T),(;). The pointwise unit-length constraint is imposed in the equivalent
form u; - u = 0. The inner product (-,-), can be either the L2 or the H!-inner product,
denoted by (-,-) and (V-, V:), respectively. Equation then represents either the L?- or
the H'-gradient flow for harmonic maps into spheres, respectively.

Starting from u°, the projection-free linearly implicit Euler method iteratively computes
a sequence (u"),>1 of approximations as follows: For a fixed step size 7, let diu™ :=
(u™ — u™ 1) /7 denote the backward difference quotient. At each iteration, one seeks
diu™ € HJ (92, RY), satisfying the discrete linearized unit-length condition dyu™ - u»~! = 0,
such that

(6) (deu",v)y + (Vu" ' + 7Vdu™, Vv) = 0

for all v € Hﬁ(Q;Rf) with v - 4”1 = 0. The new approximation is then given by u" :=
u" ' + 7d;u" and satisfies the required Dirichlet boundary condition u"|r, = up. Note
that @ can be reformulated as

(7) (du™,v)s + (VUu", Vo) =0

for all v € HY(2;R) with v - u"~! = 0. The iteration is unconditionally well posed and
energy decreasing; indeed, choosing v = 7 dyu” in yields

1 1 _ 2
) SNV 2 = SVun 2 4 7 dya |+ T Vgt =0,
which implies, for every m > 1, the energy identity
1 2 S 2, T\ 2 1 012
) SITum 2 473 |2+ 23 [Vt = Sl
n=1 n=1

This yields the summability of the discrete time derivatives ||d;u™||? and hence the weak
convergence of subsequences to solutions of . A bound for the constraint violation thus
follows from the orthogonality condition and |u’| = 1, as we have

m
(10) i R B e e T e A N D T
n=1

By taking the L'-norm of this identity, the sum on the right-hand side is bounded by
7(cx/2)||[VuP||? provided that the induced norm || - ||« controls the L?-norm up to a factor
cr/? (see below).

The iterative scheme @ is built upon the weak formulation by Alouges and an
implicit Euler temporal discretization. Recently, linearly implicit backward difference
formula (BDF) schemes were introduced in [4] for the LLG equation. For the harmonic
map heat flow, a numerical approximation employing a nodal treatment of the unit-length
constraint was proposed in [I5]. More recently, An, Gao, and Sun [9] designed semi-implicit
Euler and Crank—Nicolson finite difference projection methods for the LLG equation. A
similar semi-implicit approach, but based on the two-step BDF method, was proposed
in [20]. These works have yielded optimal/quasi-optimal error estimates, leading to bounds
on the constraint violation, in situations involving sufficiently regular solutions.
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In this paper, we design a projection-free linearly implicit (6, x)-method for flows of
harmonic maps, utilizing Alouges’ weak formulation, and address its approximation prop-
erties when the smoothness of the solution is not guaranteed. Here, 0 < 6 < 1 and
0 < 1 < 1 denote two parameters of the method characterizing its energy dissipation and
its approach to realize the unit-length constraint, respectively; see Section below. The
proposed method offers several key advantages: (1) It is unconditionally energy stable and
achieves second-order accuracy in approximating the unit-length constraint, requiring only
minimal regularity conditions on the solution, akin to the projection-free two-step BDF
method proposed in [2]; see Propositions and below. (2) It accommodates variable
step sizes, which paves the way to the application of acceleration techniques for achieving
faster convergence to stationary points and adaptive approaches to improve the accuracy
of numerical solutions near singularities (such as a singularity at ¢ = 0 for nonsmooth ini-
tial data or a finite blow-up for smooth initial data), without affecting the unconditional
energy stability and the constraint violation property. This capability represents a notable
advantage over the projection-free two-step BDF method proposed in [2], as stability for
BDF methods in the case of variable step sizes is a delicate matter; see, e.g., [3]. We
illustrate the accuracy in approximating the unit-length constraint and the performance
of the proposed method through a series of numerical experiments, comparing it with the
linearly implicit Euler and two-step BDF methods.

To fix the ideas, we develop our theory for the problem of approximating flows of har-
monic maps (into the sphere), which serves as a prototype of a geometrically constrained
partial differential equation. Using the same ideas, projection-free linearly implicit it-
erative schemes with second-order accuracy in the constraint approximation supporting
variable step sizes can be designed and analyzed for a broad class of problems, e.g., in
micromagnetics, liquid crystal theory, and bending theory. We stress that our results
are developed for a semi-discrete method, in which only the time discretization of is
considered, but hold verbatim if a spatial discretization with a nodal treatment of the con-
straint is used; see [13], where a fully discrete method based on first-order finite elements
for the linearly implicit Euler method is introduced and analyzed. Moreover, the method
can be extended to more general target manifolds than the unit sphere, e.g., to manifolds
that can be characterized as the zero level set of a C?-function satisfying certain growth
conditions. Again, we refer to [13], where this extension is developed for the method based
on the linearly implicit Euler method.

The paper is organized as follows. In Section[2] we introduce the projection-free linearly
implicit (0, u)-method and the main theoretical results. For the sake of comparison, we
also discuss the implicit Euler method and the two-step BDF method. The extension of
the proposed method to accommodate variable step sizes and the corresponding analyses
of energy decay and constraint violation are presented in Section [3] Numerical results are
provided in Section (4] to support the theoretical analysis and illustrate the performance of
the schemes.

In this work, we use standard notation for differential operators and Lebesgue and
Sobolev spaces. We let |-| denote the Euclidean length of vectors as well as the Frobenius
norm of matrices, and || - || the L2-norm of functions or vector fields.

2. PROJECTION-FREE METHODS AND MAIN RESULTS

In this section, we introduce a projection-free linearly implicit method for the time
discretization of flows of harmonic maps, which is proved to be of quadratic constraint
accuracy. To evaluate and compare the effectiveness of the proposed scheme, we also
discuss the projection-free two-step BDF method recently introduced and analyzed in [2].
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2.1. The linearly implicit (8, p)-method. The implicit Euler method (@ proposed
in [13] is known as the simplest projection-free method for harmonic maps, and exhibits
only first-order convergence with respect to the step size of the error in the unit-length
constraint. In this subsection, we generalize the approach to obtain a linearly implicit
(0, p)-method.

Let t,, = n7 for all n > 0, where 7 > 0 denotes a fixed step size. For n > 1 and a
sequence (u"),>o in a Hilbert space, we define

u — un—l

d = ———— =y ard, AR =0 4 prdgu™ !,
T

where 0 < 0, < 1. Here, v 1% denotes the interpolated value at t,_j,9 = t,_1 + 07
of the linear interpolant based on (t,_1,u™ ') and (t,,u") (serving as an approximation
to u(tn—149)), while T"~1T# denotes the extrapolated value at t,_11, = t,—1 + p7 of the
linear interpolant based on (¢, _o,u" ?) and (t,_1,u" ') (serving as an approximation to
u(tp—1+4)). Note that, even if 6 = y, w140 £ 4=+ in general.

Since @™ 1T# relies on two previous approximations for positive u, for the given initial
value 1%, we first determine a second starting approximation u' by employing a single
step of the linearly implicit Euler method @ Subsequently, for given approximations
u"~2 and u"!, we seek dyu” € HY(£2;RY), satisfying the linearized unit-length condition
dpu™ - a1 = 0, such that

(11) (deu™, v)y + (VU1 Vo) = (deu™,v)y + (V[u"! + 07dpu], Vv) = 0

for all v € HY(2;RY) with v - 4"~ '*# = 0. Thus, upon computing d;u", a new approxi-
mation is defined as

u" = u ! rda
The new approximation u" satisfies the required Dirichlet boundary condition v" |, = up,
provided the approximation ™! at the previous time level satisfies this condition.

We will demonstrate that, for suitable choices of the parameters 6 and pu, the linearly
implicit (0, u)-method is energy decreasing and, under a sharp regularity condition
on the numerical solution, satisfies a constraint violation estimate of second order. We
present the main theoretical results in the next subsection.

Remark 2.1 (relevant choices for # and p). We now comment on the choice of the
parameters 0 and p in the proposed method. The resulting schemes will be compared with
each other numerically in Section [{

(i) For 6 =1 and =0, reduces to the implicit Euler method ().

(i) For 6 = 1/2 and p = 1/2, we get the linearly implicit midpoint method, which will be
unconditionally energy stable and will achieve second-order accuracy in approximating the
unit-length constraint; see Propositions and below.

(iii) For 0 = 1 and p = 1/2, we get a modified implicit Euler method. In this case,
the variational formulation to be solved at each iteration is the same as that of the
linearly implicit Euler method @ However, like in the midpoint method for n > 2, the
orthogonality constraint is considered with respect to the extrapolated value W"Y2. We
will see that the modified linearly implicit Euler method will be characterized by the same
energy decay property as the standard linearly implicit Fuler method, but will have the
same quadratic constraint accuracy as the midpoint method; see Propositions[2.1] and [2.3]
below.

We now summarize the proposed (6, u)-method in the following algorithm.

Algorithm 2.1 ((#, p)-method).  Choose u® € H(£2;R?) with u®|r, = up and [u°| =
1.
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(0) Compute dyu' € HYE(2;RY) such that dyu' - u® = 0 and
(diut,v)y + (V[u® 4 7dsul], Vo) = 0

for allv e H}D(Q;Rg) with v - u® = 0; set u! = u® + rdyul and n = 2.
(1) Set a"1t+ = w" ' + prdu L. Compute diu™ € Hp(£2; RY) such that dyu™ -
a1t =0 and

(deu",v)y + (V[u" ! + O7dwu™], Vo) = 0
for allv e H (12 RY) with v - u"~*#* = 0. Then, set u™ = u"~! + 7du”.
(2) Stop if ||du||« + 07|V (du™)|| < estop o7 if nT = T.
(3) Increase n — n + 1 and continue with (1).

Remark 2.2. The first stopping criterion used in Algorithm i.e., step (2), applies

to the case of energy minimization and is chosen in such a way that, if we define the

approrimate harmonic map generated by the algorithm as uhN“"rl, where Ngiop 15 the

smallest integer for which the stopping criterion is met, then the following relationship
holds

(12) (VuhN“"”*l, Vv) = R(v) for all admissible v and || R| g1 0y < Estop-

The aim s to ensure a fair comparison of the methods in numerical experiments: By
utilizing the same tolerance for the standard Fuler, modified Euler, and midpoint methods,
the resulting approrimate harmonic maps satisfy the harmonic map equation with a
comparable accuracy (in the sense that the dual norm of the residual can be bounded by
the same tolerance). The second criterion applies to the case in which one is interested in
approzrimating the gradient flow dynamics until a certain prescribed final time T > 0.

2.2. Energy decay and constraint violation for the (6, u)-method. Hereafter, we
assume that the norm induced by the inner product (-,-), satisfies

(13) o] < e/?|jv]l.  for all v € HA(2;RY).

This inequality trivially holds for both the L?- and H!'-norms.
In the following proposition, we show the unconditional stability of the method.

Proposition 2.1 (energy identity). The sequence generated by Algorithm satisfies,
for all m > 2, the energy identity

Licm - P 1\ 5 n 1
(1) SIVa™ 2+ 7 dea |2+ TV 2+ (8= 5) 7S V|2 = 5900
n=1 n=2

Proof. Testing by the admissible test function v := dyu™, we have
deu™)2 + (V[u"" + Ordu™], Vdu™) = 0,

i.e.,
[deu™||2 + (Va2 4 (0 — 1/2)7Vdu", Vdu™) = 0,
and thus

1 1
e 2 + 5 (IVa" 2 = [ V"4 2) + (8 = 5 )7l Vdeu® |2 = 0.
Multiplying this relation by 7 and summing over n from n = 2 to n = m yields

1 i 1 - 1
§||V7~Lm||2 + TTLZ::Q [deu™||2 + (9 - 2)7'2;::2 [Vdu™||* = §HVU1H2-

Using the energy identity for the first step (n = 1) performed with the linearly implicit
Euler method, we obtain the asserted identity. O
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We now proceed with studying the constraint violation properties, which provide an un-
conditional linear rate and a quadratic rate under a mild but necessary discrete regularity
condition.

For a sequence (v"),>0, let d?v™ denote the second difference quotient

1 1
d?o" = = (dpo™ — o™t = — (" — 20" L "72), n > 2
T T

The following lemma will be useful in the analysis; it presents a discrete version of the
identity O;|v|? = 20;v - v.
Lemma 2.1 (discrete chain rule). For a sequence (v™),>0, we have
2dv™ - DI = dy ") — pride|dpo™|? — prd|d2o™)? — (1 = 2u) T|do™ 2,
forn = 2.
Proof. We start by splitting the left-hand side of the asserted identity as
2d, " - I = 9d™ Y2 2™ (v"*1/2 — e
= dy|v"|? — 2urdp™ - (dpv™ — dp™ ) — (1 = 2u) T|dv™ |2,
where we have used the relation
P2 gl yn=1/2 gl g ne]
= 7dpv"™ )2 — prdgo™ !
= pr(dp™ — dpo™ 1) + (1/2 — p) Tdpo™.
Note that
d"™ - (dp™ — dpo" 1) = (|dpo" ] — |dpo" 1 ?) /2 + T2 |dF0"? /2
= 7dy|dv™? /2 + T2|d20"|? ) 2;
then, the desired result follows immediately. O
From Lemma we deduce that, if dyu™ - @»~H# = 0, then
(15) dolu 2 = pr2dy| g2 + e a2 2 + (1 — 2p0) 7lde P,

for all n > 2. Using this identity, in the following proposition, we establish the constraint
violation property of the method.

Proposition 2.2 (constraint violation error). The sequence generated by Algorithm
satisfies, for all m > 2,

m m
(16) [u™? — 1= pr?|du™? + (1 — )7 |deu P + pr* Y |d7um ) + (1= 2p) 7 ) [dyu”
n=2 n=2

and

P = 1z < 72 (pallde™ |2 + (1 = ) e 2

(17) 2 = 2 2 = 2
ur? Y R P 11— 20 Y e 2).
n=2 n=2

Proof. Summing in over n from n = 2 to n = m and multiplying the result by 7, we
immediately obtain

m m
lu™|* — |ut? = ,u7'2<|dtum\2 — |dgut)? 4 72 Z \dfu"|2> + (1 = 2u) 72 Z |y .
n=2

n=2
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As |[u’|? = 1 and ! is computed by the linearly implicit Euler method, we have |u!|? =
WO + 72|dyut|? = 1 + 7%|dyu! [, which yields ([16). Integration of over {2 then leads
to the constraint violation relation . 0

From Proposition [2.2] we immediately deduce the following properties:
(a) If 0 < pp < 1/2, then |[u™| > 1 almost everywhere in f2.
(b) If u =0, reduces to the first-order constraint violation of the linearly implicit
Euler method.
(c) If = 1/2 (midpoint and modified Euler methods), then reduces to

2 m
™ —1= %(\dtum|2 + |dyut |* + 72 Z |d,52u"\2)
n=2

In the following proposition, we provide uniform upper bounds of the constraint violation
error.

Proposition 2.3 (bound of the constraint violation error). Let 1/2 < 6 < 1.

(a) There exists ¢c; > 0 such that |||[u™? — 1|1 < e17 for all m > 2 unconditionally.

(b) Let u = 1/2. There exists ca > 0 such that |||u™|*> — 1|z < cat? for m > 2 if and only
if there exists ¢ > 0 such that the discrete regularity property

m
(18) ™ |* + [ldeu [|* + 72 ) [ld7u"|* < e

n=2
is valid. The constants ci,ca > 0 depend on the energy of u’ and the constant c, > 0
m ; co depends also on the constant c in .

Proof. For all n > 2, the identity 7d?u™ = dyu™ — dyu"1 implies
T |dfu? < 2(|dea™|? + ldeu™ ),

and summation over n yields the inverse inequality

m m
(19) T2y diut P <4 d|?.
n=2 n=1

Combining the inverse inequality with the energy stability from Proposition
we see that the bound in is of order 7 unconditionally. If © = 1/2, by design, the
bound is of order 72 if and only if the sharp discrete regularity condition holds. [

The unconditional stability and the control of the constraint violation allow to apply
weak compactness arguments and show the weak convergence of a subsequence of approx-
imations toward a harmonic map; see, e.g., the proofs in [12, Ch. 7].

Remark 2.3 (beyond harmonic maps). The proposed approach is general and can be
applied to a vast class of geometrically constrained partial differential equations. As an
example, consider the LLG equation (see, e.g., [14, 6l [7, 21], 4] )

Om = —m X Am + am x Oym,

which models the dynamics of the magnetization m, a unit-length vector field, in ferro-
magnetic materials. Here, o > 0 denotes the so-called Gilbert damping constant. Ap-
plying the approach to this problem leads to the following method: Given m° and m'
(with m' computed by one step of the linearly implicit Euler method), for n > 2, set
mr It = m T urdym™ ! and compute dym™ € HE(£2;RY) such that dym™-mn 1t =0
and

a(dym™,v) + (M x dym™,v) + (V[m" ! + 0rdym™], Vo) = 0
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for allv € HY(2;RY) with v-m"~1*# = 0. Combining the analysis of this work with those
in [0, 1], one can show that the method is unconditionally stable, formally of second order
in time if 6 = p = 1/2, and convergent toward a weak solution of the problem.

2.3. The linearly implicit two-step BDF method. In this subsection, we recall the
linearly implicit two-step BDF method for harmonic maps proposed in [2], along with
its energy decay and constraint violation properties. This will provide the theoretical
foundations for the experimental comparison of the algorithms carried out in Section [4

The discrete time derivative %™ associated with the two-step backward difference formula
(BDF?2) is expressed as

u" = %(31;" — 4y 4 u"72).

Following [4], let u" := u" ! + 7dyu™! = 2u™! — "2 be the extrapolated value at
tn, = nt of the linear interpolant based on (t,_2,u" 2) and (t,_1,u""!). Notice that
-n

u™ = u" 1 for = 1 is an approximation to u(t,).

For the given initial value u°, one can compute the second starting approximation u! by
a single step method, for instance, by employing one step with the linearly implicit Euler
method @ Then, for given approximations u" % and u"~1, we first seek 4" € H} (£2; RY),
satisfying the linearized unit-length condition 4™ - 4™ = 0, such that

1
(20) (", v)y + g(V[4u7H — U2 4 270", Vo) = 0
for all v € HE (2 R?) with v - 4™ = 0. Notice that the new approximation
1
= g (duT = 4 2"

satisfies the required Dirichlet boundary condition u"|r, = up, provided the approxima-
tions ©"~2 and u" ! satisfy this condition.
The algorithm of the BDF2 method [2] is summarized as follows.

Algorithm 2.2 (BDF2 method).  Choose u® € H'(2;R") with v°|r, = up and [u°| =
1.
(0) Compute dyu' € HYE(2;RY) such that dyu' - u® = 0 and
(du',v)e + (V[u® + 7dyu'], Vo) = 0
for all v e HL(2;RY) with v-u® = 0; set u' = u® + rdyu’ and n = 2.
D
(1) Set u™ = 2u"~' — u"~2 and compute " € HE(£2;R") with 4™ -u" = 0 and
1
(W, v) + g(V[élu”_l —u"? 4+ 274", Vo) =0

for all v € HE(2;RY) with v-a" = 0; set u" = (4u™"! —u""2 4 274")/3.
(2) Stop if |u"||« + 27||Vi"||/3 < egtop or if nT = T.
(8) Increase n — n+ 1 and continue with (1).

Remark 2.4. (i) Notice also that can be written in the form
(", v)x + (Vu",Vov) =0

for all v € HY(2;RY) with v-a" = 0.
(ii) Similarly to Algom'thm the first stopping criterion used in step (2) of Algom'thm
s chosen in such a way that the following relationship holds

(21) (Vuiv‘“t"”_l, Vv) = R(v) for all admissible v and ||R| g1(0) < €stop-
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Note that the first condition in holds with equality sign for the implicit Euler, modified
Euler, and midpoint methods, while the first condition in holds approximately for the
BDF2 method. The aim is to ensure a fair comparison of all four methods in numerical
experiments.

We now recall the main properties of the BDF2 method established in [2]:
(i) Energy decay property: Let G € R?*2 be the positive definite, symmetric matrix given

by
1 5 =2

Let U™ = (u™,u™ )" and let || - ||¢ be a BDF-adapted variant of the L? norm,

Jea" 2 = (U, ) = =2 = () + ),

Then, the BDF2 method satisfies the following energy identity (G-stability) for all m > 2
m A
Ve e a2+ S (@ = v 2
n=2 n=2

Constraint violation result: If u' is computed by the linearly implicit Euler method @,
the sequence (|u"|),>1 is increasing almost everywhere in (2, and we have the following
constraint violation result: For all m > 2, it holds that

m|2 3 Ly o 12 . 3 4 1 2, m|2
n=2

It follows that H |u™|? — 1H 11 < ¢p7P unconditionally for p = 1. The result holds for p = 2

under the sharp discrete regularity condition

(23) ldga | +72 ) lldfu™|? < .

n=2
3. VARIABLE STEP SIZES

In this section, we extend the (6, u)-method to allow for variable step sizes, aiming to
improve the accuracy of the numerical solutions near singularities (e.g., a singularity at
t = 0 for nonsmooth initial data or a finite time blow-up even for smooth initial data) and
to apply acceleration techniques to speed up the convergence to stationary states, retaining
the unconditional energy stability and the constraint violation properties. The analysis of
the BDF2 method depends crucially on its G-stability property; cf. [2]; consequently, the
extension to variable step sizes is cumbersome.

In this section, we set ¢y := 0, and, for given positive step sizes (7,)n>1, we define the
nodes t, :=t,—1 + 7, n = 1. Using this notation, we denote by

u® — un—l

dtu” =
Tn
the backward difference quotient.
For given starting approximation u?, we compute u' by one step of the implicit Eu-
ler method: First, we determine dyu! € HJ (§2;RY), satisfying the linearized unit-length

condition dyu! - u® = 0, such that
(24) (deut,v)y + (VU + 1 Vdgut, Vo) = 0
for all v € HY(2;RY) with v - u® = 0. Then, we define u' := u® + 7 dyul.

0



APPROXIMATION OF HARMONIC MAP FLOWS 11

Next, for n > 2, let s,, := 7,,/7,—1 denote the ratio of two consecutive step sizes. For
given approximations u" 2 and u" ™!, and 0 < p < 1, let

2

an—1+u — (1 + Msn)un—l o 'usnun— — un—l + MTndtun_l

be the extrapolated value at ¢,_14, = t,—1 + u7, of the linear interpolant based on
(tn—2,u™ %) and (t,—1,u™ 1). Then, seek diu" € H{ (2 RY), satisfying the linearized
unit-length condition dy;u™ - u"~!*# = 0, such that

(25) (du™,v)y + (V[u”_l + Ot diu™], Vo) =0

for all v € Hllj(Q;Rf) with v-u"~!*# = 0. Here, 0 < # < 1. Thus, having computed d;u",
we define the new approximation u” := u"~! 4 7,,d;u™ that satisfies the required Dirichlet
boundary condition u"|r, = up, provided the approximation u™ 1 at the previous step
satisfies this condition.

Remark 3.1. Similarly as the (0, p)-method with constant step size for harmonic
maps, reduces to

(i) the linearly implicit Euler method for @ =1 and u = 0;
(ii) the linearly implicit midpoint method for @ = 1/2 and p = 1/2;
(iii) a modified linearly implicit Euler method for 6 =1 and p=1/2.

We now extend the analysis of the previous section to the case of variable step sizes.
We discuss the energy decay and constraint violation properties of the method. It can be
proved that the iteration becomes stationary for n — oo.

We begin with the discrete energy law satisfied by the approximations.

Proposition 3.1 (energy decay). For the (0, pu)-method andm > 2, ifu' is computed
by the linearly implicit Euler method , we have

Lic m - ay2 | TP 1\ & n 1
(26) SIVu™ P + Dl + ||V + (0 - 2) > mll Ve |? = 5[ Vall .
n=2

n=1

The proof is analogous to the one of Proposition [2.1] and is therefore omitted.
We now study the constraint violation properties. In the case of variable step sizes, the
second difference quotient d?u™ is defined by

1
(27) Pu™ = —(dw" — d™Y), n>2.

Tn

We have the following analogue of Lemma [2.1
Lemma 3.1 (discrete chain rule). For a sequence (v")n>0 and n > 2 we have
2dp™ - OV = dy o™ — pridy|dpw™|? — prd|d2om ) — (1 = 2u) | dio™ 2

We omit the proof as it follows along the lines of that of Lemma[2.1] Lemma[3.1]implies
that, if d;u™ - a"~1T* = 0, for n > 2 we have

(28) dt\u”]2 = uTﬁdt\dtu"IQ + qu;’]dtQu"\z +(1- QM)Tn\dtu"F.

This relation is the crucial ingredient for the identity established in the following propo-
sition.
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Proposition 3.2 (constraint violation error). For the (6, u)-method and m > 2, if
[u®| =1 and u' is computed by the linearly implicit Euler method , we have

u™? =1 = pr|dpd™ P+ (1= p)ri|dpu | + Z si1) | dpu”®
(29)
+,uZT4]d u"? + (1 —2p) ZT2|dtu”]2
n=2

Thus, we have the constraint violation estimate

m—1
™ ? =1z < prplld™|* + (1= )7 lldeu |2 4+ 1Y 7ol L= spy |l de™ |

(30) . . n=1
+ uZTﬁdeunHz + 1 —2p] ZfﬁHdtuT‘H?-
n=2 n=2

Proof. We multiply by 7, and write it in the form
" |? = " = (e P = [ dpa ) A Pt P (1 = 20) 7ol dpu® .

Summing over n from n = 2 to n = m, we obtain
m
e e ([
=2

m m
+ MZ HdPum 2 4 (1 - 2p) ZTg|dtu”\2.
n=2 n=2

Shifting the indices in the sum and using the definition of the step size ratio (sp4+1 =
Tn+1/Tn), the first term on the right-hand side can be rewritten as

m
D o ra(ldew P = |de 1 ?) = i de™ P — 75 | dyu | + Z — sp 1) |diu” .
n=2
We thus obtain
™ — Ju'?
= (7l P = 73 deut 2 + Z 2y lda P + 3 i)
n=2

m
+(1-20) Y 2ld?.
n=2

If |u®] = 1 and u! is computed by the implicit Euler method, then |u!|? = |[u°|>+72|dut|? =
1 + 7¢|dsut|?, which yields (29)). Taking the L' norm, we obtain the constraint violation
estimate (30)). g

Remark 3.2. (i) Notice that in the case of constant step size, we have s, = 1 for all
n = 2, and the bound in the constraint violation estimate reduces to the expression
on the right-hand side of .

(i) If 0 < p < 1/2 and if the step size monotonically decreases, i.e., if s, < 1 for all
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2 < n < m, it follows from that |u™| > 1
(iii) From , for u =0, we obtain the constraint violation identity

m
WP - 1= 2 d)?
n=1

of the implicit Euler method. For u = 1/2, we obtain the constraint violation identity

1 m—1 m
W -1 = 3 (7’12|dtu1|2 Frplda™ + ) (1= sk )ldw )P+ rldiun)?
n=1 n=2

of the midpoint and modified Euler methods.

4. NUMERICAL EXPERIMENTS

We illustrate the accuracy in approximating the unit-length constraint and the overall
performance of the proposed (6, u)-method (Algorithm through a series of numerical
experiments in two dimensions, comparing it with the BDF2 method (Algorithm .
Moreover, for the (6, u)-method, we present numerical results obtained using variable step
sizes.

In all computations, the domain of the problem is 2 = (—1/2,1/2)? with I, = 942,
and the vector fields attain values in R3. For the spatial discretization, we consider a fixed
unstructured triangular mesh 7y, of {2 generated by Netgen [30] (consisting of 4901 vertices
and 9544 triangles, and having mesh size h ~ 2.287 - 1072). For the approximation of
vector-valued functions, we use H'-conforming first-order finite elements, i.e., we consider
the space Vj, C H'(£2;R3) of vector-valued Tj-piecewise affine and globally continuous
functions. The pointwise orthogonality imposed in the variational formulation of the
methods is enforced only at the vertices of 7;,. For all methods, the solution of the arising
constrained linear system is based on the null-space method given in [29] 27]. Moreover,
we consider a fixed tolerance esop = 1076 or a fixed final time 7' = 1 in the stopping
criterion of step (2).

4.1. Constant step size. We start with a collection of numerical experiments to assess
the performance of the schemes in the case of constant step size.

4.1.1. Comparison of Algorzthms 2 1 and 4 (H'-gradient flow). We consider the model
problem from [2, Section 4.1]. Let up = 7 |, where

(31) g (x) = (|xy2+1)* (22,1~ [z*)"

denotes the inverse stereographic projection. It is well known that v = 7Ts_tl is a harmonic
map with u|r, = up.

The discrete Dirichlet data are obtained interpolating the exact solution on the bound-
ary. To initialize the iterative algorithms, we consider a fixed initial guess u% = Tpud,
where Zj, : C(£2;R?) — V}, denotes the nodal interpolation operator (or its scalar-valued
counterpart) and

ur(z) + ¢(z)
uz(z) — p(z)
uz(x)

—-1/2

(32)  w’(x) = ([wa(z) + (@) + [ua(z) — @(2)] + us(2)?)

with
o(x) = 16 sin(4may) (2?2 — 1/4) (23 — 1/4).
In our first numerical experiment, we compare the proposed (6, u)-method and the
BDF2 method for the case of the H!-gradient flow, i.e., (-,-), = (V-, V-), considering the
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step sizes 7 = 27 for m = 4,...,10. For the (0, u)-method, we consider the relevant
cases of the implicit Euler method (# = 1, ¢ = 0) and the midpoint method (6 = 1/2,
= 1/2). The results are displayed in Table I} We compare the algorithms and test their
convergence with respect to 7 by assessing the following quantities:

e Ngiop, the number of iterations required to meet the tolerance;

* 0 [uth“’p] = H\uhNStOp\ — 1|| e, the constraint violation error, measured using the L°-
norm (not unconditionally controlled by the algorithms);
. 6uni[uhNS°°P] = ||Ih\uhN“°p\2 — 1|71, the constraint violation error, measured using the

L'-norm (this is the quantity that should decay linearly for the implicit Euler method
and, under a sharp discrete regularity condition, quadratically for the BDF2 method
and the midpoint method);

e A% B? and C?, the quantities that, if uniformly bounded with respect to 7, guarantee

the second-order convergence of 5uni[uth°°p] as 7 — 0 for the BDF2 method (see (23))
and the midpoint method (see (L8))). Specifically, we have

Nstop
N,
A =72 Y  diupl® B = lde |, and C% = [ldpuy, 72,
n=2

Note that C? is relevant only for the midpoint method, and that none of these quantities
plays a role in the analysis of the implicit Euler method;
e Jener [uhNStop] =|I [uhNS“’p] — I[u]|, the energy approximation error.

Finally, eocs and eocyyn; denote the experimental rates g of the convergences of d4 [uth“’p]

stop]

and Oynj [ug as 7 — 0, respectively, computed as logarithmic slopes

q = —log(errgyq/erry)/ log2

for any two consecutive instances of the errors.

Looking at Table (1} we see that Ngep o 71 for all algorithms. For any fixed 7, the
algorithms require approximately the same number of iterations to satisfy the stopping
criterion. In particular, for the BDF2 and the midpoint methods, the number of iterations
is almost identical. For the implicit Euler method, we see a clear first-order convergence
of the L'-error (as expected from the theory). We also see a first-order convergence of the
L-error. For the BDF2 method and the midpoint method, we observe a second-order
convergence of the constraint violation error measured in both the L'-norm and the L°-
norm. The midpoint method is slightly more accurate, in the sense that for each value
of 7 the constraint violation error is about 1/3 of the one of the BDF2 method. The
quantities A2, B? (and C? for the midpoint method) stay uniformly bounded as 7 — 0,
which is a numerical validation of the discrete regularity property. For both methods, the
quantity A? converges linearly to 0 as 7 — 0. The energy approximation error decays
for the implicit Euler method, whereas it stabilizes at about 2.8 - 1074 for both the BDF
method and the midpoint method. We believe that the lack of convergence of the energy
error as 7 — 0 for the higher-order methods is due to the spatial approximation error
becoming predominant.

In Fig. [T} for both the BDF2 method and the midpoint method, we show the evolution
of the energy and the constraint violation L'-error during the iteration for 7 = 27°. On
the one hand, we see that the energetic behavior of the methods is very similar, as the
curves are nearly superimposed (for 7 = 27° the difference between the energy values
obtained with the two schemes is of the order of 0.01%). For both methods, the energy
monotonically decays in an exponential fashion and converges to the approximate energy
value of the inverse stereographic projection. On the other hand, the behavior of the
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Implicit Euler method

i Nutop Oooltiy *°P]  e0Cae  Sunilup *°P] e0Cuni Oomor[up *°P]
2—1 274 1.068e—2 — 4.790e—3 — 1.757e—2
27° 535 5.445e—3 0.9716 2.436e—3 0.9755 8.420e—3
276 1057 2.750e—3 0.9856 1.228¢—3 0.9876 4.008e—3
27 2101 1.382e—3 0.9928 6.169e—4  0.9938 1.846e—3
278 4190 6.926e—4 0.9964 3.091e—4  0.9969 7.775e—4
29 8368 3.468e—4 0.9982 1.547e—4  0.9984 2.460e—4
2710 16723 1.735e—4 0.9991 7.741le—5 0.9992 1.904e—5
BDF2 method
T Netop 5m[uhﬁt°p] €0Coo 5uni[uhﬁt°p] €0Cuni 6anr[uh5t°p] A? B?
27 262 1.449e—3 — 6.915e—4 — 2.106e—3 3.771le—3 1.134e—1
2% 523 3.778e—4 1.940 1.805e—4 1.937 3.342e—4 1.988e—3 1.204e—1
2~ 1046 9.649e—5 1.969 4.615e—5 1.968 1.260e—4 1.019e—3 1.242e—1
2~ 7 2090 2.439e¢e—5 1.984 1.167e—5 1.984 2.437e—4 5.153e—4 1.26le—1
278 4179 6.13le—6 1.992 2.934e—6 1.992 2.735e—4 2.591le—4 1.271le—1
279 8357 1.537e—6 1.996 7.356e—7 1.996 2.810e—4 1.299e—4 1.276e—1
2710 16712 3.848¢—7 1.998 1.842e—7 1.998 2.829e—4 6.505e—5 1.278e—1
midpoint method
T Nstop 6m[uthtop] €0Coo 6uni[uhNStop] €0Cuni 6ener[uhNStop] A? B2 C?
21 263 4.84le—4 2.308e—4 — 5.069e—4 3.908e—3 1.134e—1 7.338e—15
27° 524  1.260e—4 1.942 6.019e—5 1.939 7.805e—5 2.022¢—3 1.204e—1 7.967e—15
276 1046 3.217e—5 1.970 1.538e—5 1.968 2.311e—4 1.027e—3 1.242e—1 8.307e—15
277 2090 8.129e—6 1.984  3.890e—6 1.984 2.703e—4 5.174e—4 1.26le—1 8.484e—15
2—8 4179 2.044e—6 1.992 9.780e—7 1.992 2.802e—4 2.596e—4 1.271e—1 8.514e—15
279 8357 5.123e—7 1.996 2.452e—7 1.996 2.827e—4 1.300e—4 1.276e—1 8.529e—15
2710 16712 1.283e—7 1.998 6.139e—8 1.998 2.833e—4 6.508e—5 1.278e—1 8.552e—15
TABLE 1. Comparison of the implicit Euler, BDF2 and midpoint methods

(H!'-gradient flow).

107*
20 T T
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- - - MP 1.5 | —
15 — —— BDF?2
—_— g2
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n n

FIGURE 1. Evolution of the energy (left) and the constraint violation L!-
error (right) for the approximations generated by the BDF2 and the mid-
point (MP) methods (H'-gradient flow, 7 = 27°).

schemes is clearly different as far as the evolution of the constraint violation error is
concerned. While the error is monotonically increasing for the BDF2 method (as expected
from the theory, see ), for the midpoint method it reaches its maximal value in the very
first iteration, and then decays monotonically until it stabilizes to its final value. For the
sake of readability, in the plots we have omitted the results for the implicit Euler method.
However, we report that the energetic behavior is very similar, whereas the constraint
violation error, in agreement with , has the same monotonically increasing behavior
of the BDF2 method (but the value is one order of magnitude larger).

4.1.2. Comparison of Algorithms and (L?-gradient flow). We repeat the exper-
iment of Section for the implicit Euler, midpoint, and BDF2 methods, this time
focusing on the L?-gradient flow (i.e., (-,-)x = (-,-)) instead of the H'-gradient flow. The
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spatial discretization and the stopping tolerance are the same as before, while we consider
the values 7 = 27 for m = 10,..., 16 for the step size.

Implicit Euler method
stop]

stop] stop]

T Nstop 9o [ug €0Coo  Ouni[uy, €0Cuni  Jener (U,
2710 358 2.718e—2 1.419e—2 6.182e—2
271 704 1.430e—2 0.9268 7.535e—3 0.9132  2.920e—2
2712 1394 7.338¢—3 0.9622 3.895¢—3 0.9520  1.396e—2
2713 2776 3.719e—3 0.9807 1.982¢—3 0.9743  6.697¢—3
2714 5538 1.872e—3 0.9902 1.00le—3 0.9865  3.170e—3
2715 11063 9.392e—4 0.9951 5.027e—4  0.9931  1.434e—3
2716 22113 4.704e—4 0.9975 2.519e—4  0.9965 5.726e—4

BDF2 method

T Nstop  Soo[ty, €0Coo  Suniluy, “*°P] eoCuni Gener[uy °*°P]  A® B?

2710 347 1.609e—2  — 7.327e—3 — 3.100e—2  6.151le2 4.441e3
27 691 5.912e—3 1.444 2.319e—3  1.660  8.393e—3  5.269¢2 5.857e3
2712 1382 2.111e—3 1.486 6.787e—4  1.772  2.097e—3  3.977e2 7.058e3
2713 2763 7.093e—4 1.574 1.876e—4  1.855  3.567e—4  2.692e2 7.954e3
27 5526 2.237e—4 1.664 4.983e—5 1.913  1.15le—4  1.670e2 8.552e3
2715 11051 6.862e—5 1.705 1.290e—5 1.949  2.400e—4  9.726el 8.918e3
2716 22101 2.068¢—5 1.731 3.291e—6 1.971  2.724e—4  5.438el 9.128e3

Stop]

midpoint method

T Nstop §m[uivsmp] €0C oo &,n;[uivsmp] €0Cyni Jcncr[uhNSwP] A2 B? c?
2~ 10 347 5.514e—3 — 2.491e—-3 — 8.888e—3 7.141e2 4.441e3 9.241e—13

271 692 2.013e—3 1.454 7.798¢—4  1.675  2.439e—3  5.826e2 5.857e3 9.678¢—13
2712 1382 7.107e—4 1.502 2.27le—4 1.780  4.910e—4  4.258¢2 7.058e3 9.953e—13
2713 2764 2.372e—4 1.583 6.263e—5 1.858  7.187e—5  2.818e2 7.954e3 9.896e—13
27 5526 7.469e—5 1.667 1.662e—5 1.914  2.275e—4  1.721e2 8.552e3 9.974e—13
271 11051 2.291e—5 1.705 4.302e—6 1.950  2.690e—4  9.924el 8.918e3 9.987e—13
2716 22101 6.905e—6 1.730 1.097e—6  1.971  2.798¢—4  5.516el 9.128e3 9.994e—13

TABLE 2. Comparison of the implicit Euler, BDF2 and midpoint methods
(L2-gradient flow).

The results of the simulations are displayed in Table [2] For the implicit Euler method,
the expected linear decay of the constraint violation error (measured both with respect
to the L'-norm and the L*-norm) is clearly visible. However, differently from what
we observed for the H'-gradient flow, this behavior emerges only for the smallest step
sizes (there is a much longer preasymptotic phase than for the H'-gradient flow). The
energy approximation error converges to 0 linearly as 7 — 0. In terms of accuracy, the
performance of the H!'-gradient flow is significantly better, e.g., the smallest constraint

violation error obtained with the L?-gradient flow, &y [uthp] = 2.519 - 1074, requires
7 = 2716 and 22113 iterations. With the H'-gradient flow, the choice 7 = 27 results only
in 8368 iterations and leads to a smaller error (dyn; [uflv“"p] = 1.547 - 107%).

A long preasymptotic phase is observed also for the BDF2 method with L2-gradient
flow (much longer than for the version with H'-gradient flow). Indeed, the quadratic
convergence guaranteed by the method is (almost) seen only for the smallest step sizes.
On the other hand, as we saw for the case of the H'-gradient flow, the convergence of the
energy approximation is spoiled by the spatial approximation error. A difference between
the two considered gradient flow metrics is visible also looking at the order of magnitude
of A% and B?, with the values for the L2-gradient flow being significantly larger than
those for the H'-gradient flow. The quantity A? tends to 0 as 7 increases, whereas we can
observe a slight growth of B2.

Similarly, in the case of the midpoint method, we see the expected second-order con-
vergence of the L'-error only when the step size becomes sufficiently small. Again, the
energy approximation error does not converge. The quantity A? tends to 0 as 7 decreases,
whereas we can observe a slight growth of both B? and C?.
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4.1.3. Modified implicit FEuler method. We repeat the experiment for the modified implicit
Euler method (Algorithm [2.1) with § = 1 and p = 1/2), considering both the H!-gradient
flow and the L?-gradient flow. The modified implicit Euler method is a mixture of the
standard Euler and midpoint methods, for which the variational formulation to be solved
at each iteration is the one of the standard Euler method. However, like in the midpoint
method, for n > 2, the orthogonality constraint is considered with respect to extrapolated

~n—1/2 . _
value u, / , instead of wuj L
Modified implicit Euler method (H'-gradient flow)
T Nstop Ooo [uivsmp] €0Co0 6uni[ug5t°p] €0Cuni 5ener[uhNSt°p] A? B? c?
2= 271  4.830e—4 — 2.304e—4 — 5.055e—4 3.706e—3 1.134e—1 7.037e—15

275 532 1.2569e—4 1.940 6.016e—5 1.937 7.815e—5 1.966e—3 1.204e—1 7.795e—15
276 1054 3.216e—5 1.969 1.538e—5 1.968 2.311le—4 1.012e—3 1.242e—1 8.216e—15
2=7 2099 8.129¢e—6 1.984  3.890e—6 1.984 2.703e—4  5.136e—4 1.26le—1 8.318e—15
2-8 4187 2.044e—6 1.992  9.780e—7 1.992 2.802e—4  2.587e—4 1.27le—1 8.490e—15
279 8365 5.123e—7 1.996 2.452e—7 1.996 2.827e—4 1.298e—4 1.276e—1 8.517e—15
2710 16721 1.283e—7 1.998 6.139¢—8 1.998 2.833e—4  6.502e—5 1.278e—1 8.530e—15

Modified implicit Euler method (L*-gradient flow)

T Nstop 6oo[uhN5t°p] €0Coo §u,,i[uhN5t°p] €0Cuni 6ener[uhN5°°p] A? B? C?

2-10 347 5.462e—3 — 2.461e—3 — 8.764c—3  6.533c2 4.441e3 9.186e—13
271 700 1.996e—3 1.453 7.757e—4  1.666  2.423e—3  5.499¢2 5.857e3 9.657e—13
2712 1390 7.109e—4 1.489 2.266e—4  1.775  4.892e—4  4.106e2 7.058e3 9.945¢—13
2713 2772 2.380e—4 1.579 6.258¢—5 1.857  7.205e—5  2.756¢2 7.954e3 9.894e—13
2714 5534 7.495e—5 1.667 1.662e—5 1.913  2.275e—4  1.699¢2 8.552e3 9.973e—13
2715 11059 2.296e—5 1.707 4.302e—6  1.950  2.690e—4  9.854el 8.918e3 9.987¢—13
2716 22109 6.912e—6 1.732 1.097e—6 1.971  2.798e—4  5.496el 9.128e3 9.994e—13

TABLE 3. Performance of the modified implicit Euler method (H!- and
L2-gradient flows).

The results of the simulations are displayed in Table |3} Comparing the performance of
this method for both gradient flow metrics with the previous three approaches, we can see
that the modified implicit Euler method behaves like the midpoint method.

4.1.4. Performance in the presence of singularities. 1t is well known that the heat flow of
harmonic maps can develop singularities, even if the initial value is smooth. In this sub-
section, we test the performance of the projection-free linearly implicit midpoint method
in such a situation.

(A) Initial value. (B) Final value.

FIGURE 2. Pictures of the initial value (left) and the final value (right).
The picture of the final value refers to the results obtained for 7 = 2714,
The color scale refers to the third component of the field, which attains
values between -1 (blue) and 1 (red).
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The problem specifications are the same as in the previous experiments, except for the
initial value and the stopping criterion. We consider the initial value [19]

(33) (@) = o~ (wsin ¢(2]2]), 2] cos p(2l])) "

with ¢(s) = (37/2) min{s?,1}. We refer to [I3, Section 6.2] for numerical results for the
harmonic map heat flow with this initial value obtained with the linearly implicit Euler
method @ Restricting ourselves to the L2-gradient flow and the midpoint method, we
simulate the gradient flow dynamics in the fixed time interval [0,7] with T'= 1 using the
values 7 = 27" for m = 11,...,16 for the step size. For pictures of the initial value u2
and the final value uhN (with N = 2™) computed by the algorithm for the case m = 14,
we refer to Fig. 2]

midpoint method

T N 5oo[uhN] €0Co0 §uni[uhN] €0Cuni A? B? C?

27112048 6.696e—1 — 3.213e—3 —  1.446ed4 7.644e3 1.924e—10
2712 4096 2.807e—1 1.254 1.062e—3 1.597 1.67led 1.156e4 9.759e—13
2713 8192 6.974e—2 2.009 3.036e—4 1.807 1.480e4 1.684e4 8.836e—13
2714 16384 1.058e—2 2.720 8.545¢—5 1.829 1.057e4 2.37led 8.563e—13
2715 32768 1.311e—3 3.013 2.694e—5 1.666 7.707e3 3.220ed 8.498e¢—13
2716 65536 2.706e—4 2.276 8.859¢—6 1.604 6.026e3 4.182e4 8.484e—13

TABLE 4. Performance of the midpoint method for the harmonic map heat
flow in the presence of singularities.
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FIGURE 3. Evolution in [0,1/5] of the energy (left), the L?-norm of the
update (middle), and the constraint violation L!-error (right) for the ap-
proximations generated by the midpoint method (7 = 2714).

Looking at the results in Table 4] we observe the convergence of the constraint violation
errors, but the rate is only superlinear. In particular, the convergence of §,pn; [u,]:[ ] is not
of second order, which is in agreement with the unboundedness of B?, for which we
observe a moderate grow. In Fig. [3, for 7 = 27! we show the evolution in [0,1/5] of
the energy I[u; ()], of the L?-norm of ||Qyup,(t)||, and of the constraint violation error
|Zn|u; (£)]?> — 1|1 (note that we omit the results for ¢ € (1/5,1] because the curves are
nearly constant, as the evolution has already reached the stationary state). Here, up,(t)
(resp., u;(t)) denotes the globally continuous and piecewise affine interpolant (resp., the
forward piecewise constant interpolant) of the sequence of snapshots (u}),>0. Looking
at the evolution of the energy, we see an abrupt decay at ¢ =~ 0.06, which is when the
singularity disappears. In this phase, the dynamics is faster, as the spike in the plot of

||O¢un(t)| reveals, which leads to a local growth of ||Zp|u/ (£)[* — 1||11.

4.2. Variable step size. In this section, we present two numerical experiments to show-
case the performance of the midpoint method with variable step size.
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4.2.1. Prescribed variable step size. Consider the projection-free linearly implicit midpoint
method with variable step size 7,, i.e., the iteration defined by with § = pu = 1/2 for
n > 2 (initialized by one step of the implicit Euler method with step size 71 for n = 1).
From the analysis of Section [3] we obtain that the iterates generated by the scheme satisfy
the discrete energy law

1 “ 72 1
(34) 3l VA" + X malda | + VP = 9l
and the upper bound of the constraint violation error

m
(ﬁMWWAHﬁMWWV+§:ﬁW@fW)

n=2

™ =1l <

N | =

(35) 1 m—1
5 2 Tall = st llld
n=1

see (|26 and , respectively. We now aim to exploit the flexibility given by the variable
step size to accelerate the convergence to stationary configurations.

First of all, motivated by the heuristic fact that the step size should increase as the
iteration evolves toward convergence, we aim to obtain a nondecreasing sequence of step
sizes, i.e., we impose that 7, < 7,41 or, equivalently, s,4+1 > 1.

Consider now the right-hand side of , which consists of two terms. Up to the
generalization to variable step sizes, the first term is the same term that is present in
the corresponding estimate for the method with constant step size. This term decays
quadratically with respect to the step size if a discrete regularity condition is satisfied.
The second term arises when the step size used in the method is not constant. Motivated
by the similarity of this term to the second term on the left-hand side of , and observing
that the latter is uniformly bounded, we aim to define 7,41 in such a way that the step
size powers in the two terms on the right-hand side of are balanced, which is true if
I1— s% 41l = 5721 41— 1 = cry, for some ¢ > 0. Manipulating this identity, we obtain the step
size update

(36) T+l = TnV 1+ cmy.

To numerically validate this choice, we repeat the experiments of Sections and
for the linearly implicit midpoint method with variable step size. We consider the initial
step size 71 = 27™ for m = 6,...,10 for the H'-gradient flow (resp., m = 10,...,16 for
the L2-gradient flow) and update it during the iteration using the aforementioned formula
with ¢ =1, i.e., Th41 = T/ 1 + T

The results of the simulation are displayed in Table |5, where we collect the same outputs
considered before, plus the value 7y, of the step size at the final iteration.

Looking at the results obtained for the H'-gradient flow and comparing them with those
obtained for constant step size (see the third table in Table , we see that the quality of
the results improves significantly and the method with variable step size clearly overcomes
the one using a constant step size. Indeed, for the same computational cost, i.e., if the
number of iterations is approximately the same, the constraint violation error observed
for the method with variable step size is much smaller: e.g., for about 2000 iterations
(obtained for 7 = 277 in the case of constant step size), the constraint violation error
measured in the L'-norm is of the order of 1075; for the same number of iterations, the
method with variable step size yields an error of the order of 1078, Looking at the other
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midpoint method with 7,41 = 7,1 + 7, (H-gradient flow)
T1 Nstop  TNgpop 000Uy, uni [U), ener (U, **°P] A? B? c?
2=0 139 183.5 1.775¢—5  5.605¢—6 3.010c—4  1.435¢—3 1.242c—1 1.247e—18
277 266 9.413 4.710e—6  1.488e¢—6 2.882e—4  7.250e—4 1.26le—1 2.319e—16
2-8 522 4.042 1.216e—6  3.843e—7 2.847c—4  3.644e—4 1.271le—1 3.591e—16
279 1035 3.938 3.09le—7  9.774e—8 2.838¢c—4  1.827e—4 1.276e—1 2.816e—17
2719 2059 2.158 7.795e—8  2.465e¢—8 2.836e—4  9.147¢—5 1.278¢—1 1.969e¢—16

stop] S stop] S

midpoint method with 7,41 = 7,V1 + T, (Lz—gradient flow)

1 Nstop TNstDp (500 [uthtop] 6lmi[uhNStop] 6ener [u:’stop] A2 BZ C2

2710 319 0.001200 5.503e—3  2.485e—3 8.865¢—3  7.148¢2 4.441e3 9.574e—13
2~ 1 637 5.780e—4 2.011le—3 7.780e—4 2.433e—3 5.831e2 5.857e3 9.616e—13
2712 1272 2.890e—4 7.102e—4 2.267e—4 4.894e—4 4.261e2 7.058e3 9.926e—13
2713 2543 1.445¢—4 2.370e—4 6.251e—5 7.227e—5 2.819e2 7.954e3 9.971le—13
2714 5086 7.225e—5 7.465e—b5 1.659e—5 2.276e—4 1.721e2 8.552e3 9.934e—13
2715 10170 3.612e—5 2.290e—5 4.295e—6 2.691e—4 9.928el 8.918e3 9.977e—13
2716 20339 1.806e—5 6.902¢—6 1.095e—6 2.798e—4 5.518el 9.128e3 9.983e—13

TABLE 5. Midpoint method with prescribed variable step size.

quantities, we see that the lack of convergence of the energy values is the same for both
variants of the method and that the discrete regularity condition seems to hold.

For the L%-gradient flow (compare the second table in Table [5| with the third table in
Table , we see that the difference in the performance of the midpoint method in the case
of constant and variable step sizes is negligible. We conclude that the prescribed step size
update rule is very effective for energy minimization in the case of the H'-gradient flow,
but not very impactful for the L?-gradient flow.

4.2.2. Adaptive step size control. In this subsection, we endow the linearly implicit mid-
point method with a simple adaptive mechanism, which allows to adjust the step size
without assuming any knowledge on the specific problem data.

Specifically, for all n > 2, after the computation of the update diuj via and
the definition of the new approximation uj = uz_l + Tpdyuy, we adjust the step size
Tn+1 for the next iteration according to the following rule: Given 0 < Tyin < Tmax,
if [|deul|| > ||deu} ||, then we reduce the step size for the next iteration as 7,41 =
max { Tmin, Tn\/1 — Tn/Tmax }; otherwise, if ||dyuf|| < |dyuf ", then we enlarge the step
size as Tp,+1 = min {Tmax, o/ 1+ Tn/ Tmax}. The approach reduces the step size whenever
the gradient flow dynamics accelerates, conversely the step size increases if the dynamics
slows down. The specific formula for the adjustment comes from the discussion in Sec-
tion (cf. (36))), where we choose ¢ = 1/Tax to guarantee that the step size is always
positive.

We test the approach using the setups of Section (harmonic map heat flow with sin-
gular solutions). We consider the initial step size 71 = 2=™ for m = 11,...,16. Moreover,
we set Toin = 2718 and Typax = 1.

adaptive midpoint method

o N Soolup] dunilugy]  AZ B? c?

27111721 7.053e—1 3.478e—3 1.435ed 7.644e3 7.489e¢—5
2712 3250 2.855e—1 1.075¢—3 1.666e4 1.156e4 9.792e—13
2713 6497 7.343e—2 3.104e—4 1.494e4 1.684e4 8.837e—13
2714 12991 1.130e—2 8.66le—5 1.07led 2.37led 8.571e—13
2715 925981 1.403e—3 2.707e—5 7.786e3 3.220ed 8.496e—13
2716 51960 2.706e—4 8.873e—6 6.066e3 4.182e4 8.482e—13

TABLE 6. Performance of the midpoint method with adaptively adjusted
step size for the harmonic map heat flow in the presence of singularities.
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FIGURE 4. Evolution in [0, 1/5] of the energy (top-left), the L2-norm of the
update (top-right), the constraint violation L!-error (bottom-left), and the
step size (bottom-right) for the approximations generated by the midpoint
method with adaptively adjusted step size (11 = 2714).

Comparing the results in Table [6] and Fig. [d] with those obtained for constant step size
(see Table , we see that the number of iterations IV needed by the adaptive method to
simulate the gradient flow dynamics in the interval of interest (a measure of the overall
computational cost of the simulation) is reduced by 20% despite achieving approximately
the same accuracy in the realization of the unit-length constraint. In Fig. 4| (bottom-right),
we see that the reduction of the computational cost is obtained by increasing the step size
throughout the entire evolution, except for ¢ € (0.06,0.08), where the faster dynamics (cf.
the plots in Fig. [4| (top)) requires a more accurate time discretization.
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